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1 Introduction

In this paper, we consider the cuspidalization problem of the fundamental
group of a curve. Let X be a smooth, proper, geometrically connected curve
of genus g > 2 over a field K whose (not necessarily positive) characteristic
we denote by p.

Problem 1.1. Let U — X be an open subscheme of X. Then can one
reconstruct the (arithmetic) fundamental group

7T1(U)

of U from the (arithmetic) fundamental group m (X) of X ?
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More “generally”,

Problem 1.2. Let r be a natural number. Then can one reconstruct the
(arithmetic) fundamental group

1 (Ury)

of the r-th configuration space Uy of X (i.e., the open subscheme of the r-th
product of X [over K| whose complement consists of the diagonals “Dyy(; ;3 =
{(x1,-+,2) | @i = ;17 (i # 7)) from the (arithmetic) fundamental group
m(X) of X7

In this paper, we study Problem 1.2 by means of the log geometry of
the the log configuration scheme of X, which is a natural compactification of
Uy 1
Let Mgof be the log stack obtained by equipping the moduli stack /Vg,r
of r-pointed stable curves of genus g whose r sections are equipped with an
ordering with the log structure associated to the divisor with normal crossings
which parametrizes singular curves. Then, for a natural number r, we define

the (n-th) log configuration scheme X 27‘?;‘; as the fiber product

—log
Spec K X qios M,

where the (1-) morphism Spec K — ﬂlgoﬁ is the classifying (1-)morphism

determined by the curve X — Spec K, and the (1-)morphism ﬂlgof — ﬂ;ﬁ is

the (1-)morphism obtained by forgetting the sections. Note that the interior
of ng)g (i.e., the largest open subset of the underlying scheme of X gf)g on
which the log structure is trivial) is the usual (r-th) configuration space U,
of X, and that the natural inclusion U,y — X éﬁ;g induces an isomorphism of
the geometric pro-prime to p quotient of w1 (U,y) (i.e., the quotient of m (U,))
by the kernel of the natural surjection from the geometric fundamental group
of U,y to its maximal pro-prime to p quotient) with the geometric pro-prime
to p quotient of m; (ng)g)

Let ¥ be a (non-empty) set of prime numbers. We shall denote by Hl)‘;i)
the geometric pro-X quotient of (X éﬁ;g), and by Hﬁf}g( the geometric pro-2
quotient of the log fundamental group of the log scheme IP’II?g obtained by
equipping the projective line P with the log structure associated to the
divisor {0,1,00} C Pk.. Then the first main result of this paper is as follows

(cf. Theorem 7.4):



Theorem 1.3. Let r > 3 be an integer. Then there exist extensions
I, I3
of Hl)?i_l) by Z&) (1), an extension
I,

of Hl)‘}% X G H;P?lg by Z® (1) and continuous homomorphisms
r K

—2)
I — IyE (1< <3)
such that the morphism

Hg((r) def liin(Hl — {1} — Iy {1} — H3) N Hl)c?(;r)

induced by the morphisms 11; — Hl)(z-i) 15 surjective, where the inductive limat
s taken in the category of profinite groups.

Note that Theorem 1.3 can be regarded as a logarithmic analogue of [13],
Remark 1.2.

We shall denote by pl)(}i)i : Xé;’il) — Xé?;g the morphism obtained by
“forgetting” the i-th section. Then the second main result of this paper is as

follows (cf. Theorem 7.15):
Theorem 1.4. Let r > 2 be an integer. Moreover, we assume that

o the set of all prime numbers or {{} if p=0
N {l} if p>2.

If the collection of data consisting of the profinite groups Hl)(gi) (0<k<mr),
the profinite group I, the surjections Hl;;i) — Hl)‘zi_l) (1 <k <r) induced
by the plfgiil)i s(1<k<r 1<i<k)and the structure morphism of X, the
morphism Hlﬁfg — G induced by the structure morphism of IP’ll‘;g and some
data concerning the log fundamental groups of the irreducible components of
the divisor at infinity (i.e., the divisor with normal crossings which defines
the log structure) of X(lf)g is given, then we can “reconstruct” the profinite

group
G
X(r1)

defined in Theorem 1.3 and morphisms

Y log ;



such that qx,,, factors as the composite

log

g log
—
X1 HX(M) X(r)

where the first morphism is the morphism obtained in Theorem 1.35.

In Theorem 1.4, we use the terminology “reconstruct” as a sort of “abbre-
viation” for the somewhat lengthy but mathematically precise formulation
given in the statement of Theorem 7.15.

By Theorem 1.3 and Theorem 1.4, if one can also reconstruct group-
theoretically the kernel of the surjection H%Ml) l)‘giﬂ) (which appears
in the above composite), then, by taking the quotient by this kernel, one
can reconstruct the profinite group Hl)?iﬂ). However, unfortunately, recon-
struction of this kernel is not performed in this paper. Moreover, it seems
to the author that if such a reconstruction should prove to be possible, it is
likely that the method of reconstruction of this kernel should depend on the
“arithmetic” of K in an essential way.

This paper is organized as follows:

In Section 2, we prove the existence of a logarithmic version of the Stein
factorization under some hypotheses (cf. Definition 2.11, Theorem 2.9, also
Remark 2.13). In [7], Exposé X, Corollaire 1.4, the exactness of the homotopy
sequence associated to a proper, separable morphism is proven. In this proof,
the existence of the Stein factorization plays an essential role. Therefore, to
prove a logarithmic analogue of the exactness of the homotopy sequence, we
consider the existence of a logarithmic analogue of the Stein factorization.

In Section 3, we prove a logarithmic analogue of [7], Exposé X, Corollaire
1.4, i.e., the exactness of the log homotopy sequence by means of the existence
of the log Stein factorization (cf. Theorem 3.3). Moreover, a logarithmic
analogue of the fact that the fundamental group of the scheme obtained by
taking the product of schemes is naturally isomorphic to the product of the
fundamental groups of these schemes (cf. [7], Exposé X, Corollaire 1.7) is
proven (cf. Proposition 3.4). These results are used in Section 5 and 7.

In Section 4, we define the notion of a log structure on a formal scheme
and establish a theory of algebraizations of log formal schemes. One can de-
velop a theory of algebraizations of log formal schemes (cf. Theorem 4.5) in a
similar fashion to the classical theory of algebraizations of formal schemes (for
example, the theory considered in [4], §5). However, in the case of algebraiza-
tions of log formal schemes, it is insufficient only to assume a “compactness
condition” of the sort that is required in the classical algebraization theory of
formal schemes; in addition to such a “compactness condition”, a certain re-
ducedness hypothesis is necessary (cf. Remark 4.6, 4.7). This algebraization
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theory of formal log schemes implies a logarithmic analogue of the fact that
the fundamental group of a proper smooth scheme over a “complete base”
is naturally isomorphic to the fundamental group of the closed fiber (cf. [7],
Exposé X, Théoreme 2.1, also [22], Théoreme 2.2, (a)) (cf. Corollary 4.8).
This result is used in the next section.

In Section 5, we define the notion of a morphism of type N®™ and consider
fundamental properties of such a morphism. Roughly speaking, a morphism
of log schemes is of type N¥™ if the relative characteristic is locally constant
with stalk isomorphic to N®”. The main result of this section is the fact that
at the level of anabelioids (i.e., Galois categories) (determined by ket cover-
ings), certain morphisms of type N¥" can be regarded as “G-fibrations”
(cf. Theorem 5.18). Moreover, following [15], Lemma 4.4, we give a sufficient
condition for the homomorphism from the log fundamental group of the fiber
of the “G;"-fibration” determined by such a morphism of type N®" to the
log fundamental group of total space of the “G,"-fibration” to be injective
(cf. Proposition 5.23).

In Section 6, we consider the scheme-theoretic and log scheme-theoretic
properties of log configuration schemes. Moreover, we study the geometry of
the divisor at infinity of X éi)g in more detail.

In Section 7, we consider the reconstruction of the fundamental groups of
higher dimensional log configuration schemes by means of the results obtained
in previous sections.

Finally, in the Appendix, we prove the well-known fact that the category
of ket coverings of a connected locally noetherian fs log scheme is a Galois
category; this implies, in particular, the existence of log fundamental groups
(cf. Theorem A.1, also Theorem A.2). The log fundamental group has
already been constructed by several people (e.g., [3], [8], 4.6, [20], 3.3, [22],
1.2). Since, however, at the time of writing, a proof of this fact was not
available in published form, and, moreover, various facts used in the proof of
this fact are necessary elsewhere in this paper, we decided to give a proof of
this fact. Moreover, although other authors approach the problem of showing
that the category of ket coverings of a log scheme is a Galois category by
considering the category of locally constant sheaves on the Kummer log étale
site, we take a more direct approach to this problem which allows us to avoid
the use of locally constant sheaves on the Kummer log étale site.
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ten.
Notation

Symbols

We shall denote by Z the set of rational integers, by N the set of rational
integers n > 0, by Q the set of rational numbers and by Z the profinite
completion of Z.

Subscripts

For a ring A (respectively, a scheme X), we shall denote by A,eq (re-
spectively, X,.q) the quotient ring by the ideal of all nilpotent elements of
A (respectively, the reduced closed subscheme of X associated to X). For
a ring A, we shall denote by A* the group of unity of A. For a field k, we
shall use the notation k*P® to denote a separable closure of k. For a monoid
P, (respectively, a sheaf of monoids P) we shall denote by P2 the group
associated to P (respectively, P5P the sheaf of groups associated to P). For
a group G, we shall denote by G® the abelianization of G.

Terminologies

We shall assume that the underlying topological space of a connected
scheme is not empty. In particular, if a morphism is geometrically connected,
then it is surjective.

Let X be a set of prime numbers, and n an integer. Then we shall say
that n is a Y-integer if the prime divisors of n are in . Let I' be a profinite
group. We shall refer to the quotient

limI'/H

(where the projective limit is over all open normoal subgroups H C I" whose
orders are Y-integers) as the pro-X quotient of I'. We shall denote by I'*?
the pro-X quotient of I.

We shall refer to the largest open subset (possibly empty) of the under-
lying scheme of an fs log scheme on which the log structure is trivial as the
interior of the fs log scheme. We shall refer to a Kummer log étale (respec-
tively, finite Kummer log étale) morphism of fs log schemes as a ket morphism
(respectively, a ket covering).

Log schemes

For a log scheme X', we shall denote by M x the sheaf of monoids that
defines the log structure of X'°&.

Let P be a property of schemes [for example, “quasi-compact”, “con-
nected”, “normal”, “regular”] (respectively, morphisms of schemes [for ex-
ample, “proper”, “finite”, “étale”, “smooth”]). Then we shall say that a log



scheme (respectively, a morphism of log schemes) satisfies P if the underlying
scheme (respectively, the underlying morphism of schemes) satisfies P.

For a log scheme X'°¢ (respectively, a morphism f!°¢ of log schemes), we
shall denote by X the underlying scheme (respectively, by f the underlying
morphism of schemes). For fs log schemes X8 Y18 and Z'°¢_ we shall denote
by X8 xy10s 7198 the fiber product of X'°8 and Z'°¢ over Y'°¢ in the category
of fs log schemes. In general, the underlying scheme of X'°% xy1.; Z'°8 is not
X xy Z. However, since strictness (a morphism f1°8 : X8 — ylos ig called
strict if the induced morphism f*My — Mx on X is an isomorphism) is
stable under base-change in the category of arbitrary log schemes, if X8 —
Y98 is strict, then the underlying scheme of X'°® xy1s Z'°8 is X xy Z. Note
that since the natural morphism from the saturation of a fine log scheme
to the original fine log scheme is finite, properness and finiteness are stable
under fs base-change.

If there exist both schemes and log schemes in a commutative diagram,
then we regard each scheme in the diagram as the log scheme obtained by
equipping the scheme with the trivial log structure.

2 The log Stein factorization

Definition 2.1. Let X'°® be an fs log scheme, and 7 — X a geometric point.

(i) We shall refer to the strict morphism 7% — X'°¢ whose underlying
morphism of schemes is T — X as the strict geometric point over T —

X.

(ii) We shall refer to 7% — X8 as a reduced covering point over the strict
geometric point 7'°¢ — X'°8 or, alternatively, over the geometric point
T — X, if it is obtained as a composite

_1 —log _
l'log N 1.11 N :L,log N XlOg,

where 7'°¢ — X°2 is the strict geometric point over 7 — X, Fllog — 78
is a connected ket covering, and fllog — Ellog is a strict morphism of fs
log schemes for which the underlying morphism of schemes determines
an isomorphism T; ~ 7’y ;.q. Note that, in general, Ellog — T°% is not a
ket covering. (See Remark 2.2 below.)

Remark 2.2. The underlying scheme of the domain of a strict geometric
point 7'°¢ — X8 is the spectrum of a separably closed field. However,
in general, the underlying scheme of the domain of a connected ket covering



?llog — 7'°8 is not the spectrum of a separably closed field. On the other hand,

if we denote by fllog the log scheme obtained by equipping 2’1 eq with the

log structure induced by the log structure of ?llog (i.e., the natural morphism
fllog — X2 is a reduced covering point over 7'°¢ — X'°8), then the following

hold:

i) The underlying scheme of 718 is the spectrum of a separably closed
1
field (by Proposition A.4).

(ii) There is a natural equivalence between the category of ket coverings

of 7% and the category of ket coverings of Fllog (by Proposition A.8).

In particular, Wl(yllog) ~ T (flfg)-

group, see Theorem A.1.)

(Concerning the log fundamental

. 1 —log . .
(iii) The natural morphism 7;"® — 2/~ is a homeomorphism on the under-

lying topological spaces and remains so after any base-change in the
category of fs log schemes over fllog. Indeed, this follows from the fact
that this morphism is strict, together with the fact that the underlying

morphism of schemes is a universal homeomorphism.

Definition 2.3. Let X'°® be an fs log scheme, T — X a geometric point of
X, U — X an étale neighborhood of 7 — X, and P — Oy an fs chart at
T — X. Then we shall say that the chart P — Oy is clean at z — X if the
composite P — Mxz — (Mx/O%)z is an isomorphism. A clean chart of
X'°8 always exists over an étale neighborhood of any given geometric point
of X. (See the following discussion of [14], Definition 1.3.)

The following technical lemma follows immediately from Proposition A.8.

Lemma 2.4. Let X' be an fs log scheme whose underlying scheme X is
the spectrum of a strictly henselian local ring. Then for a strict geometric
point T°6 — X% for which the image of the underlying morphism of schemes
s the closed point of X, and any reduced covering point fllog — X8 gver
78 — X8 there exists a ket covering Y8 — X9 and a strict geometric
point J'°6 — Y% such that 7'°¢ — Y18 — X198 factors as a composite 7'°8 —
% — X' where the morphism 7'°8 — T8 is a reduced covering point over
the strict geometric point T — T8 given by the identity morphism of T 8.

In the following discussion, we will show the existence of a logarithmic
version of the Stein factorization.

Lemma 2.5. Let X'°® be a quasi-compact fs log scheme equipped with the
trivial log structure, Y'°% an fs log scheme, and f'°8 : Y8 — X8 g proper



log smooth morphism. Then the morphism X' — X that appears in the Stein
factorization Y — X' — X of f is finite étale.

Proof. By [7], Exposé X, Proposition 1.2, it is enough to show that f is
proper and separable. The properness of f is assumed in the statement
of Lemma 2.5. Since the log structure of X% is trivial, f°% is integral
([10], Proposition 4.1). Since an integral log smooth morphism is flat ([10],
Theorem 4.5), f is flat. For the rest of the proof of the separability of f,
by base-changing, we may assume that X = Spec k, where k is a field whose
characteristic we denote by p. Then étale locally on Y, there exist an fs
monoid P whose associated group P®P is p-torsion-free if p is not zero and
an étale morphism Y — Spec k[P] over k ([10], Theorem 3.5). On the other
hand, k[P] ®; K C k[P®] @) K, and k[P®] ®; K = K[P*??] is reduced for
any extension field K of k by the assumption on P&P; thus, k[P]®; K, hence
also Y is reduced. Therefore, f is separable. ]

Lemma 2.6. Let X% be a log reqular, quasi-compact fs log scheme, Ux C X
the interior of X'°¢ Y% an fs log scheme, and f'°% : Y6 — X'¢ q proper
log smooth morphism. If we denote by Y xx Uy — V — Uy the Stein
factorization of f |y« vy, then the following hold:

(i) V — Ux is finite étale.

(17) The normalization of X in V is tamely ramified over the generic points
Of DX =X \ UX .

Proof. Since log smoothness and properness are stable under base-change, (i)
follows from Lemma 2.5. For (ii), since normalization and the operation of
taking Stein factorization commute with étale localization, we may assume
that X is the spectrum of a strictly henselian discrete valuation ring R whose
field of fractions we denote by K, and whose residue field we denote by k.
Then the log regularity of X'° implies that the log structure of X8 is trival,
or is defined by the closed point of X ([11], Theorem 11.6). If the log structure
of X' is trivial, then (ii) follows from (i). Thus, we may assume that the
log structure of X'°8 is not trivial. Moreover, for (ii), we may assume that V'
is connected. Then, by (i), I'(V, Oy) is a finite separable extension field of
K. We denote this field by L.

Let us denote the integral closure of R in L by Ry. Thus, the normaliza-
tion X’ of X in V' is Spec Ry, Ux = Spec K, and V' = Spec L. Therefore, we



obtaine the following commutative diagram:

Spec L Spec K
Y18 X yioe Uy ——  V — Uy
| | |
y'los X — X
| |
Spec Ry, Spec R.

Note that since V' — Uy is finite étale, Ry, is finite over R. Let 7 — Y be a
geometric point of Y over the closed point of X’.
Now, by [10], Theorem 3.5, there exists

e a connected étale neighborhood W of y — Y;
e an fs monoid chart P — Oy of Y!°8: and

e a chart
N—— P

[

R—>OW

of Y'¢ — (Spec R)" (where N — R is a chart of (Spec R)'°® such that
1+ 7R [7g is a prime element of R])

such that

(i) N — P is injective, and if the image of 1 is ¢t € P, then the torsion part
of P#/(t) is a finite group of order invertible in R; and

(ii) the natural morphism W — Spec R[P]/(wr — t) is étale.
Thus, we have a commutative diagram

W  —— SpecR[P]/(mg —t)

l |

Spec Ry, —— Spec R .

Therefore, it follows from the above conditions (i) and (ii) that if the image
of mr in Ry, has valuation 7, then r is invertible in R, hence in k.
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Moreover, by base-changing by R — k and taking “( - ),.q”, we obtain a
commutative diagram

(W Xgk)rea  —— Spec (K[P]/(t))rea

! l

W xrk ——  Speck[P]/(t)

l l

Spec Ry /mrR;, —— Speck .

Since the middle horizontal arrow of the diagram is étale, it follows that
the upper square is cartesian; thus, (W X g k)reqa — Spec (k[P]/(t))rea is also
étale. Since Spec (k[P]/(t))rea is geometrically reduced over k, it follows that
Spec (k[P]/(t))rea, hence also, (W X g k).eqa has a k-rational point. Therefore
the residue field of Ry, is k. O]

Definition 2.7. Let X' and Y'°¢ be fs log schemes. Then we shall say
that a morphism f°8 : Y18 — X8 ig log geometrically connected if for any
reduced covering point 7 — T over a strict geometric point 78 — X8,
the fiber product Y18 x yios 28 is connected.

Note that it follows from Remark 2.2, (iii), that this condition is equiv-
alent to the condition that for any connected ket covering 21 _, Fos of a

. . . ] —log .
strict geometric point '8 — X8 Y18 x (1o, 2/ is connected.

Remark 2.8. In log geometry, there exists the notion of a log geometric
point. In fact, one can regard a log geometric point as a limit of ket coverings
over a strict geometric point. Thus, one natural way to define log geometric
connectedness is by the condition that every base-change via a log geometric
point is connected. However, in general, a log geometric point is not a fine
log scheme. Hence we can not perform such a base-change in the category of
fs log schemes.

Theorem 2.9. Let X'°¢ be a log reqular, quasi-compact fs log scheme, Y18
an fs log scheme, and f'°8 : Y18 — X8 q proper log smooth morphism. If

we denote by Y X" 4 X the Stein factorization of f, then X' admits a
log structure that satisfies the following properties:

(i) There exists a ket covering X' '8 — X8 whose underlying morphism
of schemes is g.

(i1) Y& — X1 s log geometrically connected.
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Proof. Let Ux C X be the interior of X8, If we denote by Y xy Ux —
V' — Uy the Stein factorization of Y xx Ux — Uy, then, by Lemma 2.6,
V' — Uy is finite étale, and the normalization Z of X in V is tamely ramified
over the generic points of Dx = X \ Uy. Hence Z admits a log structure
that determines a ket covering Z'°¢ — X'° by the log purity theorem in [14].
(Concerning the log purity theorem, see Remark 2.10 below.) Now Y8 is
log regular, hence normal ([10], Theorem 4.1); thus, X is normal. Therefore
X" — X factors through Z. Since both X’ x x Ux and Z x y Ux are naturally
isomorphic to V', we have X’ ~ Z. This completes the proof of (i).

For (ii), since the operation of taking the Stein factorization commutes
with étale base-change, by base-changing, we may assume that both X and
X' are the spectra of strictly henselian local rings. Moreover, by Lemma 2.4,
it is enough to show that for any connected ket covering X|® — X'°¢ and
any strict geometric point 7% — X8 x 1o, X1 for which the image of
the unerlying morphism of schemes is the closed point, Y% X /1., 7! is
connected.

Let us denote by Y{°® the fiber product Y195 x yio: X1%. Since log smooth-
ness and properness are stable under base-change, Y;°® — X1° is log smooth
and proper. By (i), if we denote by Y7 — X| — X the Stein factorization of
Y; — Xj, then X| admits a log structure such that the resulting morphism
X6 — XI°¢ is a ket covering. Thus, we have the following commutative
diagram:

lelog BN Xilog - X}og

l l |

Y log X’ log Xlog

Now I claim that the right-hand square in the above commutative diagram
is cartesian. Note that it follows formally from this claim that the left-hand
square is also cartesian. In particular, it follows from this claim, together with
the connectedness property of the Stein factorization, that Y% x /., 7'°¢ =
V%8 x /1os T is connected for any strict geometric point 7' — X log,

The claim of the preceding paragraph may be verified follows: If we base-
change by Uy — X', then we obtain a commutative diagram

1 "1 1
leog XXlog UX —_— Xl o8 XXlog UX E— Xlog XXlog UX

l l l

’
YIOg XXlog UX —_— X lOg XXlog UX —_— UX .

Since Ux — X' is a strict morphism, and the log structures of Ux and
X1°8 X yie Ux are trivial, the underlying scheme of Y7°8 X yioe Ux [= Y% X y10s
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Xiog X x10e Ux = Y198 X y10s Ux Xy (Ux X xt08 Xiog)] is Y1 xx Ux. Moreover,
X iog X x1oe Ux — Uy is finite étale, hence flat. Thus, the underlying morphism
of schemes of 7% X yioe Uy — (X 18 X yiox X1%%) X y10x Ux — X1°8 X y10 Ux i
the Stein factorization of the underlying morphism of schemes of ¥7°% X yiox
Ux — X1 X e Ux; in particular, Xilog X xtos Ux 2 (X198 X yiox X1°8) X o
Ux. Therefore X,'% ~ X'1°¢ x i, XI°¢ by Proposition A.10. O

Remark 2.10. In [14], Theorem 3.3, it is only stated that:

Let X8 be a log reqular, quasi-compact fs log scheme and Ux the interior
of X'¢. Let V. — Ux be a finite étale morphism which is tamely ramified
over the generic points of X \ Ux. LetY be the normalization of X in
V and Y'® the log scheme obtained by equipping Y with the log structure
Oy N(V <= Y).0;, — Oy. Then the following hold:

o Y8 s log reqular.

o The finite étale morphism V. — Ux extends uniquely to a log étale
morphism Y'°8 — X8

However, in fact, Y'°¢ — X'°¢ j5s Kummer by the proof of the log purity
theorem in loc. cit. (More precisely, in the notation of loc.cit., the inclusions
P C Py C (1/n)P imply this fact.) Moreover, since V' — Ux is finite étale,
it follows that the normalization ¥ — X is finite.

Definition 2.11. In the notation of Theorem 2.9, we shall refer to Y& —
X'log _, Xlog a5 the log Stein factorization of f'°8. This name is motivated
by condition (ii) in the statement of Theorem 2.9.

Proposition 2.12. The operation of taking log Stein factorization commutes
with base-change by a morphism which satisfies the following condition (x):

(%) The domain is a log reqular, quasi-compact fs log scheme, and the
restriction of the morphism to the interior is flat.

(For example, a quasi-compact ket morphism satisfies (x).)

Proof. Let X' be a log regular, quasi-compact fs log scheme, f1¢ : Y& —
X8 a proper, log smooth morphism, and ¢'° : Xiog — X8 a morphism
which satisfies the condition (x) in the statement of Proposition 2.12. Let
us denote by f1% : Y[ — X|°® the base-change of f°8 by ¢'°¢ and by
yle — X'les . X15 (respectively, Y{%® — X;'® — X1%) the log Stein
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factorization of f°8 (respectively fiog). Thus, we obtain the following com-
mutative diagram:

1 "1 1
Y'l og Xl og Xlog

Ll

Y log X’ log Xlog

If we denote by X3 the fiber product X{%® X yie X 8 then the above

. . . . B 1 L.
commutative diagram determines a morphism X; *® — X,®. Our claim is

that this morphism is an isomorphism.

Let U; C X, be the interior of X;%. Since ¢'°¢ is Kummer, the morphism
U, — X' factors through U; in particular, U; — X% is strict. Therefore
the underlying scheme of Yllog X ylos Ui is Y xx U;, and the factorization

induced on the underlying schemes by the factorization Yllog X oz Uy —
1
X, '8 x wloe Uy — Uy is the Stein factorization of the underlying morphism of
1

Yllog X y1oe Uy — Uy. On the other hand, it follows from the flatness of Uy — X
1

that the factorization induced on the underlying schemes by the factorization

Yllog X ytog Uy — X;Og X oz Uy — Uy is also the Stein factorization of the
1 1

underlying morphism Yllog X oz Uy — Uy. Thus, we obtain X 11°g X ylog Up
1 1
X3 X 1o Ur. Now X7 — X'°8 and X,® — X'°¢ are ket coverings; thus,
1
by Proposition A.10, X' ~ X%, ]

Remark 2.13. In this section, we only consider the log Stein factorization
in the case where the base log scheme is log regular. However, if a morphism
flos . Yloe — X8 of fs log schemes admits the following cartesian diagram:

Ylog floe log
% X

l |

log fiog log
Yi X 1 >

where

e X% is a log regular, quasi-compact, fs log scheme, and f}°® : Y% —
log . .
X" is a proper, log smooth morphism from an fs log scheme,

1 . .
o X8 — X% is strict,

then the factorization Y8 — X' x 1., X'°5 — X' obteined by base-
1

changing the log Stein factorization Y% — X8 — X1 of flog by xlos _,
X8 satisfies the following:
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/
1 . :
o V8 — X' x 1os X8 is log geometrically connected.
1

/
! . :
o X% X 105 X8 — X!°% ig a ket covering.
1

3 The log homotopy exact sequence

Proposition 3.1. Let X8 be a log reqular, connected, quasi-compact fs log
scheme, Y'°8 an fs log scheme, and f'°8 : Y8 — X8 o proper log smooth
morphism. Then the following conditions are equivalent:

(Z) f*Oy ~ Ox.

(17) If we denote the Stein factorization of f by Y — X' — X, then
the morphism X' — X is an isomorphism (i.e., f is geometrically
connected).

(i41) If we denote the log Stein factorization of f°8 by Y18 — X'lo8 — Xlog,
then the morphism X °% — X% js an isomorphism (i.e., fl°8 is log
geometrically connected).

(iv) Y is connected, and f°% induces a surjection 7 (Y'°8) — my(X08).

Moreover, the above four conditions imply the following condition:
(v) Y is connected, and f induces a surjection w1 (Y) — m(X).

Proof. The equivalence of the first three conditions is immediate from the
constructions of the Stein and log Stein factorizations.

Now we assume the first three conditions. Then since f is surjective (by
condition (i)), proper, and geometrically connected (by condition (ii)), it fol-
lows that Y is connected. Now let X }Og — X' be a connected ket covering,
and f1% : V% — X|°® the base-change Y% X vz X|% — X\ Then f; is
also sujective and proper. Moreover, it follows from Proposition 2.12 that f;
is geometrically connected. Thus, Y7 is connected. This completes the proof
that the first three conditions imply (iv).

Next, we will show that (iv) implies (iii). Assume that f'°® induces a
surjection m (Y18) — m(X'"98). If we denote by Y& — X'l& — X8 the
log Stein factorization of f°8, then since Y is connected and ¥ — X' is
surjective, X’ is connected. Moreover, it follows from Theorem 2.9, (i), that
X'log — X198 is a ket covering. By the assumption (iv), Y'°8 x yix X 18 —
Y8 is also a connected ket covering. However, this covering has a section,
hence Y198 X yios X' 198 ~ Y108 Thus, by applying the general theory of Galois
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categories to Két(X'1°8) and Két(Y'°%), we obtain X ¢ ~ X°8 (concerning
Két(X™ ), see Theorem A.1).

Finally, we will show that (iv) implies (v). It is immediate that the
morphism X' — X determined by the morphism of sheaves of monoids
0% — My induces a surjection 7 (X8) — m(X). Thus, it follows from
condition (iv), the fact that i (X'®) — 7, (X) is surjective, and the existence
of the commutative diagram

7.(.I(Y'log) - 71_1()(log)

l !

mY) —— m(X),
that m(Y) — m(X) is surjective. 0

Remark 3.2. In the statement of Proposition 3.1, condition (v) does not
imply condition (iv). Indeed, let R be a strictly henselian discrete valuation
ring, K the field of fractions of R, L a tamely ramified extension of K, and
Ry, the integral closure of R in L. If we denote by (Spec R)"°® (respectively,
(Spec Rp)'®8) the log scheme obtained by equipping Spec R (respectively,
Spec Rp) with the log structure defined by the closed point, then the natural
morphism (Spec R)°¢ — (Spec R)'°® satisfies (v) (since 7 (Spec R) = 1),
but m ((Spec R)"8) — m((Spec R)'°8) is not surjective unless K = L (since
(Spec Rp,)'°® — (Spec R)'°8 is a connected ket covering).

Next, we will show the exactness of the log homotopy sequence.

Theorem 3.3. Let X' be a log reqular, connected, quasi-compact fs log
scheme, Y'°8 a connected fs log scheme and f1°8 : Y8 — X8 g proper log
smooth morphism. Moreover, we assume one of conditions (i), (it), (iii) and
(iv) in Proposition 3.1. Then for any strict geometric point T'°% — X1°8 the
following sequence:

T lo.
limn 7y (V1% ¢ y1oe 7%) — g (V1) 50 7y (p1o8) — 1

. . . . ) . 1
is exact, where the projective limit is over all reduced covering points T® —
_ . . . 1

78, and s is induced by the natural projections Y'°8 X xis T,® — Y108,

Proof. Note that, by Proposition 3.1, (iii), and the connectedness property
of the log Stein factorization, Y'°8 X yio El/\og is connected for any reduced
covering point Ty — T8 over T8,

Next, observe that the surjectivity of 7 (f'°¢) follows from Proposition 3.1,
(iv). Moreover, it is immediate that 7 (f1°8) o s = 1. Hence it is sufficient to
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show that the kernel of 7 (f1°8) is generated by the image of s. By the general
theory of profinite groups, it is enough to show that for an open subgroup
G of m(Y'°8), if G contains the image of s, then G contains the kernel of
m(f18). Let Y{°® — Y% be the connected ket covering corresponding to G.
Then since G contains the image of s, there exists a reduced covering point
T8 — T such that Y/ X yis Ty® — Y18 X yiox T ¢ has a (ket) section.
Since Y{% — Y2 is finite and log étale, it follows that Y]°* — X% is proper
and log smooth. Let Y/ — X°® — X' he the log Stein factorization of
this morphism and Y,°® the fiber product Y'°% x v X1°6. Thus, we have a

commutative diagram

1 ! !
Y'l og }/2 og Xlog

l l

log
lelog Ylog f Xlog

(where the right-hand sequare is cartesian). Now I claim that Y% — Y;% is
an isomorphism. To prove this claim, it is enough to show the following:

. log -

(i) Y, is connected.

. 1 log . .
(ii) Y] — Y,% is a ket covering.

(ili) Y/ — Y,°® has rank one at some point. (We shall say that a ket
covering Y'°¢ — X1 of locally noetherian fs log scheme has rank one
at some point, if there exists a log geometric point of X'°¢ such that,
for the fiber functor F of Két(X!®) defined by the log geometric point
[cf. Theorem A.1 ], the cardinality of F(Y'°®) is one.)

The first assertion follows from Proposition 3.1, (iv), and the second
assertion follows from the fact that Y]°® — Y'°% and Y, — Y% are ket
coverings and Proposition A.5. Hence, in the rest of the proof, we will show
the third assertion.

Replacing the reduced covering point flfg — Z'°8 by the composite Tl)f’,g —
T8 — T8 where Th® — Ty® is a reduced covering point, if necessary, we
may assume that X% X yis Zy® splits as a disjoint union of copies of Zy®.
If we base-change the above commutative diagram by flfg — X' then we
obtain the following commutative diagram:

n n

-’ -’
7
—lo,

log —log log —log log _logy g log
}/1 XXlogQJ)\ — (Y XXlong )l_ll_l(Y XXlog.:C)\ ) E— .:CA |_||_|SE)\

H | |

1 1 1 i}
Ylog X xlog xfg —_ ylog X ylog xfg —_ ZL“/\Og

-~
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(where the right-hand sequare is cartesian). By the general theory of Galois
categories, it is enough to show that

n
A

Ve

1 _1 1 _1 _1 _logy
leog XXlog Q};g — )/éog XXlog {L’;g(: (Ylog XXlog xfg> |_| [N |_| (Ylog XXlog l‘;g))

has rank one at some point.
1 _1 _1 .
Now Y% X yioe T® — Y1°8 X y100 T, has a (ket) section; thus, one of the
1 _log :_ - : 1 :
connected components of Y, X xis Ty © is isomorphic to Y18 X x10: T, . Since
1 log - .. ,
Y% — Y, is a surjective ket covering,

n
A

Ve

1 1 1 _logy
Ylog XXlog I;\)g e (Ylog XXlog l’;\)g) I_] . e |_| (Ylog XXlog I;g)

is surjective ([18], Proposition 2.2.2). On the other hand, the number of
connected components of Y] X yios Ty 2 is n by the connectedness property
of the log Stein factorization Y*® — X} — X'°2_ Thus, Y% X yios Ty% —
V)% X xtos El)?g induces a bijection between the set of connected components
of Y% X yis Ty® and that of Y} X yis Zy%. Since one of the connected
components of Y7 X yiog Elfg is isomorphic to Y8 X yiog Elfg, V7% X x108 El)‘\’g —
Y,%8 X y1oe Ty 2 is an isomorphism on the connected component of Y% X yios fl/\og
which isomorphic to Y18 x yio T15. O

Proposition 3.4. Let k be a field. Let X'°% be a log smooth, proper, log
geometrically conncted fs log scheme over k, and Y'°® a connected, quasi-
compact, log reqular fs log scheme over k. Moreover, we assume that there
erists a finite separable extension k' of k such that Y'°® — s o Speck ad-
mits a morphism Speck’ — Y8 over s. Let p® : X'8 x, Yle — Xlog
(respectively, plQOg  Xlog x Y18 — ylog) be the 1-st (respectively, 2-nd) pro-
jection. Then the following hold:

(1) X8 x, Y% js connected.
(i) The natural morphism
™ (Xlog X o Ylog) —m (Xlog) X Gal(ksep /&) 1 (Ylog)

log

determined by p® and py®

18 an isomorphism.

Proof. First, we prove (i). Since X8 — s is proper, py® : X8 x Ylos —, ylos
is proper. Thus, to verify that X'°8 x Y18 is connected, it is enough to show
that each fiber of py at any geometric point of Y is connected. On the other
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hand, since X'°¢ — s is log geometrically connected, each fiber of p, at any
geometric point of Y is connected. Therefore, X'°8 x, Y% is connected.

Next, we prove (ii). By the existence of a morphism Speck’ — Y% we
obtain the following cartesian diagram:

X' %, k' ——— Speck’

l l

log
Xlog X s Ylog P2 Ylog .

Thus, by Theorem 3.3, we obtain the following exact sequence:

- log
(X198 5 KSP) sy (X198 yiog) T2 ytosy g

Therefore, we obtain the following commutative diagram:

- log
(X198 g B5P) —— 7 (X198 ., Y1o%) R R T

! ! !

1 —— m (X8 xp, b5P) —— 11 (X'8) XGapeer /i) T1(Y'8) ——  m(Y'¥) 1

! | l

1 —— m (X8 xp k5P) —— mp (X°8) — Gal(k*?/k) —— 1,

where all horizontal sequences are exact. Then it follows from the injectivity
of the left-hand bottom horizontal arrow (X8 x, k5P) — my(X'°8) that
the left-hand top horizontal arrow (X% xj k5P) — (X8 x, Yo%) is
injective. Thus, assertion (ii) follows from the five lemma. O]

4 Log formal schemes and the algebraization

In this section, we define the notion of a log structure on a formal scheme
and establish a theory of algebraizations of log formal schemes.

First, we define the notion of a log structure on a locally noetherian formal
scheme.

Definition 4.1. Let X and ) be locally noetherian formal schemes.

(i) Let Mx be a sheaf of monoids on the étale site of X (concerning the
étale site of a locally noetherian formal scheme, see [6], 6.1). We shall
refer to a homomorphism of sheaves of monoids My — Ox (where we
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(iii)

regard Oy as a sheaf of monoids via the monoid structure determined
by the multiplicative structure on the sheaf of rings Ox) as a pre-log
structure on X.

A morphism (X, Mx — Ox) — (9, Mgy — Og) of locally noetherian
formal schemes equipped with pre-log structures is defined to be a pair
(f, h) of a morphism of locally noetherian formal schemes f : X — 2) and
a homomorphism h : f~'Mg — Mz such that the following diagram
commutes:

friMy —— Mx

| !

f_IO@ —_— O% .

We shall refer to a pre-log structure o : My — Oy on X as a log struc-

~

ture on X if the homomorphism « induces an isomorphism a~!(0%) —
Ox%.

We shall refer to a locally noetherian formal scheme equipped with a
log structure as a locally noetherian log formal scheme. A morphism

of locally noetherian log formal schemes is defined as a morphism of
locally noetherian formal schemes equipped with pre-log structures.

For simplicity, we shall use the notation X'°% to denote a locally noethe-
rian log formal scheme whose underlying formal scheme is X. Then we
shall denote by M x the sheaf of monoids that determines the log struc-
ture of X'°¢. Note that by a similar way to the way in which we regard
the category of locally noetherian schemes as a full subcategory of the
category of locally noetherian formal schemes (by regarding a scheme S
as the formal scheme obtained by the completion of S along the closed
subset S of S), we regard the category of locally noetherian log schemes
as a full subcategory of the category of locally noetherian log formal
schemes.

Let a : M/ — Ox be a pre-log structure on X. We shall refer to the
log structure determined by the push-out in the category of sheaves of
monoids on the étale site of X of

a!(0F) 5 0%

J

M

as the log structure associated to the pre-log structure o : M’y — Ox.
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(iv)

(vii)

Let f : X — 2 be a morphism of formal schemes, and My a log
structure on ). We shall refer to the log structure associated to the
pre-log structure ' Mg — §710qg — Ox as the pull-back of the log
structure My, or, alternatively, the log structure on X induced by f.

Let X% be a log scheme, and F© C X a closed subspace of the un-
derlying topological space of X. Then we shall refer to the log formal
scheme X'°& obtained by equipping the completion X of X along F
with the pull-back of the log structure of X'°¢ as the log completion of
X8 glong F.

Let X!8 be a locally noetherian log formal scheme. Then we shall say
that X'°¢ is a locally noetherian fs log formal scheme if étale locally
on X, there exists an fs monoid P and a homomorphism Py — Ox
(where Py is the constant sheaf on the étale site of X determined by
P) such that the log structure of X'°® is isomorphic to the log structure
associated to the homomorphism Py — Ogx.

Let X!°¢ be a locally noetherian fs log formal scheme, P is a monoid
(respectively, an fs monoid), and Py the constant sheaf on the étale site
of X determined by P. We shall refer to a homomorphism Py — Ox
such that the log structure of X'°¢ is isomorphic to the log structure
associated to the homomorphism as a chart (respectively, an fs chart)
of X8 By the definition of a locally noetherian fs log formal scheme,
an fs chart always exists étale locally on X8

Let ¥ — X be a geometric point of X (i.e., x = Spec k for some separa-
bly closed field k). We shall say that an fs chart Py — Ox is clean at
T — X if the composite P — Mxz — (Mzx/O%)z is an isomorphism.
It follows immediately from a similar argument to the argument used
to prove the existence of a clean chart for an fs log scheme that a clean
chart of X'°¢ always exists over an étale neighborhood of any given
geometric point of X.

Let X'°¢ and 2)'°¢ be locally noetherian fs log formal schemes, and
flog : Xlos — 9)log 4 morphism of log formal schemes. We shall refer to
a collection of data consisting of

e a chart Py — Oy of Xlog,
e a chart Qg — Oy of P&, and

e a morphism ) — P of monoids such that the following diagram
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commutes
Qx —— Px

I |

{10y —— Ox

as a chart of the morphism §°¢. It follows from a similar argument to
the argument used to prove the existence of a chart of a morphism of
fs log schemes that given a chart Qg — Oy of 9%, there exist an
étale morphism U4 — X, an fs chart Py — Oy of the log structure of
o8 induced by the log structure of X!°¢, and a morphism P — @ of
monoids such that these data form a chart of the morphism §°¢.

Lemma 4.2. Let A be an adic noetherian ring, I an ideal of definition
of A, and f : X — SpecA a proper morphism. If a subspace F of the
underlying topological space of X contains the underlying topological space
of X x4 (A/I), and is stable under generization, then F coincides with the
underlying topological space of X.

Proof. Assume that F' does not coincide with the underlying topological
space of X (and that X is non-empty). Then there exists an element x of
X \ F. Since F is stable under generization, for any element a of F', there
exists an open neighborhood U, of a in X such that x does not belong to

U,. Thus, the open set U o U,er Ua of the underlying topological space of
X contains the underlying topological space of X x4 (A/I), and = does not
belong to U. It thus follows from the properness of f that f(X \U) is a non-
empty closed subset of the underlying topological space of Spec A, and does
not contain the underlying topological space of Spec (A/I). However, since
A is an adic noetherian ring, Spec (A/I) contains all closed points of Spec A.
Thus, there exists no such a set; hence we obtain a contradiction. O

Lemma 4.3. Let R be a strictly henselian excellent reduced local ring, }f{ the
completion of R with respect to the maximal ideal m of R, and R — R the
natural morphism. If the following diagram commutes

P ap m inclusion R
Q —=
where m is the maximal ideal of I;’, P and Q) are clean monoids, and the

left-hand vertical arrow P — @ is Kummer, then the morphism ag : QQ — R
factors through m.

inclusion ~

m R,
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Proof. Let ¢ be an element of (). Our claim is that the image ag(q) of ¢
via ag is in R. Let py,---p, € R be the associated primes of R. Then, by
the fact that R is reduced, the natural morphism R — R/p; @ --- & R/p,
is injective. We denote by K; the field of fractions of R/p,. Now since
R is excellent, R/p; is excellent. Therefore, by [5], Corollaire 18.9.2, the
completion (R/p;)(~ R/p; ®r R) of R/p; with respect to the maximal ideal
is an integral domain. We denote by K; the field of fractions of (R]pi). Thus,
we obtain the following diagram:

R—— R/p® - -®R/p, — Ki®---®K,

| | |

R —— (R/p)®--®(R/p,) — Ki®--®K,

(where all morphisms are injective).

Now the Kummerness of P — () implies that ag(q)” € m. Therefore,
the image of ag(q)" in K; is in K;. On the other hand, by the excellentness
of R/p; and [5], Corollaire 18.9.3, K; is algebraically closed in K;; it thus
follows that the image of a(q) in K; is in K;. Moreover, the image of ag(q)
in K, is in R/p;. Indeed, for the fractional ideal I o tiR/p; + R/p; (where
t; € K; is the image of ag(q) in K;), the fact that (I/(R/p;)) ®R/p; R/p; =
f/(R]pl) = 0 (since t; is in R]pi) implies that I/(R/p;) = 0 (since R?pi is
faithfully flat over R/p;). Thus, the image of ag(q) in (R]pl) S---P (R]pr)
isin R/p1 @@ R/p,. Moreover, it follows from a similar argument of the
argument used in the proof of that the image of a(¢) in K; is in R/p; that
aQ(q) € R. L]

Definition 4.4. Let X!°¢ and 2)'°8 be locally noetherian fs log formal schemes.
We shall refer to a morphism %8 : X!°¢ — 9)°8 ag a Kummer morphism if for
any geometric point 7 — X of X, the morphism of monoids (Mgy/O)j@) —
(Mzx/O%)z induced by °¢ is Kummer (where the geometric point f(z) — )
is the geometric point determined by the composite z — X — 9)).

The main result in this section is the following theorem.

Theorem 4.5. Let A be an adic noetherian ring, and I an ideal of definition
of A. Let S be a fs log scheme whose underlying scheme S is the spectrum of
A, X" g noetherian excellent fs log scheme, X'°¢ — S8 q morphism that is

separated and of finite type, and X8 (respectively, Slog) the log completion of
X' (respectively, S'8) along X /I X x4 (A/I) (respectively Spec (A/I)).
Then the functor determined by the operation of taking the log completion

along the fiber of S/1 o Spec (A/I) induces a natural equivalence between the
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category Cxioe of reduced fs log schemes that are finite and Kummer over X'
and proper over S'°¢ and the category Cxig of reduced fs log formal schemes

that are finite and Kummer over X'°% and proper over S'°8.

Proof. Note that if Y'°¢ — X8 is an object of the category Cyie, then the
excellentness of X implies that the completion Y along Y x 4 A/I is reduced.
Therefore, the functor is well-defined.

First, we prove that the functor is fully faithful. Let Y{°® — X% and
Y,% — X198 he objects of the category Cyuos.

Let flo5 g8 : V/°% — V,° be morphisms in the category Cyioe such that
flog = glog where flos glos . Y5  ¥°% are the morphisms induced by flo8
and ¢'°8, respectively. Then since f°¢ = §'°% we obtain f = §. Thus, by 4],
Théoréme 5.4.1, we obtain f = g. To see that f'°¢ = ¢'°¢, we take a geometric
point 5, — Y7 of Y7 whose image lies on Y7 /1 def Y1 x4 (A/I). Then it follows
from the assumption that f1°8 = §'°¢ and a similar argument to the argument
used in the proof of Proposition A.11 (note that Oy, 5, — 03;1 ., is faithfully
flat) that the homomorphism My, 5, — My, 5 induced by f°¢ (where we
denote by y, — Y5 the geometric point determined by the composite vy, —

Yi = Ys) coincides with the homomorphism My, y, — My, 5z, induced by
g"°¢. Therefore, f°¢ coincides with ¢'°® on an étale neighborhood of the
geometric point 7, — Y;. Moreover, by Lemma 4.2, this implies that f1°8
coincides with ¢'°8 on Yllog. This completes the proof that the functor in
question is faithful.

Next, let ¢ : ¥/° — ¥,°% be a morphism in the category Cs- By 4],
Théoreme 5.4.1, there exists a unique morphism f : Y; — Y5 such that f
coincides with the underlying morphism § of formal schemes of 6. Now if
there exists an extension of the morphism f to a morphism of log schemes
flog . V°® — V)°® such that the morphism Y;%® — ¥,°% induced by flos
coincides with §°¢, then it is unique (by the proof of the faithfulness of the
functor in question); therefore, it is enough to show that such an extension of
f exists étale locally on Y{°8. Moreover, by Lemma 4.2, it is enough to show
that for any geometric point of Y7 whose image lies on Y; /I, there exists such
an extension of f on an étale neighborhood of the geometric point. To see
this, let y; — Y] be a geometric point whose image lies on Y; /I, and denote

by y, — Y5 the geometric point determined by the composite y; — Y EN Ys.
If we denote by P, — Oy, a clean chart at y, — Y3 of the log structure of

Y,%, then there exists a chart P, — (’)YA1 5, (where (’)YA1 5, 18 the completion

of Oy, 7 with respect to 10y, 5 ) of the log structure of Spf OY; 7, Which is
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~ lo
induced by the log structure of Y; g, and a diagram

PQ —_— Pl
OYz@z (Oyl W1 >OY1 Y1

such that the above diagram is a chart of the natural morphism (Spf OY1 7 )oe —
Y,°8. Note that the cleanness of the chart P, — Oy, 5, and the Kummerness
of §°¢ imply that the chart P, — 01;1 7, Is a clean chart at the geometric
point §; — Spf Oy, 7,5 thus, the top horizontal arrow P, — P is a Kum-

mer morphism. In particular, the image of P, — (’)Y1 and the image
of P, — Oy, are contained in the maximal ideals, respectwely Thus,

by Lemma 4.3 (by considering the composite P, — (’)Y1 P OY1 0 where
OYN1 7, 1s the completion of Oy, - with respect to the maximal ideal of Oy, 5 ),

the morphism P, — OYZ W factors through (’)thl; moreover, the resulting
morphism P — Oy, 5 is a clean chart at j; — Y; of the log structure of

Y{°¢. In particular, the diagram

P2 — P1

l l

O — O

Y2,Y Y1,91

is a chart of a morphism from an étale neighborhood of 7, — Y; to Y5 for
which the morphism Y{°® — Y,°® determined by this morphism coincides
with §°¢. This completes the proof that the functor in question is full.
Finally, we prove that the functor is essentially surjective. Let 2)'°¢ —
X8 he an object of Cs. By [4], Théoreme 5.4.1 and Proposition 5.4.4,
there exists a unique noetherian scheme Y that is finite over X, and proper

over S such that the completion Y of Y along Y/ I Ly x4 (A/I) is naturally
isomorphic to 2. (Note that then the reducedness of ) implies that Y is
reduced.) If there exists an fs log structure of Y such that the pull-back of
the log structure to Y is isomorphic to My, then it is unique (note that
by the proof of the fully faithfulness of the functor in question); therefore,
it is enough to show that such an fs log structure exists étale locally on Y.
Moreover, by Lemma 4.2, it is enough to show that for any geometric point
of Y for which the image lies on Y/I, there exists such an fs log structure on
an étale neighborhood of the geometric point.

By replacing X'°8 by the log scheme obtained by equipping Y with the
log structure induced by the log structure of X'°¢ via the morphism ¥ — X,
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we may assume that the morphism Y — X is the identity morphism of X;
thus, we may assume that the underlying morphism of formal schemes of
Ylog _, X8 i5 the identity morphism of X. Let T — X be a geometric point
of X whose image lies on X/I. Then we obtain the following diagram

Spf (’);(75 —— Spec Oy ;

! |

X — X,
where (’);(j is the completion of Oy ; with respect to IOy . Now we obtain
a chart of the morphism (Spf O;(yi)log — X8 (where the log structure of
(Spf O;@)log is induced by the log structure of f/log)

P — Q
Lo
OX,E - OX,E )

where the left-hand vertical arrow P — Oy _ is a clean chart at z of X'°%, and
the right-hand vertical arrow ) — O;(@ is a chart of (Spf (’);{,E)log . Note that
the cleanness of the chart P — Oy and the Kummerness of Y'¢ — X'
imply that the chart () — O;{@ is clean at the geometric point z — Spf O;(j;
thus, P — @ is a Kummer morphism. In particular, the image of P — Oy
and the image of () — O;m are contained in the maximal ideals, respectively.
Thus, by Lemma 4.3 (by considering the composite @ — (’);@ — O;QE’
where (9;(’E is the completion of Oy with respect to the maximal ideal of
Ox z), the chart Q — (9;@ factors through Oy ;. It thus follows that the log

structure of Y95 can be descended to an étale neighborhood of the geometric
point T — X. ]

Remark 4.6. If, in Theorem 4.5, one drops the reducedness hypothesis, the
conclusion no longer holds in general. A counter-example is as follows:

Let k be a field whose characteristic we denote by p (> 2), A = k[[t]][¢]/(¢?),
X =P, Uy= X\ {04}, Ux = X\ {c04}, and X (respectively, Ly; respec-
tively, U, ) the t-adic completion of X (respectively, Up; respectively, Us,).
We denote by N — Ox the log structure on X

(na f) = 'f’
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where € = € mod (€?). Thus, we have an isomorphism N /O% ~ Nx & Ny 3.
Let P be the subsheaf of monoids of N'/O% generated by the global sections
(1,1) and (1,0) e N® N ~ (N/O0%)(X) and N' — Ox the log structure on
X determined by the composite N' X /01 P <= N — Ox (ie., N — Ox is
a log structure on X whose characteristic N'/O% is isomorphic to P).
We shall denote by
D

the divisor on X determined by the t-completion of the (reduced) closed
subscheme {04} C X, by
G(m®) (m e Z)
the G,,-torsor sheaf on X which corresponds to the invertible sheaf Ox(m®),
by
b+ G(=mD) |yy= G(=m'D) |y, (m = m)
the isomorphism induced by the natural inclusion Ox(—m®) — Ox(—m'D),
and by
N (2 m)
the G,,-torsor sheaf on X obtained as the fiber product of

{(n,m)}

|

N — P,

where {(n,m)} is the sheaf of sets on X generated by the global section
(n,m) € P(X) of P, and the vertical arrow {(n,m)} — P is the natural
inclusion.

Then, by the definition of the log structure N’ — Oz, the following
assertions hold:

(i) N is generated by the N} s (n > m).

(ii) The Gy,-torsor sheaf Ny is naturally isomorphic to G(—m®D). We
shall denote this isomorphism by

Pnm :'/\/;/L,m — G(—mD) .

(iii) The monoid structure on N is determined by the composites

N X Ny Nt s
¢n,mx¢n,ml Tas;in,’mm,
G(—mD) x G(—-m'D) —— G(—(m +m')D)
f 1) — fof.
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(iv) The restriction of NV — Ox to N coincides with the composite

¢n,m
Nowm — G(=mD) — Ox
f — En . ng,o(f) .

(v) Let n > m > m’ be natural numbers. Then the “glueing isomorphism”
N l0= N, s |stp (note that by the definition of P, the restrictions of
the global sections (0, m) € P(X) (m € Z) to Ly are 0, i.e., (0,m) |y,=
0; this means that “the restrictions of the G,-torsor sheaves N
(m € Z) to Yy determine the same subsheaf of N’ |, 7) is defined by
the composite

—1
Gnmlutg A, 67l

Ny Iy — G(=mD) |y, — G(—=m'D) gy — N luo -

Let f € T'(8g, Oy, ) be a section such that 14€-f is not in the image of the
natural morphism I'(Up, Op,) — T'(ho, Oy,) (for example, §f = 2°,¢'(1/x)",
where 1/z € T'(Uy, Oy,) — A[l/x]).

Now we define the log structure M — Oz as follows:

(I) Let n > m be natural numbers. We shall denote by M,, ,, a copy of
G(—m®), and by

wn,m : Mn,m — g(—m@)
the “identity isomorphism”.

(IT) Let n > m > m’ be natural numbers. Then we define the isomorphism
M o= M | by the composite

'l/)n,m|1,lo
Mo |y — G(=mD) gy, —  G(=mD) |y,
f = f(l+e-f)mm
— bt

— g(—m/D) lsto — Mo sty -

Note that, by the definition, for n > m > m’ > m”, the following
diagram commutes:

Mn,m |110 R Mmm/ |U0

| l

~

Mn,m |Llo I Mn,m” |L(07
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(I11)

where all morphisms are the isomorphisms defined as above.

“By glueing by means of these isomorphisms”, we obtain a sheaf of sets

M on X. (See the note in (v). More precisely, by taking a quotient

by means of these isomorphisms, we obtain M.) Moreover, by the
Yo.0

definition of M, there is a natural inclusion O% = Mgo — M.

By the definition of the glueing isomorphism defined in (II), for n; >
m; > m} (i =1, 2), the following diagram commutes:

Moy iy g XMy my g —— Mot |40 XMy my |0

! !

Mustnim+ms [t - Mn1+n2,m'1+m/2 |40

where the horizontal arrows are the glueing isomorphisms defined in
(IT) and the vertical arrows are the composites

Moy lste XMty lsio Moy i +1s Lo
wnl,mlmoang,mgmol Tw;lng,mﬁmluo
G(=D) |y XG(=1D) |y — G(=(l +12)D) |y,

(£, 1) = ff

(I = mq,miy; Iy =mg,mi).

Thus, we define the monoid structure on M by the composites (cf.

(iii))

Moy X Moym, M 4ns ma+ms
Ynymy XPng,mo l Tw,:;w,mﬁmg
G(—mi®) X G(—mo®) —— G(—(m1 +m2)D)
(f, f) = f-r

Moreover, by the definition of this monoid structure on M, the inclu-
sion O% — M obtained in (II) is a morphism of sheaves of monoids,
and the quotient M /O% is naturally isomorphic to P.

By the definition of the glueing isomorphism defined in (II), for n >
m > m/, the following diagram commutes:

Mn,m |U0 ;) Mmm/ |U0

| l

Ouo p— OL[O 9



where the top horizontal arrow is the glueing isomorphism defined in
(IT), and the vertical arrows are the composite

wn,lhlo
Muilyy — G(=1D) |y, — Oy, (I=m,m)
f = € Ll_>0(f) .

Yrmlstg
(Indeed, the image of f € G(—mD) |y, — Myum |y, via the compos-
ite My, Juo— Mo |us— Oy, [respectively, the morphism M., ., |y, —
Ouo] is

e (LAE )" o) =t () + (=) &t (f)

[respectively, € « 1, o(f)] -

Thus, the commutativity of the above diagram follows from the fact
that n > m >m/ and € = 0.)

Thus, we define the morphism M — Ox by glueing the morphisms (cf.

(iv))
'lpn,m
My — G(-mD) — Ox
f —> e - Lm—»O(f) .
Then, by construction, the morphism M — Ox is a log structure on
X.

Now we prove that the log structure M — Oz is not algebraizable,

i.e., there is no log structure on X whose log completion is isomorphic to

Assume that there is a log structure M8 — Oy such that the log com-

pletion M8 — Oy of M8 — Oy is isomorphic to M — Ox. We shall
denote by

p: MM M

the isomorphism, by

“qalg
ME

the G,,-torsor sheaf on X (cf. the definition of AV, ) obtained as the fiber
product of

{(n,m)}

|

M s 50y P,
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and by R
Pn,m - Mn,m — M?zlfn

the isomorphism induced by the isomorphism p : Mg =, M. Then the
following diagram commutes:

1
Y11y P11y,

G(—D) |y —— My |y —— M5 |y,

! l

d)f,é\uo ,1,0l51, .
Gleyy —— Miglyy —— Mgy,
where the vertical arrows are the glueing morphisms. Now, by (II), the
composite

—1 —1
1/’1,1 |u0 glueing 11’1,0‘110 Llﬂo‘uo

G(—D) gy — M1y, — Moy — G lyy — G(=9) |g,

coincides with
G(-D) e —  G(-D) lu
f = f-(l+Ef),
i.e., by the assumption on f, it is not algebraizable. On the other hand, the
composite

alg —1 A alg -1
1,1 ‘210 glueing 71’1,0 ‘Llo L1_,0\u0

G(-D) luy — M|y — M| — Gl — G(-D) |u

(where zﬁ#%n = Yn.mOPp ) is algebraizable. (Indeed, this follows from the fact
that the properness of X implies that the isomorphism Q/;Zlf;n is algebraizable,
together with the fact that the glueing isomorphism M7 [y, M% |y, is
defined on Uy.) Therefore, we obtain a contradiction. This completes the
proof that M — Oy is not algebraizable.

Moreover, if we denote by Q the subsheaf of monoids of P generated by
the global sections (p, p) and (p,0) € Px and by M — Oy the log structure
on X determined by the composite M xp Q — M — Og, then the inclusion
M — M induces a natural morphism of log formal schemes

(X, M — Ox) — (X, M — Ox)

which is finite and Kummer. On the other hand, the log formal scheme
(X, M — Ox) is algebraizable. (Indeed, this follows from the fact that
(1+€-f)? =1 is algebraizable.)
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Remark 4.7. In light of the classical algebraization theory of formal schemes
(for example, the theory considered in [4], §5), one might expect that data
of a finite nature on a compact object should be algebraizable. However, as
Remark 4.6 shows, this is not the case in the algebraization theory of log
schemes. (Note that Kummerness of a morphism of log schemes is of a finite
nature.)

By applying Theorem 4.5, we obtain the following corollary. Note that
the corollary generalizes [22], Théoreme 2.2, (a). (In [22], Théoreme 2.2, (a),
the underlying scheme of the base log scheme is assumed to be the spectrum
of a complete discrete valuation ring.)

Corollary 4.8. Let S be an fs log scheme whose underlying scheme S is the
spectrum of a complete local ring whose mazimal ideal (respectively, residue
field) we denote by m (respectively, k), X'°¢ a log reqular fs log scheme, and
Xloe — Slog g proper morphism. Then the strict closed immersion X(l)Og dof
X198 X giog 598 — X8 induces a natural equivalence of the category of ket
coverings over X' and the category of ket coverings over X(l)og, where s'°8
is the log scheme obtained by equipping Spec k with the log structure induced
by the log structure of S'°% wvia the closed immersion s — S induced by the
natural projection A — A/m ~ k. In particular, if X'°® is connected, then

X8 is also connected, and m (X ®) = mp(X108).

Proof. We may assume that X'°% is connected. First, we prove that the
functor is fully faithful. Let Y'°¢ — X8 is a connected ket covering. Then
if we denote by ¥ — S’ — S the Stein factorization of the underlying
morphism of the composite Y8 — X8 —, Gl¢ then the connectedness of
Y and the surjectivity of Y — S’ implies that S’ is connected. Since S is
the spectrum of the complete ring and S’ — S is finite, it thus follows that
Y xg Speck, hence also, Y% x gix 518 is connected (note that s'°8 — S is
strict). Therefore, by the general theory of Galois categories, the functor in
question is fully faithful.

Next, we prove that the functor is essentially surjective. Let Y8 — X%

be a connected ket covering. Then it follows from [23], Théoreme 0.1 that

. . . def
there exists a unique connected ket covering Y — Xlog = Xlog x o, Slos

such that Y/°8 x glos s°2 ~ Y% where S'¢ is the log scheme obtained by
equipping Spec (A/m"™*1) with the log structure induced by the log structure
of S8 via the closed immersion induced by the natural projection A —
A/m"1. Now we denote by 9)'°¢ the noetherian log formal scheme obtained
by the system {Y,%},. Note that by considering the characteristic My /O,
of )'°8, one may conclude that the log structure of 9)°¢ is fs; and that by the
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construction of 9'°¢, the fiber product 9'°¢ x gios SI°¢ is naturally isomorphic
to Ylos,

We denote by X'°¢ the log completion of X'°¢ along X,. Now It follows
from the properness of X — S and the fact that A is complete that X is
excellent. Now since Y, — X is Kummer, 2" — %"¢ is also Kummer;
moreover, since Y, — X, is finite, P — X is also finite. Next, to see that
) is reduced, by taking a geometric point ¥ — 2) of ), and replacing X by
Spec Ox = (where T — X is the geometric point obtained by the composite
7 — 9 — X — X), we may assume that X is the spectrum of a strictly
henselian local ring. (Note that the finiteness of ) — X implies that there
exists a strictly henselian local ring Ry that is finite over Oy - such that

) = Spt Ry, where Ry is the completion of Ry with respect to mRy.) Then
it follows from the fact that YO1Og — X(l)Og is a ket covering and Proposition
A .4 that there exists a diagram

Px —— OX,E/mOX,E

! !

Py E— Ry/mRy,

where Px = (Mx,/O%,)z, Py = (My,/O5,)y and the horizontal arrows are
clean charts such that the natural morphism (Oy . /mOy ;) ®@zpy) Z[Py] —
Ry /mRy is an isomorphism. It follows from the fact that these clean charts
lift to clean charts of X,, and Y,, that this isomorphism lifts to an isomorphism
O xz ®zipx] L[Py] = Ry (where O x.z is the completion of Oy . with respect
to the ideal mOy ;). Thus, by [11], Theorem 4.1, 8.2 and the log regularity
of X'°8 we obtain that Ry is normal, hence reduced.

Thus, by Theorem 4.5, there exists a unique finite Kummer fs log scheme
Y'°8 over X'°¢ whose log completion of along Y x g s is naturally 1somorphlc
to P'°e. Moreover, it follows from the fact that OXx Rzipy] Z|Py] = Ry
(in the preceding paragraph) is an isomorphism that Y'°¢ — X8 is a ket
covering. (]

5 Morphisms of type N

In this section, we define the notion of a morphism of type N®™ and consider
fundamental properties of such a morphism.

Definition 5.1. Let X'°¢ and Y'°® be fs log schemes, f'°¢ : Y8 — X& 4
morphism of log schemes.
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(i) Let n be a natural number. We shall refer to f°8 : Y18 — X8 a5 a
morphism of type N®™ if

e the underlying morphism f : Y — X of schemes is an isomor-
phism;

e for any geometric point T — X of X and any clean chart (an
étale neighborhood U — X of T — X, a : P — Op) of X'¢ at
T — X, there exists an étale morphism V — U and a clean chart

1
V- U — X o Y, Q — Oy) of Y at the geometric point

T— X T Y (le, V—-U—=X I Y is an étale neighborhood

-1
of the geometric point T — X I Y') such that there exists an

isomorphism ¢ : Q = P @ N®", and the morphism Q — Oy is
given by

Q . P @ Non N Oy
(p7 my, .- 7mn) — Oé(p) |V .0m1+---+mn )

and f'°¢ is determined by the morphism of monoids:

P _,QL) P o Nén
p — (p70770)

(ii) We shall refer to f1°& : Y& — X2 a5 a morphism of type N®* if

e the underlying morphism f:Y — X is an isomorphism;

e for any geometric point ¥ — X of X, there exists an étale neigh-
borhood U — X of 7 — X such that the base-change Y'°® X yio
U — '8 is morphism of type N®" for some natural number n.
Here, U'# is the log scheme obtaind by equipping U with the log
structure induced by the log structure of X8

Remark 5.2. A typical example of a morphism of type N is as follows: Let
X be a regular scheme, D C X a prime divisor of X such that the closed
immersion D «— X is regular immersion of codimension 1. We denote by X'°&
the log scheme obtained by equipping X with the log structure associated
to the divisor D, and by D'°8 the log scheme obtained by equipping D with
the log structure induced by the log structure of X'°8 via D < X. Then the
morphism D¢ — D induced by the natural inclusion O%, < Mp is of type

N.
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Remark 5.3. In this section, we often use the notation X' — X2 to
denote a morphism of type N*. Moreover, we often identify the underly-
ing scheme of X'° with X via the underlying morphism of schemes of the
morphism of type N*.

Remark 5.4. In the notation of Definition 5.1, there exists a splitting
Q = P @ (Q/P); moreover, it is canonical. In fact, by the definition of
a morphism of type N®" the quotient /P of @) by P is isomorphic to N®"

(non-canonically). We denote by e; the element of @)/P that corresponds
i—th

to (0, - --,Z 1 ,---,0) under the isomorphism @/P ~ N®¥".  Then, by the
existence of the (non-canonical) isomorphism @ = P @ N®"_ there exists a
unique element ¢; of () such that;

e ¢; modulo P is e,
e ¢, is irreducible element of P (Definition A.3).

Thus, the section
QP — Q
€; — éz
of the natural projection ) — /P induces a canonical splitting ) ~ P &

(Q/P). Moreover, the image of €; via the morphism which appears in the
chart Q — Oy is 0.

Lemma 5.5. A morphism of type N®" is stable under base-change in the
category of fs log schemes.

Proof. Let X'°8 be a fs log scheme, f°¢: X6 — X2 3 morphism of type
N®" and Y'°¢ — X8 3 morphism of fs log schemes. Let

v Sale s o
Q «— P
L]

Oy «— Oy

be an fs chart of Y'°¢ — X!¢  Then the underlying scheme of the fiber
product of X'°8 and Y% over X'¢ in the category of arbitrary log schemes
is Y, and this fiber product has a chart

Q & No" — Oy
<p’ my, -, mn) — Oé(p) . Om1+-..+mn )
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Now Q®N®" is an fs monoid. Thus, this fiber product is also the fiber product
in the category of the fs log schemes. Moreover, it follows immediately from
the definition of a morphism of type N®" that the projection X'°8 X yis Y8 —
Y8 is type N7, O
Definition 5.6. Let X be a scheme, and M; — Ox and My — Ox fs log
structures on X. Let X]°® (respectively, X.®) be the log scheme obtained by
equipping X with the log structure M; — Ox (respectively, My — Ox).
Then the natural morphism X% xy X2 — X induces an isomorphism
between the underlying scheme of X1 x y X8 and X. We shall denote by
M + My — Ox the log structure of Xiog X x X;Og on X.

Remark 5.7.

(i) In the notation of Definition 5.6, for any geometric point T — X; there
exist an étale neighborhood U — X of x — X, fs monoids P, and P,
and morphisms of monoids a7 : P, — Op and ay : P, — Oy such
that oy : P — Op (respectively, as : P, — Op) is an fs chart of M,
(respectively, My) at T — X. Then there exists an fs chart of the log
structure M; + My — Ox at ¥ — X that is of the form

Pl D P2 e OU
(p1,p2) = ai(pr) - aa(p2)-
In particular, (M; + My)/O% ~ (M;/0%) & (My/O%).

(ii) In the notation of Definition 5.6, for any a morphism of scheme f :
Y — X, f*(My+ M) = f*(My) + f*(Ms) (where f* denotes the

pull-back of log structures, not of sheaves).

(iii) Let X be aregular scheme, and D = 37 D; C X a divisor with normal
crossings. If we denote by M(D) (respectively, M(D;)) the log struc-
ture of X defined by the divisor with normal crossings D (respectively,
Di)7 then M(D) = E:L:lM(DZ)

(iv) Clearly, (My + Ma) + M3 = M; + (M2 + M;).

Remark 5.8. Let X8 be an fs log scheme, and f1°¢ : X198 — X8 he a
morphism of type N®”. Then we have the following diagram:

Oox — Mx —— Mx/O%

| l l

| l

M&/MX — Cflog,
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where Cpoe is the quotient of Mx/O% by the subsheaf My /O%. Then,
by the definition of a morphism of type N, Cji is locally constant, and
the stalk at any geometric point of X is non-canonically isomorphic to
N®". (Indeed, this follows from the existence of the chart in Definition 5.1.)
Moreover, by Remark 5.4, the sheaf My /O% admits a canonical splitting
(M)(/O}k() 2, Cflog.

Now the group Aut (N¥") is isomorphic to the symmetric group on n
letters, hence, in particular, is finite. (Indeed, this follows from the fact
that any automorphism of N®" preserves the irreducible elements of N®"
together with the fact that the irreducible elements of N¥" are the e;’s (where

e; = (0,-- -,O,Z 1th,0, -+-,0)). More generally, by Proposition A.2, if P is a
clean monoid, then Aut (P) is a finite group.) Since Cjio is locally constant,
and the stalk at any geometric point of X is isomorphic to N®" it thus
follows that there exists a finite étale covering X’ — X such that the pull-
back of Coe to X' is constant. (Indeed, this follows from the fact that since
the sheaf of sets of isomorphisms between C .. and N on the étale site of
X is locally constant, and has finite stalks, there exists a finite étale covering
X" — X such that the restriction of the sheaf to X’ is constant.) Moreover,
since Aut (N) is trivial, if n = 1, then Cpos is always constant.
On the other hand, in the following diagram

0 0
0 — Oy — MY — MP/Ox — 0
0 — 0% — MY —— MFP/Ox —— 0

all vertical and horizontal sequences are exact. Now the sheaf Cg’ is locally
constant, and the stalk at any geometric point is non-canonically isomorphic
to Z§". By Remark 5.4, the sheaf M% /O% admits a canonical splitting
(MZ/0) & CF.

Lemma 5.9. Let X'°¢ be an fs log scheme, and f°¢ : X'°¢ — X2 o mor-
phism of type N®" . Then there exists a unique morphism ék’g — X of type
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N and a unique morphism X'°& — ék’g such that the resulting morphism
Xlos glog X x X198 is an isomorphism, i.e., Mx = Mx + Mx.

Proof. By Remark 5.8, we have a canonical section Cpoz — Mx/O%. We
define the sheaf My of monoids by the following cartesian diagram:

Mé —_— Cflog

l |

Mx — Mx/O%.

Then since the inclusion O% — Mx factors through Mx, the composite
Mx — Mx — Ox (where the second morphism M x — Oy is the log struc-

ture of X'°%) is a log structure on X; moreover, the injection Myx — Mx

induces the morphism X'°¢ — X8 (where X 18 ig the log scheme obtained
by equipping X with the log structure M g — Ox). On the other hand,
it follows from the fact that the stalk of Cpios at any geometric point of X
is isomorphic to N®" together with the fact that the image of ¢é; via the
morphism ) — Oy is 0 in the notation of Remark 5.4 that the morphism
X' — X induced by the natural inculusion O% < My is of type N®".
Now, by construction and the the fact that f°% is of type N®”, the resulting
morphism X' — X'°8 x X2 ig an isomorphism. ]

Definition 5.10. Let X'°% be a locally noetherian connected fs log scheme.

(i) Let f'°¢ : X' — X'°¢ be a morphism of type N®”. Then we shall refer
to f1°¢ as a morphism of constant type N®" if Cjog is constant. Let
f°8 be a morphism of constant type N®*. Then we shall refer to an
isomorphism 7 : N§" = Cjis as a trivialization of f'°5. Note that, by
the portion of Remark 5.8 concerning the case “n = 17, any morphism
of type N is of constant type N; moreover, such a morphism has a
canonical trivialization.

(ii) For pairs (f°®, 1) (i = 1,2), where f\% : X% — X2 is a morphism
of constant type N® and 7; is a trivialization of f}°%, we shall say that
(f1°8, 1) is equivalent to (f3*,75) if there exists an isomorphism of fs

log schemes ¢'°% : X% — X, over X'°8 such that the trivialization of

18 induced by the isomorphism g* : My, — My, and 7, coincides

with T1-

(iii) We shall denote by Myws the set of pairs (f1°%, 7), where f'°¢ is a
morphism of constant type N®”" and 7 is a trivialization of f'°¢ modulo
the equivalence defined in (ii).
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(iv) We shall denote by ¢ the morphism My — Pic(X)®" defined as
follows:

Let (fl°8 : X% — X8 1) be an element of Myie. Then the middle
horizontal sequence in the second diagram in Remark 5.8 determines a
connecting morphism

H(é]t(Xa M?/O;{) - Hét(Xa O;{) :

Now since one has natural isomorphisms M% /0% ~ (MF/O%)&CR,
and H} (X, O%) ~ Pic(X), we obtain a morphism

HY, (X, M/ O%) @ HY, (X, C8,) — Pic(X) .

9 flog
i—th
For the element ¢; = (0,---, 1 ,---,0) of H%(ZY") = Z%", let us
denote by L£; the image of e; via the composite
He (X, Z5") — He(X,CR,) — He(X, MR /O%)@He (X, CR,) — Pic(X),

where the second arrow is « — (0, ), and the third arrow is as above.
Then we shall write ¢(f'8,7) = (Lq, -+, L,).

(v) We shall denote by x the morphism Pic(X'°8)®" — My defined as
follows:

Let (Ly,--+,L,) be an element of Pic(X'8)®". We denote by V; the
geometric line bundle defined by the invertible sheaf £; (i.e., the spec-

trum of the symmetric algebra of E?(_l) over X), by p; : V; — X the

natural morphism, by s; : X — V; the O-section of p;, by p : V &

Vixx-+-xxV, — X the natural morphism and by s : X — V the sec-
tion s; X x - - - X x s, of p. Let V1°8 be the log scheme obtained by equip-
ping V' with the log structure My = p*Mx + M(D;) + --- M(D,,),
where D; is the divisor on V' defined by the following cartesian diagram

|
X L) ‘/Z )

and M(D;) is a log structure defined by the divisor D;. (See Re-
mark 5.11 below.) Then we obtain a natural morphism of log schemes
plog Vs - X% whose underlying morphism of schemes is p. If
we denote by X'°® the log scheme obtained by equipping X with the
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lo.
log structure s* My, then it is immediate that the composite X'°% %
lo
Vlos P55 xlog ig of type N®"_ On the other hand, since

Mx =s"(p"Mx+M(Dy)+--- M(D,)) = Mx+s" M(Dy)+- - -+s"M(D,),

it follows that
Cpog == (s"M(D1)/O%) ® - @ (s"M(D,)/O%)

(cf. Remark 5.7, (i)). Now, by the portion of Remark 5.8 concerning
the case “n =17, s*M(D;)/O% is constant, i.e., there exists a canonical
isomorphism 7; : Ny = s*M(D;)/O%. Thus, Cpes is constant. Let us
define a trivialization 7 of p'°8 o 5'°8 by

NY" — (s"M(D1)/O0%) ® - @ (s*"M(D,)/O%)
(mla"'amn) = (Tl(ml)""’Tn(mTL))'

Then we shall write x(Ly,- -+, L,) = (p'® o s'°¢, 7).

Remark 5.11. For a positive Cartier divisor D on a locally noetherian
scheme X, we denote by M(D) the log structure on X that is defined as
follows:

Let us denote by Gp € H, (X, G,,) the G,,-torsor sheaf on (the étale site
of) X that is determined by D, and by G}, € H} (X, G,,) the G,,-torsor sheaf
on X that is obtained by applying a “change of structure of group” to Gp
via the morphism

Gn — G,
o=

Write M(D) = UienGh. Then the natural morphisms Gh x % — ggﬂ'
determine a natural structure of sheaf of monoids on M(D)’. Moreover, the
composite Gp — Ox(—D) — Ox (the first inclusion arises from the fact
that the invertible sheaf determined by the G,,-torsor sheaf Gp is naturally
isomorphic to Ox(—D)) induces a homomorphism M(D)" — Ox of sheaves
of monoids. Then we define the log structure M(D) as the log structure
associated to the above pre-log structure M(D)" — Ox.

Note that, if X is regular, and D is a divisor with normal crossings, then
this log structure M (D) coincides with the log structure defined in [10], 1.5.1.

Remark 5.12. Let X' be a locally noetherian connected fs log scheme,
flos + X'8 — X' a morphism of constant type N®", and 7 : NY" 5 Cjios
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a trivialization. We write +(f'8,7) = (L4, -+, L,). If we denote by G, the
subsheaf of M x defined by the following cartesian diagram

g — 0@ {e;x}

| !

M& —_— (M&/O;( 2) (MX/O}) @Cflog
(where ‘{ei,X} is the subsheaf of N$" whose sections correspond to e; =

i—th
(0,-++, 1 ,---,0) € N®") then G; is a G,,-torsor sheaf on X. Moreover,
it is a tautology that the invertible sheaf determined by the G,,-torsor sheaf
G, is naturally isomorphic to L;.

Lemma 5.13. Let X' be a locally noetherian connected fs log scheme, f1°8
X8 — X2 o morphism of constant type N®", and 7 a trivialization of f'°2.

Then there exist morphisms [, : X\ — X of type N, whose canonical

trivialization (see Definition 5.10, (1)) we denote by T;, such that the following
hold:

(i) Mx =Mx + 3L Mx,.
(1) The composite

via (i) 71D BT
Cpog —— Cpog @+ D Cpog — N
h In

coincides with T.

(Z“) L(flog7 T) = (L( iog’ 7—1)7 ) L(fqlmogﬂ Tn))

Proof. Let us denote by M, the subsheaf of Mx defined by the following
cartesian diagram (cf. the cartesian diagram of the proof of Lemma 5.9)

M; —— 06 Nx

l L

Mx —— (Mx/O% — (Mx/O%) & Cpos —)(Mx/O%) & NY",
where the right-hand vertical arrow is

0B Ny — (Mx/O%) &N
(O,TLX> — (O,TL . 62‘,)() .

Then the composite M; — Mx — Ox is a log structure. Moreover, if
we denote by X iog the log scheme obtained by equipping X with the log
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structure M; — Ox and by f : X°® — X the morphism determined by
the inclusion O% < M;, then the f/°® satisfies conditions (i), (ii) and (iii)
in the statement of Lemma 5.13. O

Theorem 5.14. ¢ is a bijection. The inverse of ¢ is k.

Proof. By Lemmas 5.5 and 5.9, the morphism My — My induced by the
morphism X6 — X (determined by the natural inclusion 0% — Myx) is a
bijection. Therefore, we may assume that the log structure of X'°8 is trivial.
Moreover, by Lemma 5.13, we may assume n = 1.

First, we prove that o is the identity morphism. Let f'°&: X — X
be a morphism of type N. If we denote by G the G,,-torsor sheaf defined
in Remark 5.12, then it is a tautology that the restriction to X of the G,,-
torsor sheaf on V' that corresponds to the invertible sheaf Oy (—X) (where
we regard X as a Cartier divisor on V' via the 0-section X — V) is naturally
isomorphic to G. Therefore, the pull-back to X of the log structure on V
associated to the divisor X (see Remark 5.11) is naturally isomorphic to My.

Next, we prove that ¢ ok is the identity morphism. Let £ be an invertible
sheaf on X. If we denote by G the G,,-torsor sheaf that corresponds to
L, then it is a tautology that the restriction to X of the G,,-torsor sheaf
that corresponds to the invertible sheaf Oy (—X) (where we regard X as a
Cartier divisor on V' via the 0-section X — V) is naturally isomorphic to G.
Therefore, the line bundle that corresponds to the G,,-torsor sheaf obtained
by the log structure on V' associated to the divisor X (see Remark 5.12) is
naturally isomorphic to L. ]

Remark 5.15. In the notation of Remark 5.2, the invertible sheaf on D
which corresponds to the morphism D'°¢ — D of type N is the normal sheaf
Npx of D in X by the definition of ¢.

Definition 5.16. Let X'°% be a locally noetherian connected fs log scheme,
fles o X% — X'9& a morphism of constant type N¥*, 7 : NY" = Cpis
a trivialization of f1°% and (f'°8,7) = (Ly,---L£,). We shall denote by
7+ P, — X the P'-bundle associated to the locally free sheaf E?(_l) @ Ox
(see Remark 5.17), by s? : X — P, (respectively, s° : X — P,) is the
section of 7; induced by the projection E;@(_l) @ Ox — Ox (respectively,
E?(_l) o O0x — E?(_l)), by 7w : P o P xx - xx P, — X the natural
morphism and by s : X — P the section s¥ xx -+ xyx s¥ of 7. We shall
denote by P8 the log scheme obtained by equipping P with the log structure
Mp =1 Mx + M(DY) + -+ M(D?) + M(D5°) + - - - + M(D), where
DY (respectively, D°) is the divisor on P defined by the following cartesian

42



diagram
(respectively,

—>P

SZQ J/ s> l
X — h X —— P),
and M (DY) (respectively, M(D5®)) is the log structure defined by the divisor
DY (respectively, D). Then we obtain a natural morphism of log schemes
mlog . plg . X8 whose underlying morphism of schemes is 7; by Theo-
rem 5.14, the log scheme obtained by equipping X with the log structure

0ylo 1o
(s9)* M p is isomorphic to X'°8 and the composite X'°¢ () —

D) —— P oo

_)g Plog SN Xlog is
fl°e. We shall refer to 7'°¢ : P& — X8 as the log GX"-torsor associated to
(f'& 7) or, alternatively, to (Ly,---L,). Note that 7'° is projective and log
smooth.

Remark 5.17. Let £ be a locally free sheaf of rank n on a scheme X, V —
X the geometric vector bundle associated to £, and P — X (respectively,
P’ — X) the P"-bundle (respectively, the P" !-bundle) associated to the
locally free sheaf €Y @ Ox (respectively, £Y) (where &Y = Hom(E,Ox)),
and P’ — P the closed immersion over X determined by the projection
EV®Ox — &Y. Then V is naturally isomorphic to the complement of P’ in
P.

Indeed, it follows immediately from construction that P\ P’ — X is a
vector bundle of rank n over X. Moreover, for an open subscheme U — X
of X, a section of (P \ P’) |y— U corresponds to the isomorphic class of the
following data:

e An invertible sheaf £ on U.

e A surjection 7 : Y |y @Oy — L such that the composite Oy — EY |y
@Oy = L does not vanish on U (we denote by s € I'(U, £) the section
of £ determined by the above composite Oy — £V |y @O0y = L).

It is immediate that then Oy = £ is an isomorphism, and if we denote by
¢u(s) the section of I'(U, € |y) determined by the composite £Y |y— EY |y

a0y = L < Oy for the above data, then the assignment (L, 7 : EY |y
@O0y — L) — ¢y(s) determines a bijection between the set of sections of
(P\ P |y— U and I'(U, € |y); therefore, P\ P’ — X is isomorphic to
V' — X. Moreover, by the above correspondence ¢x between the set of
sections of P\ P’ — X and I'(X, € |x), the O-section X — V of V — X

pro

corresponds to the pair (Ox, &Y & Ox — Oy).
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The main result of this section is the following theorem.

Theorem 5.18. Let X'°% be a locally noetherian connected fs log scheme,
flog o X8 — X2 g morphism of constant type N 1 : NY" 5 Cpoe @
trivialization of f°5, and 7'°¢ : P1¢ — X198 the log GX"-torsor associated to
(flo8, 7). Then (s°)°¢ : X' — P8 induces a natural equivalence between
the Galois category of ket coverings of P'® and the Galois category of ket

coverings of X'°8, i.e., m,((s°)'8) is an isomorphism.

Proof. (Step 1) If X is the spectrum of a field k, and the log structure of
X is trivial, then m((s°)%8) is an isomorphism.

By base-changing, we may assume that k is separably closed. Moreover,
by Proposition 3.4, we may assume n = 1. Then it follows from Lemma 5.19,
(ii) below that 7 ((s°)1°8) is an isomorphism.

(Step 2) If X is the spectrum of a separably closed field k, then 7y ((s%)!#)
is surjective. (We denote by o : M — k a clean chart of X'°8.)

We write R = k[[M]], and S = SpecR. Let S° be the log scheme
obtained by equipping S with the log structure associated to the chart given

by the natural morphism M — R. Then, by [11], Theorem 3.1, S°¢ is log
regular. Write (5% — S92, 74) o #(Og,---,0g), and denote by Py% —
S8 the log GX"-torsor associated to (Og, - - -, Og), and by (s°)'¢¢ the closed

immersion S'°¢ — Pg®. Then we obtain the following cartesian diagram:

(SO)log
_—

Xlog Plog

l !

(s°)5*
S —= Pg*.
We denote by K the field of fractions of R, and by Spec K — S'°8 the strict
morphism whose underlying morphism corresponds to the natural inclusion
R — K. Then we obtain the following diagram:

Xlog (s9)lo= Plog

Slog (SO)}SC')g Plog

(o4 S
(30)1138

5% % g10s Spec K & (Spec K )8 —2£, plos o P% X gios Spec K
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(where the two squares are cartesian).
Now, in the above diagram, the following hold:

(i) m1((Spec K)'*®) — my (P2 is an isomorphism. (This follows from Step

1)

(il) m (PR®) — mi(Py®) is surjective. (This follows from the fact that if
we denote by 7np, the generic point of Ps [note that since S8 is log
regular, Ps is also log regular], then 7 (np,) — 1 (Pg®) is surjective,
together with the fact that np, — Py® factors through P2%.)

(iti) 71 (S'°8) — 7, (PE®) is surjective. (This follows from (i) and (ii).)

(iv) 71 (X'8) — 7,(S"#) is an isomorphism. (This follows from Proposition
A8.)

(v) m(PY8) — m(P§®) is an isomorphism. (This follows from Corol-
lary 4.8.)

Therefore, by (iii), (iv) and (v), 71 ((s%)'°8) is surjective.

(Step 3) If X is the spectrum of a strictly henselian local ring A whose
residue field is k, then 7 ((s%)!°8) is an isomorphism. (We denote by (Spec k =
)T — X the closed point of X, and by a: M — A a clean chart of X'°®)

First, we prove that m((s%)!°¢) is surjective. Let Q' — P'°® be a con-
nected ket covering of P8 If we denote by Q@ — X’ — X the Stein fac-
torization of the composite Q — P — X, then since @) is connected, and
@ — X' is surjective, we obtain that X’ is connected. Now since X is the
spectrum of a strictly henselian local ring, and X" is finite over X, X’ X x T,
hence also ) x x 7 is connected. Thus, by base-changing by 7'°¢ — X'°¢ we
may assume that X is the spectrum of a separably closed field k. Then the
surjectivity in question follows from Step 2.

Next, we prove that m((s°)'°%) is injective. Let Y6 — X!°% be a con-
nected ket covering. Then, by Proposition A 4, Y% is of the form Spec (A®zmenen]
Z[N)) for some fs monoid N and some Kummer morphism M &N®" — N. If
we denote by W8 the log scheme obtained by equipping Spec (A[ty, - - -, tn) @ziMeNen]
Z[N]) (where the morphism M & N®" — A[ty,---,t,] is given by

M @ N®» — Alty, -+, 1)

(pamla"'amn) = a(p)tgnltrnnn)

with the log structure induced by the chart given by the natural morphism
N — Alty,- -, t,] ®zpenen) Z[N], then the natural morphism

W% = (Spec (Altr, - tal Sziaronem ZIN]))*® — (Spec Altr, -, £,])'% = V'*5(C P%)
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(where the equality Spec Alty,---,t,] = V is obtained by regarding ¢; as the
“coordinate” of V' determined by L;[~ Ox]) is a connected ket covering, and
W8 % 10s X198 is Y198, Thus, the ket covering Y'°8 over X'°® extends to a
ket covering W1°8 over V198, Therefore, we obtain the following diagram:

Ylog Wlog

l l

Xlog Vlog Plog )

Now, by the log purity theorem, the connected ket covering W8 — /s
extends to a connected ket covering of P°¢. Thus, the morphism 7, (X'°¢) —
71 (P'#) is an isomorphism.

(Step 4) 1In general, m;((s°)1°8) is an isomorphism.

We will show that the functor Két(P'%8) — Két(X'#) induced by the
morphism (s9)!°8 : X' — Pl is an equivalence. First, we prove that
the functor is fully faithful. It is immediate that the functor is faithful
(indeed, this follows from the existence of a log geometric point of P'°® that
factors through X'® and the general theory of Galois categories). Thus, it
is enough to show that the functor is full. Let Q\® — P8 and Q¢ —
P°% be ket coverings over P2, and ¢'% : v, & Q% X prox X8 — Y, o
QY% X pioe X'°¢ a morphism in Két(X'°¢). Then, by Step 3, there exists a

strict étale surjection X ''°& — X% such that the morphism ¢ o8 : Yll log def

V%8 X o X108 — Y, 08 ylos o X108 gyer X8 4 xlom o, X0
obtained as the base-change of ¢'°8 by X ¢ — X% extends to a morphism
G log Qlllog o Q% X 1oz X108 — Q;log o Y,% X yiox X198 over P'log o
P98 x 1o X' 8. (Indeed, by Step 3, for any geometric point of X, there
exists an etale neighborhood U — X of the geometric point such that if we
denote by U — X!°¢ the strict morphism whose underlying morphism of
schemes is the morphism U — X, then the base-change of ¢'°¢ by U'%¢ — X!°&
extends to a morphism Q% X yies U8 — Q%X vi0: U8, Thus, if we denote by
X'1¢ the disjoint union of such a U'%%’s, then X °8 — X% satisfies the above
condition.) Let us denote by ¢|°® (respectively, ¢i®) the 1-st (respectively, 2-
nd) projection P18 x pi; P16 — P'°¢ Now it follows immediately from the
fact that the functor Két(P'% x plos P'18) — Két(X %8 X y10s X °8) induced
by the morphism X %8 x yie X196 — P08 x 1., P12 determined by (s°)1

46



is faithful that the following diagram commutes:

w ! log
log * ~/log 919 log * ~/ log
QT —— ¢ @y

l l

w ! log
log * ~/log 929 log * ~/ log
ds 1 — 4y 2

log

where ¢;°" denotes the pull-back of each object over P12 to an object over

P'1o% x pio P98 via qiog, and the vertical arrows are the isomorphisms that
arise from the fact that Q;log — P'l°8 arises from Q1 — P, Thus, by
Lemma 5.20 below, §'1°% extends to a morphism §'°¢ : Q' — QF®. Since
the base-change of §'6 by X 1% — Pl°8 ig naturally isomorphic to g8, we
obtain that §'°% is an extension of g'°2.

Next, we prove that the functor is essentially surjective. Let Y08 — X'

be a ket covering over X'°®. Then, by Step 3, there exists a strict étale sur-

jection X ¢ — X% such that the ket covering Y08 e yrog o yiog X 108 —

X'los 4 ylos o\ X108 extends to a ket covering Q18 — P'log & plog
X8 Let us denote by ¢\ (respectively, ¢y%) the 1-st (respectively, 2-
nd) projection P18 x pi; P16 — P18 Now, replacing the strict étale
surjection X ¢ — X% by the composite X 18 — X'lg — Xlog  where
X"log _, X'log ig g strict étale surjection, if necessary, we may assume that
the isomorphism over X'1°8 that arises from the fact that V'8 — X'log
arises from Y8 — X192 extends to an isomorphism ¢*#*Q"'8 = ¢*&* Q18
where ¢/®* denotes the pull-back of a ket covering over P'°¢ to an ob-
ject over P18 x pio; P92 via ¢°®. (It follows from Step 3 and a simi-
lar argument to the argument used in the proof that the functor in ques-
tion is fully faithful [to show the existence of X' — X'°¢] that such a
strict étale surjection X'6 — X'°% exists.) Moreover, since the functor
K6t (P18 X prog P18 X prog P'1%8) — Két(X 18 X 10 X 18 X 10 X 1°8) induced
by the morphism X 198 x yios X 18 X yiog X 198 — P08 5 1oy P08 x i, P'108
determined by (s°)°8 is faithful, this isomorphism ¢;8 *Q"1°8 = ¢i8*(Q'18 sat-
isfies the cocycle condition for being a descent datum. Thus, by Lemma 5.20
below, the ket covering Q"¢ — P'1°% extends to a ket covering Q'°% — P2
Moreover, since Q%% X pios X' X yiox X "og oquipped with descent data with
respect to X' 1°8 — X8 ig naturally isomorphic to Y8 equipped with de-
scent data with respect to X 08 — X8 we obtain that Q% X pie X% is
naturally ismorphic to Y8 over X8 ]

Lemma 5.19. Let k be a separably closed field whose (not necessarily posi-
tive) characteristic we denote by p, (P1)°8 the log scheme obtaind by equip-
ping the projective line Py with the log structure associated to the divisor

47



{0,00} CPL, U C P} the interior of (P1)'8 (so U = G,,), and (Spec k)¢ —
(PLYe the strict morphism for which the image of the underlying morphism
of schemes is {0} C P;. Then the following hold:

(1) The morphism m(U) — m((P})°8) is an isomorphism.
(i) The morphism 71 ((Spec k)'°8) — 7, ((IP})°8) is an isomorphism.

Proof. First, we prove assertion (i). If we denote by 7 the geometric point
of P}, then it follows from the fact that the natural morphism n — (P})l8
induces a surjection m(n) — m((P£)"°8), together with the fact that the
natural morphism 7 — (1)1 factors through U that m(U) — m;((P})"®)
is surjective. Moreover, since any connected finite étale covering over U is of

the form
v =6, — G, =U
foo=

for some positive integer n that is prime to p, it is easily seen that any finite
étale covering over U extends to a ket covering over (P})'°8; thus, 7 (U) —
71 ((P})"°8) is injective. Therefore, m(U) — m((PL)!°8) is an isomoprhism.

Next, we prove assertion (ii). We denote by (Al)°® — (P})"°8 the strict
morphism whose underlying morphism of schemes is the natural open im-
mersion A} <— P} (where we regard A} as P; \ {oo}). By (i), the re-
striction to (A})® of any connected ket covering over (P1)!°® is of the form
Xlog = (Alyee — (Al)l°8 where X'°% is the log scheme obtained by equip-
ping Aj with the log structure associated to the divisor {0} C A}, and the
underlying morphism of schemes of this ket covering X'°& — (Al)l°8 is deter-
mined by the morphism

fot some positive integer n that is prime to p. It thus follows immediately
from this fact and Proposition A.4 that 7 ((Speck)%8) — m((P})°8) is an
isomorphism. ]

Lemma 5.20. Let X'°¢ be a fs log scheme, and f°8 : Y8 — X8 q strict
étale surjection. Then f°8 induces a natural equivalence between the category
of ket coverings of X'°¢ and the category of ket coverings of Y8 equipped with
descent data with respect to f8.

Proof. This follows immediately from the fact that the property of being a
ket covering is étale local, together with [23], Proposition 4.4. O

The following corollary follows immediately from Theorem 3.3 and 5.18.
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Corollary 5.21. Let X'°¢ be a log reqular, connected, quasi-compact fs log
scheme, '8 : X8 — X982 o morphism of constant type N®", 1 N$" = Cfrog
a trivialization of f'°¢, and 7'°¢ : P16 — X!°¢ the log GX"-torsor associated
to (f1°8.7). Then for any strict geometric point T°¢ — X8 of X8 the
following sequence is exact:

T log
lim T (ng X xlog Elfg) L US| (Xlog) 1(L>g) 1 (Xlog) — 1.

Here the projective limit is over all reduced covering points T\* — T'°¢, and
L. . . | .
s is induced by the natural projections X'°& X yios T,% — X8 In, particular,

by means of a natural isomorphism
1(5117?1 (Xlog X xlog fl/\og) - Z(p’)(l)@n
obtained in Remark 5.22 below, we obtain the following exact sequence:

Ny~ w1 (floe
Z(p)(l)@n _ 71_1(Xlog) I(Lf’) 7T_1()(105;) — 1,

where p is the characteristic of the residue field of the image of the underly-
ing schemes of the strict geometric point, and Z(p')(l) 15 the pro-prime to p
quotient of Z(1).

Remark 5.22. Let k be a separably closed field whose (not necessarily pos-
itive) characteristic we denote by p, and S'°® an fs log scheme whose under-
lying scheme S is the spectrum of k. Let f'°¢ : 516 — S1°¢ he a morphism of
constant type N®” and 7 a trivialization of fl°s.

Let P — k, Q — k be respective clean charts of S'°¢, S'°® given in Def-
inition 5.1. Then, as is well-knouwn, the log fundamental group (S™#)
(respectively, 7 (5'%)) is naturally isomorphic to Hom(P#P, Z®)(1)) (respec-
tively, Hom(Q#?, Z®)(1))), where Z®)(1) is the pro-prime to p quotient of
Z(1) (cf. e.g., [8], Example 4.7). Moreover, the morphism m (S°8) — 7y (S1°8)
induced by f'8 is the morphism

Hom(Qgpa Z(p’)(l)) - HOIIl(ng, Z(p/)(l))

induced by P — @ in Definition 5.1. In particular, the kernel of 7 (5'°8) —
m1(5"%) is naturally isomorphic to Hom(Q# /P2, Z*)(1)). Now the trivi-
alization 7 induces a natural isomorphism Z®* = (Q#/P#P. Therefore, we
obtain a natural isomorphism

(lim 71 (S™°8 X giox V&) —=)Ker(my (8%°8) — 71 (S5'8)) = Z#")(1)%"
where the projective limit is over all reduced covering points S;Og — Slog,
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Proposition 5.23. Let X'°¢ be a log regqular, connected, quasi-compact fs
log scheme over a field k whose (not necessarily positive) characteristic we
denote by p, Ux C X the interior of X'°¢, and Ly, -, L,, invertible sheaves
on X. Let '8 : P8 — X1°8 pe the log GX"-torsor associated to (Lq, -+, L,).
If the condition (x) below is satisfied, then, in the following exact sequence
obtained in Corollary 5.21

7 (p' T 80 log
(Z(P )(1)6971 ~) 7T1(P10g X xtos T) — 7T1(plog) 1((50)2%) 7T1(X10g) 1
(where T — X is a geometric point of X), the first morphism is injective.

(x) For any integer i such that 1 <1i <n and any positive integer N that
is prime to p, there exists a covering V. — Ux tamely ramified along X \ Uy
and an invertible sheaf N such that NN = L; |y.

Proof. If we denote by P\ — X8 the log G,,-torsor associated to £; (1 <
i < n), then there exists a natural isomorphism P'%% = Pl% x 1o, - - - X yios PO
over X'°¢. Thus, if the assertion in the case where n = 1 is verified, then the
composite

[Tr=1 P
7T1 (Pilog XXlog f) — HZ:]- 7'(_]_ (P]iOg XXlog E) (; 7T]_(P10g XXlog f)
i—th
€ = (07"'7 67"'7())
—  m(P) = m(P)%)

is injective (respectively, zero) if i = j (if @ # 7). Therefore, to complete the
proof of Proposition 5.23, we may assume that n = 1. Write £ o Lq. Let
N be a positive integer that is prime to p. Note that it is enough to show
that the N-th (cyclic) ket covering over P°8 X i 7 lifts to a ket covering
Q"% — P& gver P'°8 to complete the proof of Proposition 5.23.

We denote by Q1% — V the log G,,-torsor associated to A (in the condi-
tion (x)), and by Qv — P xx V the morphism determined by the following
composite:

N e N ®N ; L |V

oo eV
Then it follows from the definition of a log G,,-torsor associated to an in-
vertible sheaf that the morphism )y — P X x V extends to a morphism of

log schemes lﬁg — P98 x 10 V; thus, we obtain the following commutative

50



diagram:

Q% X piog Up —— Up
e —— P X yig V —— P X y10g Uy —— Pl®
V —_— Ux —— Xlos |

where Up is the interior of P8 and the three squares are cartesian. It

follows immediately from the construction of Ql“;g that the log structure of

§3g X plog Up is trivial, and that the top horizontal arrow Ql‘?g X plog Up =
Qv xp Up — Up is finite étale.

Now I claim the normalization () of Up in )y xXp Up is tamely ramified
over P along P\ Up. Indeed, this claim may be verified follows: Now every

point a of P\ Up with dim Op, = 1 is either

(i) the generic point of a (reduced) divisor on P determined by s° or s>
(see Definition 5.16), or

(ii) the generic point of a (reduced) divisor on P which is the pull-back of
a reduced divisor on X whose generic point x is a point of X \ Ux with
dim OX@ =1.

If a is the generic point of a (reduced) divisor on P determined by s or
5% (i.e., of type (i)), then Op, is isomorphic to Kx[t| (where Kx is the
function field of X), and the base-change of ) — P by the natural mor-
phism (Spec Kx|[t]) =)Spec Op, — P is of the form Spec Ky [t'/N] /vy —
Spec Kx|[t]) (where Ky is the function field of V). Since Ky is a finite
separable extension of Kx (by the tameness of V' — Ux), and N is prime
to the characteristic of Kx (by the fact that N is prime to p whenever p is
positive), we obtain that ) — P is tamely ramified at p. On the other hand,
if a is the generic point of a (reduced) divisor on P which is the pull-back
of a reduced divisor on X whose generic point z is a point of X \ Ux with
dim Oy, =1 (i.e., of type (ii)), then Op, is isomorphic to the localization
Ox [tz of Ox,[t] at the prime ideal (7) generated by a prime element
7 of the discrete valuation ring Ox,, and the base-change of ) — P by
the natural morphism (Spec (Ox .[t]x) —)SpecOp, — P is of the form
Spec (R[t"N](rp)) — Spec (Ox 4[t]()) (where R is the normalization of Ox
in Ky, and (mg) is the prime ideal generated by a prime element 7 of the
discrete valuation ring R). Since Spec R — Spec Ox , is tamely ramified (by
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the tameness of V' — Ux), and N is prime to the characteristic of Kx (by
the fact that IV is prime to p whenever p is positive), we obtain that @ — P
is tamely ramified at a. This completes the proof that the normalization @)
of Up in Qv X p Up is tamely ramified over P along P\ Up.

Therefore, by the log purity theorem (cf. Remark 2.10), the covering
extends to a ket covering Q'°¢ — P'°&. Moreover, by the construction of the
morphism @)y — P xx V, for any geometric point 7 — X of X whose image
lies on Uy, the restriction of the ket covering Q'°% X yioe T — P'°® X y10z T tO
any of the connected components of Q'8 X yis T is the N-th (cyclic) covering
over P8 x yios T. O

Definition 5.24. In the notation of Proposition 5.23, we shall refer to the
extension of 7y (X8) by Z®)(1)®"

log — log 1 ((s)'%) log
1 — m (P Xxi0s T) — m (P®) " — "1 (X'®) — 1

as the extension of m (X'9%) by Z¥)(1)®" associated to (Ly,---,L,). More
generally, for a set of prime numbers 3 which does not contain p, we shall
refer to the extension of m (X'°®) by Z®*)(1)®"

via 71 ((s9)log)

1 — 7T1<P10g X xlog f)/N — WI(PIOg)/N AN 71_1()(1053;) 1

(where N is the kernel of the composite of the natural isomorphism 71 (P8 X yio
z) = Z¥)(1)®" and the surjection Z®)(1)®" — Z&)(1)®" induced by the
natural projection Z®)(1) — Z®) (1)) naturally obtained from the exten-
sion of mp(X'°2) by Z®)(1)%" associated to (L, - - -, L,) as the extension of
T (X'98) by Z) (1) associated to (Ly,- - -, Ly).

Remark 5.25. If we denote by S(m1(Ux)) (respectively, Uy ) the classifying
site of m(Ux), (i.e., the site defined by considering the category of finite
sets equipped with a continuous action of m;(Ux) [and coverings given by
surjections of such sets]) (respectively, the étale site of Uy ), then the natural
morphism of sites

Uxer — S(Wl(UX))
induces a natural morphism
H" (11 (Ux), Z77(1)) — H (Ux, Z#)(1)).

If the morphism H2 (7 (Uy), Z®) (1)) — HZ (Ux, Z¥)(1)) is an isomorphism,
then, by a similar argument to the argument used in the proof of [15], Lemma
4.3, any invertible sheaf on X satisfies the condition (x) in Proposition 5.23.
Moreover, if the morphism

H2 () (X1°%), Z77(1)) — H2(m (Ux), Z7(1))
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induced by the natural surjection m;(Ux) — m1(X'®) is an isomorphism,
then, by a similar argument to the argument used in the proof of [15], Lemma
4.4, the extension of 7;(X'°8) associated to £ is isomorphic to the extension
of 71 (X' 8) by Z®)(1) determined by the (étale-theoretic) first Chern class
(see [15], Definition 4.1.) of the invertible sheaf £ via the isomorphisms

H2 (my (X1°%), 20)(1)) = H*(m (Ux), 2% (1)) = HE,(Ux, Z77(1)) .

(Now, by means of the natural bijection in [19], Theorem 1.2.5, we iden-
tify the set of equivalence classes of extensions of 71 (X'°8) by Z®)(1) with
H2 (7, (X%, Z(#)(1)).) Moreover, then the extension of 7 (X'8) associated
to (Ly,--+,L,). is isomorphic to the fiber product of the extensions of
m(X'°2) by Z®)(1) determined by the (étale-theoretic) first Chern classes
of the invertible sheaves £; (1 <14 < n) over m(X°8).

6 Log configuration schemes

In this section, we define the log configuration scheme of a curve over a field
and consider the geometry of such log configuration schemes.

Throughout this section, we shall denote by X a smooth, proper, geomet-
rically connected curve of genus g > 2 over a field K whose (not necessarily
positive) characteristic we denote by p, Plﬁg the log scheme obtained by equip-
ping Pk with the log structure associated to the divisor {0, 1,00} C P}, and
by Up the interior of ]P’lfég.

Let M, be the moduli stack of 7-pointed stable curves of genus g whose r
sections are equipped with an ordering, and M, C M, the open substack
of M, parametrizing smooth curves ([12]). Then M,, \ M, is a divisor
with normal crossings in M, ([12], Theorem 2.7). Let us write M, = M,
and M, = M, . By considering the (1-)morphism p%rﬂ My — My,
obtained by forgetting the (r+1)-st section, we obtain a natural isomorphism
of M, 11 with the universal r-pointed stable curve over M, . ([12], Corollary
2.6). Now we have a natural action of S, (where S, is the symmetric group on
r letters) on M, which is given by permuting the sections. For 1 <i <r,
we shall denote by p(‘r/gi : My,41 — Mg, the (1-)morphism obtained by
forgetting the i-th section.

Let us denote by ﬂ;f the log stack obtained by equipping M, with the

log structure associated to t the divisor with normal _crossings Mg,r \ Mg,

Since the action of S, on M, preserves the divisor M, , \ M, ,, the action
- . _1

of §, on Mg, extends to an action on M gof.

First, we define the log configuration scheme X Ef)g as follows:
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Definition 6.1. We define X,y by the following (1-)commutative diagram

Xpy —

g,r
Spec K A, M,,

where the bottom horizontal arrow Spec K il ﬂg is the classifying (1-

)morphi_sm determined by the curve X — Spec K, the right-hand vertical

arrow M, , — M, the (1-)morphism obtained by forgetting the sections,

and the (1 )commutatlve diagram is cartesian in the (2-)category of stacks.

Since /\/lgr — Mg is representable, X, is a scheme. We shall denote by

X E:)g the fs log scheme obtained by equipping X,y with the log structure

induced by the log structure of Mlgof. We shall denote by Uy, the interior
of X Ei)g, and by Dy, the complement of Uy, of X(,. Note that, by defi-
nition, the scheme Ux  is isomorphic to the usual r-th configuration space
of X. For simplicity, we shall write Uy, (respectively, D) instead of Ux,,
(respectively, D X<T>) when there is no danger of confusion. By the definition

of X,y (respectively, X (T)) the action of S, on M, (respectively, on M;(’f)

induces an action on X, (respectively, on X }:)g)

As is Well known, the pull-back of the divisor M,, \ M,, via the (1-
Jmorphism p(T)TJrl : /\/lg el — ./\/lgr is a subdivisor of the divisor /\/lg r1 \

M1 (cf. [12], the proof of Theorem 2.7). Thus, there exists a unique
(1-)morphism p%i‘fl : ﬂlﬁ = M;f whose underlying morphism is the

(1-)morphism p(‘r/g Moreover, for an integer 1 < i < r, since the composite

r+1°
of the automorphism of M, , determined by the action of

(1,2,"‘,7“)'—>(1,2,"',i—1,i+1,i+2,"',7“,i)GSr

and pf\r/gr 41 coincides with the (1 )morphlsm p , the (1-)morphism p{;’gi
also extends to a (1-)morphism /\/lg’r = M;f. We shall denote this (1-

)morphism by pM log
The (1-)morphism p{‘r’;i : Myr11 — M, (respectively, ZV‘IOg Mlgofﬂ —
Mlgof) determines a morphism X,y — X (respectively, X( il) — X é??)

We denote this morphism by px, (respectively, pl)?i) ;). Thus, we obtain the
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following (1-)cartesian diagrams:

PX (i

1 Xyt 1
Xey) —— X X(ﬁil) X(:f)g
M pé\;l)i M —log p(\r/l)iog —log
g,’l”+1 g,r Mg7,r.+1 E— ngr .

Note that, by the definition of a stable curve, px . ; is proper, flat, geomet-

rically connected, and geometrically reduced. For simplicity, we shall write

Py (respectively, pl(‘;i) instead of px,,; (respectively, pl)(zi)i) when there is

no danger of confusion.

Definition 6.2.

(i) Let 1 <4 <r be integers. Then we shall denote by
lo lo
eri)i : X(T;OT — X
the composite

log o log 6.0 log o log o log 0.0 log o log
pX<1)2 pX(2)2 pX(r7i71)2 pX(rﬂ')? pX(r7i+l)]- pX(r72)]- pX('rfl)l )

and by pr Xy the underlying morphism of schemes of prl)(gi) ;- For sim-
plicity, we shall write prl([;%i (respectively, pr(,);) instead of prl)‘;iﬂ- (re-

spectively, pr X(T)i) when there is no danger of confusion.

(ii) Let 1 <i < j <r be integers. Then we shall denote by
lo lo lo
pI‘Xi)iJ : X(T)g - X(z)g

the composite

log o log 0...0 log o log o log o...
PX(5)3 ° PX(33 PX( 53 O PX(j41)3 O PX(jya)2

log log log log log
U OPX, 129 PX 29X )1 07 O PX 01 O PX (g1
. . log
and by P, i the underlying morphism of schemes of pr Xyi® For
log

simplicity, we shall write DI,y (respectively, pr(T)Z-7j) instead of prl)‘;i) i

(respectively, pr X(r)ivj) when there is no danger of confusion.

Next, let us consider the scheme-theoretic and log scheme-theoretic prop-
erties of X g:)g in more detail.
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Lemma 6.3. X, is connected.

Proof. Since X(g) = Spec K is connected, and the p(.;’s are proper and
geometrically connected, it follows immediately that X, is connected. — [J

Proposition 6.4. The (1-)morphism p(/:;i‘jrgl : M;EH — Mlgof 15 log smooth.

Proof. See [9], Section 4. O

The following lemma follows immediately from Proposition 6.4.

Lemma 6.5. pl('fj%i is log smooth. In particular, since Spec K (equipped with

the trivial log structure) is log reqular, X é:‘;g 15 log reqular.

Proof. The assertion for pl(c;%T ., follows immediately from Proposition 6.4.

Since pl(if is a composite of an automorphism of X (1:)g (obtained by permuting

i

of the sections) and pl(‘:ﬁr Y pl(‘;%i is also log smooth. ]

Remark 6.6. By Lemmas 6.3, 6.5 and Proposition A.10, U,y — Xlif induces

(
a natural equivalence between the Galois category of ket coverings over X éfg

and the Galois category of coverings over U, tamely ramified along the
divisor with normal crossings D,y C X(,y. In particular, 7*"°(Xy, D)) =~

7T1<X(17?Sg). (Concerning 71** (X, D), see [6], Corollary 2.4.4.)

Proposition 6.7. Let 7'°¢ — Xé?;g be a strict geometric point. Then, for any
integer 1 < i < r+1, the following sequence is exact:

™ (pl(c;%l)

. 1 - s 1 1
lim 7y (X 7% ) X xlos 7y) — mXhy) — mXgy) — 1.
Here, the projective limit s over all reduced covering points flfg — T, and

s is induced by the natural morphism Xé?il) X oz T8 — X%

Proof. This follows immediately from Lemma 6.3, 6.5 and Theorem 3.3. [

Proposition 6.8. Let S°% be a log regqular fs log scheme, and 3 — S a
geometric point of S. If the characteristic (Mg/O%)s of S at s — S is
isomorphic to N®" for some n, then S is reqular at the image of s — S, and
the log structure of S'°% is given by a divisor with normal crossings around
the image of s — S.

Proof. We take a clean chart a : N¥" — Ogz of S at 5 — S, and write
i—th

a(e;) = fi € Ogs (where ¢; = (0,---,0, 1,0,---,0) € N¥"). Then, by the

definition of log regularity, the following is satisfied:
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(i) Oss/(f1,-.-, fa) is regular.
(i) (d <)dim Og5 = dim (Os5/(f1, ..., fa)) + n.

Thus, there exist elements f,,41,..., fa of Ogs such that fi,..., f; generate
the maximal ideal of Og5. Therefore, Og3 is regular, and the log structure of
S'°¢ is given by the divisor with normal crossings defined by fi,---, f,. O

Lemma 6.9. X, is reqular, and the log structure of X8 s given by a
divisor with normal crossings.

Proof. Since the natural morphism X (1:)g — mlﬁ is strict, for any geometric
point T — X, the characteristic (Mx,,/O% )z of Xéf)g at T — X is
isomorphic to N®” for some n. Thus, the assertion follows immediately from
Proposition 6.8. ]

Definition 6.10. Let r > 2 be a natural number, and I a subset of {1,2,---,r}
of cardinality I# > 2 equipped with an ordering. Then we shall denote by

(C(r)l — X(—r#41) XKHO,I#—H; S1,° 7 S L X r#41) XKMO,I#-H - C(r)[)

the r-pointed stable curve of genus g whose r sections are equipped with an
ordering obtained by applying the clutching (1-)morphism ([12], Definition
3.8)

Bo.g,1, (1,21 = Mo rsin X Mg e — Mg,

(where {1,2,---,7}\ I is equipped with the natural ordering) to the (I# +1)-
pointed stable curve of genus 0

Xo—r#41) X Mo #qo — Xp_r# 1) Xk Mo

obtained by base-changing the universal curve MQ I#19 — MQ [#41 oOver
Mo 1#41 and the (r — I# + 1)-pointed stable curve of genus g

Xo—r#42) X Mo s — Xp—r# 1) XK Mo#4

—I# 42

Xu—r#11).- (Note that

P
Xt 4y”
=

obtained by base-changing X, _r#,9)
“the clutching locus” of

Xo—r#41) X1 Mo #qo — Xp—r# 1) Xx Mo#

[respectively, X(,_r# 0 Xx Mo 141 — Xior#11) X Mo r#41]
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is the (I* + 1)-st [respectively, (r — I 4 1)-st] section [cf. [12], Definition
3.8].)

Then it is immediate that the classifying (1-)morphism X _j#1) Xk
Morey — Mgr of this curve factors through X, and this morphism
Xo—r#41) X Mo#1 — X is a closed immersion (since it is a proper
monomorphism). We shall denote by & Xl this closed immersion, by D Xl

the scheme-theoretic image of § XI> DY D Y the log scheme obtained by

equipping Dx  ; with the log structure mduced by the log structure of X log

and by 5)(( e Dl)?m ;= Xé:f)g the strict closed immersion whose underly—

ing morphism is 5X(r> 7. Note that by the construction of DX(T) 1, the closed
subscheme DX(,,) 1 © X does not depend on the imposed ordering of I.

For simplicity, we shall write D,y (respectively, D}Oi; respectively, d()r; re-
spectively, (5}2%1) instead of Dx (respectively, DX( NE respectively, dx, r;

respectively, (51X(g : ;) when there is no danger of confusion.

Remark 6.11. Let » > 2 be a natural number, and I a subset of {1,2,--- r}
of cardinality > 2. By the definition of D(,);, D, is irreducible. (Indeed, the

log smoothness of pl((gs o X8 an — X log and the (1-)morphism ﬂg?thrl -

Miﬁf [obtained by forgetting the (¢ + 1)—st section] [s, t € N] imply the log
regularity [hence, in particular, the normality of the underlying scheme] of

X éig I#+1)
used in the proof of Lemma 6.3, D, is connected, hence, [in light of the
normality just observed] irreducible. ) Thus, D,y is an irreducible component
of D). Moreover, Dy = |J; Dyr. (Indeed, if the image of a geometric point
T — X( y lies on D,y then by considering the curve which corresponds to
the composite T — X — M, there exists a subset I of {1,2,---,r} of

cardinality > 2 such that the image of the geometric point T — X lies on

——log .
X Mg j#q; moreover, by a similar argument to the argument

Dy1.) Therefore, the log structure of X E:;g is the log structure associated
to the divisor with normal crossings |J; Dy € X, i.e., if we denote by
M(Dyr) the log structure on X,y associated to the divisor Dy € Xy,

then the log structure of Xé?;g is XM (D) (see Definition 5.6).

Lemma 6.12. Let r > 2 be a natural number, I a subset of {1,2,---,1} of
cardinality I* > 2 and 1 <i <r +1 an integer.

(1) The closed subscheme of X(41y determined by the composite of the
natural closed immersions (defined in Definition 6.10)

Xer—1#11) XK mo,]#—f—Z — Ciyr = Xy
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18 D1y 1u{r+1) -
(i1) The closed subscheme of X(,41y determined by the composite of the
natural closed immersions (defined in Definition 6.10)
X(r71#+2) XK MO,I#JA — C(r)] — X(r+1)
18 Dry1yr-

(111) The inverse image of Dgyr C Xy via peyi 8 Dy1y(rufr41y)es UD g1y 101 5
where

o= (01,2, ,r4+1)— (1,2,---ji—1,i+1,i+2,-- - r+1,7)) € Spy1,
and 19t = {o;(k) | k € I}.

() The closed subscheme Dgi1yjijy © Xgy1y (J # ©) is the image of a
section of p(y;-

Proof. First, we prove assertion (i). By the definition of the r-pointed stable
curve
(Coyr — Dgyrs 81,580 - Doyt — Cioyr)

the (r+ 1)-pointed stable curve determined by the closed immersion C(y; —
X(r41) is obtained as the stabilization ([12], Definition 2.3) of the r-pointed
stable curve of genus ¢

(Cyr XDy Cioyr P Coyrs 81y 80t Cioyr — Coyr XDy Cyr) s

(where §; is the section obtained by base-changing s;) with the extra section
obtained by the diagnal morphism C(y; — Cpyr X D1 Ciyr- Therefore,
since the operation of stabilization commutes with base-change, the closed
immersion in question

Xe—1#41) XK HO,I#—M = Ciyr = X
determines the (r + 1)-pointed stable curve obtained as the stabilization of

the r-pointed stable curve of genus g

- o -
(Xg—r#41) XK Mo#42) XDoyy Coyr — Xp—r#41) X5 Mo 1#19;

IR X(r71#+1)XKm0,I#+2 - (X(rfl#Jrl)XKMO,I#JrZ)XD(r)IC(r)I) (1)

(where s is the section obtained by base-changing s;) with the extra section

induced by the diagonal morphism of X, _r# 1) Xx Mg r#,9 over D). On
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the other hand, since the operation of clutching commutes with the base-
change, the r-pointed stable curve of genus g (%) is obtained by applying
the clutching (1-)morphism B 4 7 (1,2,..-p\s to the (I#+1)-pointed stable curve

- - pry -
(X(r—1#+1) X g Mo 1#42) X D1 (X(r—1#+1) X KM0,1#+2) — X(p_1#41) X kMo #42

obtained by base-changing the (I# 4 1)-pointed stable curve X, 1) Xg
MO’I#H — Dr defined in Definition 6.10 and the (r — I# + 1)-pointed
stable curve

_ _ - _
(X(rfI#Jrl) XKMO,I#JrQ) XDy (X(r71#+2) XgMor#i1) — Xor—r#1y X kMo 1# 42

obtained by base-changing the (I# + 1)-pointed stable curve Xo—r#12) XK
MQ r#4+1 — D1 defined in Definition 6.10. Note that then, by definition,
the stable curve (x3) is isomorphic to the (r — I*# + 1)-pointed stable curve

X(r71#+2) X Mo r#qe — X(r71#+1) X Mo 1# 42

obtained by base-changing the (r — I# + 1)-pointed stable curve

Plr—1#41)yr—1# 42 . .
X(r—1#42) — X(—r#4+1). Moreover, since the image of the ex-

tra section of the r-pointed stable curve of genus g (x;) lies on the stable
curve (x3), the (r + 1)-pointed stable curve determined by the closed immer-
sion in question is the (r 4 1)-pointed stable curve obtained by applying the
clutching (1-)morphism By g rofr41},{1,2,r+10\ (1Ufr+1}) to the (I +2)-pointed
stable curve

Xo—r#41) Xk Mo #is — Xp_r#41) X Mo 1#42

obtained by base-changing the universal curve ﬂQ [#y3 — MQ [#.49 OVer
Mo 1#4 and the (r — I# + 1)-pointed stable curve

Xr—r#42) X1 Mo # 0 — Xp_1#41) X5 Mo 1#42

obtained by base-changing the (r — [# + 1)-pointed stable curve

p r—I# r—I7# . ]
(oI X—r#41)- This completes the proof of assertion

Xr—1#+2)
().
Assertion (ii) follows from a similar argument to the argument used in
the proof of assertion (i).
Assertion (iii) follows from assertion (i) and (ii), together with the fact
that p(.); coincides with the composite of the automorphism of X,y deter-

mined by o; € S41 and pgyrq1-
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Finally, we prove assertion (iv). By the definition of D1ygj,4+13, the
composite
(T+1){J r4+1} P(ryr+1

D(r+1){j,r+1} X(r+1) — X()

is the classifying morphism of the r-pointed stable curve X4 P Xy

Thus, the composite p)r41 © d(r41){jr+1} is an isomorphism. This completes
the proof of the assertion in the case where ¢ = r + 1. In general, the
assertion follows from the fact that p(.); coincides with the composite of the
automorphism of X, ) determined by o; € S,41 and pgyr41. O

Remark 6.13. Let r > 2 and 1 < ¢ < r 4+ 1 be natural numbers, and
o; the element of S,;; defined in Lemma 6.12, (iii). Then one may verify
easily that the image of the k-th section (1 < k < r) of the r-pointed
stable curve pyr41 ¢ Xog1) = Xgy 18 Dipga){rr41y (see Lemma 6.12, (iv)).
Therefore, by taking the composite of the sections of the r-pointed stable
curve piyr+1 @ X41) — X and the automorphism of X,y determined
by o;, we obtain a r-pointed stable curve p(y; : X(,41) — X,y such that the
image of the k-th section (1 <k <r)is

{ Doy (if b <i—1)
Dy (if i <E).

Thus, in particular, if j # j’ then D(Hl){m} N D(y41){i,5} 1s empty. More-
over, we obtain D, ) U]#Z Dy U p(T)ZD(T) (See the proof of [12],
Theorem 2.7. Note that the restriction of S;Zill in the proof of [12], The-
orem 2.7 to Xu41) 18 D(n+1){i7n+1}.) On the other hand, the morphism
pl(ifi : X(ljil) — X(I:)g factors through the log scheme (X(TH),p(_T;Z.D(r))lOg
obtained by equipping X,y with the log structure associated to the di-
visor with normal crossings p(;;ZD( ), the morphism (X(Hl),p(_r%iD(T))k’g —
ng;g is log smooth, and the morphism X( Sy — (X(r+1)729(_r§iD(r))1°g is ob-
tained by “forgetting” the portion of the log structure of X gﬁil) defined by
the divisors determined by the sections Dqinpjy € Xty (J # 0) (ie.,
%j#M(Dri1)1ig)))-

Lemma 6.14. Let r > 3 be a natural number, and i = 1 or 2. Then the

composite
log

1 . plOg )
log (r){d,i+1} log “(r=1)i ~-log
Doy — Xoy = Xeo
coincides with the composite

log
log (7"){1 i+1} y-log (7" Di+1 y-log
RSN _
Dyiirny X Xy

Moreover, this is a morphism of type N.
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Proof. The assersion that p( 51 1i+1y coincides with pl(c; 51 ) {isi+1}

follows from the fact that p(r_l)i 41 Comcides with the comp081te of the auto-

morphism of X 2?55 determined by

o=((1,2,-,r)— (1,2, i—1i+1,ii+2--,7) €S,

og
(r—1)a°

and pl together with the fact that the restriction of the automorphism

of X (log determined by o to the closed subscheme Déo‘f);{l i41y 18 the identity

morphism of D O){z e

Now p(r—1)i © 0(r)fi,i+1} is an isomorphism by Lemma 6.12, (iv). Moreover,

since pl(og oélog{l i+13 18 obtained by “forgetting” the portion of the log struc-

log
ture of D () i1}

(see Remark 6.13), the composite p 1i © 6%”{2 i1y IS @ morphism of type
N. ]

that originates from D(r){l i+1} C X(T) (i.e., M(D(r){i,i+1}) |D(T){m.+1})

Definition 6.15. Let » > 3 be a natural number, and 7« = 1 or 2. Then we
shall denote by al)cgf (i1 the composite

610g log
Xy {ii+1}
(r) 1og (T nt < log
— X ) X (ro1) »

log
Xy liit+1}

and by ax,,, (ii+13 the underlying morphism of schemes of aX o i1} By
log
X {a,i+1}

We shall denote by £ Xy {iri+1} the invertible sheaf on Dx . ii+1y which

Lemma 6.14, a is a morphism of type N.

corresponds to aljgi) (ii+1) under the bijection ¢ in Theorem 5.14. Note that,
by the definition of + and the proof of Lemma 6.14, £ Xy {iri+1} is isomorphic
to the normal sheaf of Dx i1y in X (cf. Remark 5.15).

We shall denote by U Xy lisi+1} the open subscheme of DX( i1} deter-

mined by the open immersion

-1
aX(T){i,iJrl}

Ux {_)X(r—l) - DX(T){Z',Z'—H}-

(r=1)

For simplicity, we shall write a(r) (respectively, a(g,it1}; respectively,

{i,i+1}
L 1ii+1y; respectively, Ugygiv1y) instead of al)(gi){m.ﬂ} (respectively, X, (i1}
respectively, £ X (o {iri+1}3 respectively, U X(T){i,iﬂ}) when there is no danger of
confusion.

Definition 6.16. Let > 3 be a natural number, and I = {1,2}, {2,3} or
{1,3}. Then we shall denote by Dx,, {123y the closed subscheme Dx ;N
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DX(r){17213} of DX(T)I and DX(T){17273}7 and by Dl)?(g,,)lz{l,2,3} the 10g scheme ob-
tained by equipping Dy, r.{1,23} with the log structure induced by the log
structure of X(lf)g. For simplicity, we shall write D)r.1,2,33 (respectively,
Dlog g

(r)1:{1,2,3} (m1:{1,2,3}
no danger of confusion.

) instead of Dx, (12,3} (respectively, Dl)? ) when there is

Lemma 6.17. Let r > 3 be a natural number. Then the composite

O(r){1,2,3} P(r—1)1
Doz — Xoy — Xp-n)
factors through D(._1y{1,2y. Moreover, this morphism D123y — Di—1){1,2)
determines a trivial P*-bundle over D(,_1y{1.21, and Dpyp123:11.2,3} Diry2,33:41,2,3}
and D y(1,3):01,2,3) determine sections of this Pl-bundle.

Proof. The assertion that the composite p(._1)1 © d()1,2,3) factors through
D_1yf1,2y follows from the fact that the inverse image of D(,_1){1,21 — X(—1)
via p-1y1 18 Dyge,s) U Diry,2,3) (Lemma 6.12, (iii)). Moreover, by the proof
of Lemma 6.12, (i), the natural morphism D (1,231 — D(r—1){1,2) determined
by per—1)1 © 0r)f1,2,3) is isomorphic to the stable curve

Xp—2) XK moA — X(—2) XK moz

obtained by base-changing the universal curve MOA — ﬂoﬁ over ﬂ0,3, the
natural morphism D230 — Dg—1)f1,2) determines a trivial P'-bundle.
The assertion that D(T){l,g};{l,zg}, D(,«){273};{172’3} and D(r){1’3}1{1’2,3} determine
sections of this P!-bundle follows from the fact that by the definition of
the operation of clutching and Remark 6.13, the images of the 1-st and 2-
nd sections of the natural morphism D(y1,231 — D(—1){1,2) determined by

Pe-1)1° 01,23y are Dy 2pqi2,3) and Dy syqi,2,3), respectively, together
with the fact that by Lemma 6.12, (iii), the image of the 3-rd section (i.e.,
“the clutching locus” of the stable curve determined by the closed immersion

Sr-1f1,2y) 18 Dimygr2.30 N Dyt = Diyga,s):(1,2,3)- ]

Definition 6.18. Let » > 3 be a natural number. Then we shall denote by
bX(T){172’3} the isomorphism DX(T){Lg,g} = X(r—2) XK PL such that

e the composite

bx(r){1,2,3}

Dx, nosy  —  Xgoo) Xk P =5 X(g)

coincides with the composite

aX(T_l){1,2}

DX(T){1,2,3} B DX(T,I){1,2} . X(er) ;
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where the first morphism is the morphism determined by px, 1 ©
5X<T){1,2,3}; and

e the closed subscheme of D Xy {1,2:3} determined by the closed immersion

-1
bx(r){1,2,3}

X(r—2) XK {0} — Xr—2) XK P}( — DX(T){1,2,3}

-1
bx(r){1,273}

(respectively, X(T,Q) XK {1} — X(T,Q) XK ]P)}( AN DX<T>{1,2,3} ;

—1
bX(r){172,3}

respectively, X _o) Xx {00} — X9y Xk P, = Dx, 1.23})
is DX(T){LQ}:{LQ,S} (respectively, DX(T){Q,S}:{LZ,?)}S respectively, DX<T>{1,3}:{1,2,3})-

We shall denote by UX(T){LQ’:’)} the open subscheme of DX(T){1’273} deter-
mined by the open immersion

1
bX(,«){17273}

Up—2) Xx Up = X(r_g) Xk Py == Dx, 123} -

For simplicity, we shall write byy1,2.3 (respectively, Upygi23)) instead of
bx(,){1,2,3} (respectively, U X(r){17273}) when there is no danger of confusion.

Lemma 6.19. Let » > 3 be a natural number. Then the isomorphism
boy,2,3r © Diyp2,3) = Xr—2) XK IP’}{ extends to a unique morphism of log
schemes D%{l,zs} — X(1?§2) X K IP’I;;g of type N.

Proof. It is immediate that if b2 extends to such a morphism, then
it is unique. Thus, it is enough to show that b {123} extends to such a
morphism.
. lo lo .
By Remark' 6.13, the morphism D(r§{1,2,3} — X2y XK P! determined
by the composite
via pti{l)loélog

log
log (r{1,2,3} log Ar=1{12} y-log
Dy,2,3) — DiZnpey  — Koty ()

and the composite

b(ry{1,2,3}

~

lo, or
DSuzs = Dotasy = Xeo) xx P = Py

is obtained by “forgetting” the portion of the log structure of Di‘:ﬁ{l 2.3} de-
fined by Dvy(1.2):{1,2.3) Dimyg2,3):(1.2,3y and Dyay:41,2,3) (e, M(Dgy1,23:01,23)+
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Dy2,3y:41,2,3) F Dy {1,3):01,2,3} ) ) and the portion of the log structure of D22§{1,273}
that originates from D(r){l 231 € Xy (e, M(Dy123)) [0y (10y)- There-
fore, the morphism D(r) 2 —— X g;"‘f 2 XK IPKg determined by the above
composite (x) and the composite

"log

1
— D( ){1,2,3} —>]P0g

log

Dz

(where D(k))?l 2.3) 1S the log scheme obtained by equipping D(;){1,2,3 with the
log structure associated to the divisors

D(r){1,2}:{1,2,3}> D(r){2,3}:{1,2,3} and D(r){1,3}:{1,2,3} C D(r){1,2,3} )

the first morphism is the natural morphism obtained by “forgetting” the
portion of the log structure of D}:§{17273} that originates from the divisors
other than

Dygi2y:41,23) Doygesy23 and Deygrsyq1,230 © Diyq,2,3) 5

lamong the divisors of the form D, |D(r>{123} [where I C {1,2,---,r} of
cardinarity > 2|] and the second morphlsm is the strict morphism induced
by the natural morphism

b<r>{i,2,3} or
Dz — Xpoo) Xk P —> Pk )

is an extension of b(yf1,23) of the desired type. O

Definition 6.20. Let » > 3 be a natural number. Then we shall denote by

1 :
b;i) (1,23 the morphism

log log log
DX(T){1,2,3} ’ X(r 2) XK Py,

obtained in Lemma 6.19. Note that this is a morphism of type N by Lemma 6.19.
We shall denote by EX( ){1 23} the invertible sheaf on Dx . (12,3} which
corresponds to the morphism bloe X {123} under the bijection ¢ in Theorem 5.14.
Note that, by the definition of ¢ and the proof of Lemma 6.19, ;CX(T){LQ’g} is
isomorphic to the normal sheaf of Dy 23 in X (cf. Remark 5.15).

For simplicity, we shall write b (12,3} (respectively, L¢)1,23)) instead of

log

bX(T>{172,3} (respectively, EX(T){LQ,;;}) when there is no danger of confusion.

Lemma 6.21. Let r > 2 be a natural number.
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() L1012 100~ (PlyiLri2y) Ve fori#1, 2.

(ii) ‘C(T+1){273} |U(r+1){2,3}:> (pzkr)l‘c(T’){l,Q}) |U(r+1){2,3}:> (pfr)iﬁ(r){z:a}) ’U(r+1){2,3}
fori#£1, 2, 3.

(m) ‘C(r+1){1,2,3} |U(1‘+1){1,2,3}:> (p?r)j'c(r){lﬁ}) |U(r+1){1,2,3}:) (p?r)iﬁ(r){lﬁﬁ}) |U(r+1){1,2,3}
forj=1,2, 3 andi#1, 2, 3.

Proof. First, we prove assertion (i). It follows from the fact that £ 9y is
the normal sheaf of D12y in X, together with the flatness of p(,); that
p’(‘r)iﬁ(r){m} is isomorphic to the normal sheaf of the closed subscheme of
X(r41) obtained as the fiber product of

Dry1,23

P(rm,z}
P(ryi

Xy —— Xoy-

Thus, by Lemma 6.12, (iii) and the fact that £(,11){1,2) is the normal sheaf of
D¢ 11y1,2y in X411y, together with the fact that the intersection of D1 1y1,2)
and D(41y{1,2,s4 is contained in Doy \ Upgiyqi,2y, the restriction of
p?r)i‘c(?”){lﬂ} to U(H_l){LQ} is isomorphic to E(r—i—l){l,Z} |U(r+1){1,2}‘ This com-
pletes the proof of (i).

Assertion (ii) and (iii) follow from a similar argument to the argument
used in the proof of (i). O

7 Reconstruction of the fundamental groups
of higher dimensional log configuration schemes

We continue with the notation of the preceding section. Let ¥ be a (non-
empty) set of prime numbers, and [ a prime number that is invertible in K.
(Thus, it makes sense to speak of Y-integers.) Then we shall say that ¥ is
K-innocuous if

v the set of all prime numbers or {I} if p=0
a {l} ifp>2.

We shall fix a separable closure K of K and denote by Gi the absolute
Galois group Gal( K™/ K) of K. Moreover, we shall denote by A the maximal
pro-X quotient of Z(1).

Definition 7.1.
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(i) Let r be a positive natural number. We shall denote by Hl)?i) the
quotient of 7y (X é?;g) by the closed normal subgroup

Ker(?ﬁ (Xg;);g, X i Ksep) — (Xg:"))g X Ksep)(Z))’

and write ITx for Hl)?i). For simplicity, we shall write Hz’f instead of

1 : .
I1 ;f) when there is no danger of confusion.

(ii) Letr > 2 anatural number, and I a subset of {1,2,--- r} of cardinality
> 2. We shall denote by Hl)‘gi) ; the quotient of 7T1(Dl)?i> ;) by the closed
normal subgroup

Kef(ﬂl(Dlﬁgiﬂ xx K°P) — Wl(DIJ?iﬂ x e Ky
log

For simplicity, we shall write H(r) ; instead of Hl)?i) ; when there is no
danger of confusion.

(iii) We shall denote by H};}% the quotient of 7, (P'%¢) by the closed normal
subgroup

Ker(m (IP’II(;g X K*P) — m (IP’II(;g x i K5eP)P)y

For simplicity, we shall write IT® instead of H%P?i when there is no
danger of confusion.

Definition 7.2. Let » > 3 be a natural number. We shall denote by gﬁ‘;i) (2)
the graph of groups defined as follows:

log log log
Xy 11,2} My 12,3} Tx () (2.3)

GAE)=( o —uy e —y e ),

(1))

where {1} is the trivial group; the symbols “e” (respectively, “—”) denote
the vertices (respectively, the edges) of the underlying graphs; and the group
that lies above a vertex (respectively, below an edge) denotes the group that
corresponds to the vertex (respectively, edge). We shall denote by H%m the
profinite group

lim (TT'%%

lo lo
X2y T {1} — I — {1} — I ),

X(r){17273} X(r){2»3}

where the inductive limit is taken in the category of profinite groups. For
simplicity, we shall shall write Qé;’)g(Z) (respectively, H(gr)) instead of gﬁ‘;i) (%)

(respectively, H%m) when there is no danger of confusion.
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Definition 7.3. Let G be a group. Then we shall denote by G, the graph
of groups whose underlying graph has one vertex that corresponds to GG and
no edges.

We shall denote by
£e5 (2): G (3) — (1 ),

(cf. Definition 7.3) the morphism of graphs of groups determined by the

log
morphisms Dlog R Xé:)g. For simplicity, we shall shall write f(lf;‘;(E)
instead of fy log ( ) when there is no danger of confusion.

Let [ = {1 2}, {2,3} or {1,2,3}. Then, by the definition of gk’g (X ), we
have a natural morphism of graphs of groups

lo lo
(HXi)I)' - Xi)(z)'

We shall denote this morphism by 5g10g

First, we will show the following theorem.

Theorem 7.4. For a set of prime numbers X (which is not necessary K-

innocuous), f(l;))g(E) induces a surjection H(gr) — Hl(?ﬁ.

Proof. First, we prove the assertion in the case where X is the set of all prime

. . _ log . log log
numbers. Since the morphism p(r |D}og+1){2 Y =03y D(r+1){2,3} — X(T 1
is a morphism of type N, the composite

via 5X( ){2:3} 9 via f(lf)g(E)

via plog
log (r—1)3 Hlog

log
1 @ — ey — Iy

(r){2,3}

is surjective. Thus, the morphism

g log
Gy — o2y
induced by the composite of pl(‘;% and f(lf;g(Z) is surjective. In particular,
it is enough to show that the image of the morphism H(gT) — Hl((;% induced

by f(lf)g(Z) generates the kernel of the morphism Hl(o“)g — Hl(og induced by

pl(ig_ 13- Let 78 X(log be a strict geometric point of X ~ ) such that the

log

image of 718 — X (r-1) lies on U(,—1){1,2y- Then it follows from Proposition 6.7

that the kernel of the morphism Hl(of Hl(‘;g_ ) induced by pl((;g_ )3 is generated
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by the image of the natural morphism 7 (X(lj‘;gflog) — H(O%) where X(lo)g_log is
log

the log scheme determined by the base-change of p5; : X(I;’)g — X é?f ;) via

Tog Xgog ) Let Diof{l S (respectlvely, Diof{l 2.3y g) be the log scheme
determined by the base-change of p | 3 lppe D}i‘?{m} — X8 (o) (respec-
log =1 log log
tlve].y, 7")3 |D}o%{l 0} D(T‘){l 2 3} — X( )) viax og X('r—l)’ D(T){l 2} {1 2 3}$log
log log log log
the fiber product Doy, gygee X xior Dy papas = Dy zpaos *x,,, Diya 2 s’
géi;gzlog the graph of groups defined by
gos (MO0 SCTEEEEN
(r)z'os 7”(D((;?{Lz};{l,z,s}ilog) '
log .
and Wl(g(r)fbg) the group definied by
log log log
lim (1 (D gyten) < 1D 01 233000) — D500 2 570006))

(where the inductive limit is taken in the category of profinite groups). Then

the natural strict closed immersions D}(’?{l 2yzios — X éo)g g and Dk’f{ L2t —

Xgo)g oz (note that, by construction, the underlying schemes of Dti“f{l 2)los
and Dlog{1 2 3yzlos ATE the irreducible components of the underlying scheme of
X go)g g) Induce a morphism of graphs of groups Q g g — T (X;i;t’;log). such
that the following diagram commutes:
lo lo
g(r)gflog — 7T]- (X( )g 108)
| 15 !
Gy (X)) —— m(XF)e.
Now since the underlying schemes of D (120 and Dlog{1 )gyglon ATE the

irreducible components of the underlylng scheme of X 10;5 os+ 1If We naturally

regard (] pyglos S 8 graph of anabelioids (cf. [16]), then the underlying graph

of the graph of anabelioids determined as the pull-back of a ket covering

1 1 1 .
ylos X Og *10g OF X Og via the morphism Q’ g — m (X o8 " 1oz )e COINCIdes

g log log

with the dual graph of the pointed stable curve Yied. Thus 1t is immediate
that m(géj)gjlog) — m (X(lo)g g) 18 surjective. Therefore, since the image of
m (Xéo)g_log) — H( } generates the kernel of the morphism H("% — Hl(og )y in-

duced by plog

(r—1)3> the image of H in Hl((;f via the morphism induced by
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1(25); — Htc;g_ ;) induced by
pl((;g_ 13- This completes the proof of the desired surjectivity in the case where
> is the set of all prime numbers.

In the general case, the assertion follows immediately from the assertion

in the case where ¥ is the set of all prime numbers. O

fl;))g<2) generates the kernel of the morphism II

Remark 7.5. Theorem 7.4 can be regarded as a logarithmic analogue of [13],
Remark 1.2.

In the rest of this section, we assume that
> is K-innocuous.

Next, we prove fundamental facts concerning the fundamental groups of
the log configuration schemes.

Lemma 7.6.

(i) The natural morphism Uyy — X(k;)g induces a natural isomorphism

wl(U(T))(E) = Hl(‘;%, where Wl(U(T))(Z) is the quotient of m (Uy) by the
closed normal subgroup

Ker(my (Upy X K*) — m1(Ugy x i K5P))

(#) The natural morphism Uy 2,3y — Xé;f)g X K Pli(zg induces a natural iso-

lo

morphism 7T1(U(,4){172,3})@) 5 H(T% X Gy Hlﬁfg, where Wl(U(T){LZS})(Z) is
the quotient of i (Ugyq1,2,31) by the closed normal subgroup

Ker(m (Upyr,23y Xx K°%) — m(Ugpy1,23) XK Ksep)(z)) :

(117) Let 1 <1 <141 be an integer, and T — X,y a geometric point of X
whose image lies on Uy. Then the cartesian diagram

log — —
Xy Xxs T —— T

l l

log P(ryi log
Xirt1) » X

induces the following exact sequence:

. log
lo —\ (= lo VI8 P(r)i 1o
1— ﬂl(X(ril) XX}:? {E)( ) H(ril) — H(f)g —s 1.
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(iv) For a profinite group I' (respectively, a scheme S), we shall denote by
S(T) (respectively, Se) the classifying site of I', (i.e., the site defined by
considering the category of finite sets equipped with a continuous action
of I' [and coverings given by surjections of such sets]) (respectively, the
étale site of S). Then we have natural morphisms of sites

Upyer — S(m(U$)®) — S(II).
Let A be a finite Hl((;%—module whose order 1s a -integer, and n an
integer. Then the natural morphisms
H™ (T8, A) — H™ (m (U 25)®), A) — HE (U, Fa)
induced by the above morphisms of sites are isomorphisms, where F 4
is the locally constant sheaf on U,y determined by A.

(v) Let A be a finite Hl(?f X ¢, Y8 -module whose order is a S-integer, and
n an integer. Then the natural morphisms of sites

Ury1.23360 — S(Wl(U(lfg{l 9 3})( ) — S(Hl(c;% o TIE%)

induce isomorphisms

n 1o 1o ~ n lo ~ n
H (H(EXGKHIP’g’A) —H (Wl(U(r)g{Lzs})@)aA) - Hét(U(r){1,2,3}a~7:A)

where F 4 is the locally constant sheaf determined by A.

Proof. First, we prove (i). It is immediate that we may assume that K
is separably closed. Let V' — Uy be a Galois covering whose order is a
Y-integer (i.e., a Galois covering determined by an open normal subgroup
of WI(U(IO)g)(E) = Wl(U(log)(E) Y — X( the normalization of X in V,
and 7 — X a geometrlc point over the generic point of an irreducible
component of D¢y = Xy \ Uy € Xy Then it follows from the Galoisness
of V' — Uy and the fact that the order of V' — U,y is prime to p (whenever
p > 2) that the base-change Y Xx,, Spec Ox, 7 — Spec Ox,, 7 Is a tamely
ramified covering (along the unique closed point of Spec O X(rm)- Thus, by
the log purity theorem, Y — X, extends to a ket covering Y'°¢ — X Eo)g In
particular, ﬂl(U(lﬁ)g)(E) — Hl(o‘% is injective, hence an isomorphism.

Next, we prove (ii). By Proposition 3.4, the natural morphism 7T1(X () XK

Po8) — 71y (X é:f;g) X, 1 (PR®) is an isomorphism. Moreover, it is immediate
that we may assume that K is separably closed. Therefore, by taking pro-X

completions, m (X(lff XKIP’II‘;g)(E) -~ (7T1(Xéo)g) X7 (Plgg))(z) ~ Hl(is); % H%F())g' On
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the other hand, by a similar argument to the argument used in the proof of
(i), we obtain an isomorphism 1 (Upqi23)*) = wl(Xé;";g X i P8)*) . This
completes the proof of (ii).

Next, we prove (iii). To prove (iii), we may assume that K is separably
closed field. Moreover, if Y is the set of all prime numbers, then this follows
from [13], Lemma 2.4. Thus, we may assume that > = {[} for a prime
number [ which is invertible in K. By [21], Proposition 2.7, we have an exact
sequence

. 1
via p (c;g)i

1 — mU)® — mUpy)) — mUp) — 1,

where U is the interior of X é?il)

is the quotient of 71 (U(;41)) by the kernel of the natural surjection

Xxéf T, and the profinite group 7r1(U(T+1))(/)

m(U) — m(U)®

Now, by a similar argument to the argument used in the proof of (i), the group

71 (U)®) is naturally isomorphic to (X éfil) X w105 7)), By the exactness

(r)
of
via pl((;g)i

1 e Wl(U)(E) e 7T1(U(T+1)) l) e ’/Tl(U(r)) e 1,

it is enough to show that the outer representation
T (Ugry) — Out(m (U)™)

induced by the above sequence factors through wl(U(r))(E) ([1], Proposition
3). On the other hand, by [13], Lemma 3.1, (i), the kernel of the natural
morphism

Out(m(U)(E)) N Aut((m(X X Ksep)(E))ab)

is pro-2. Therefore, it is enough to show that the natural representation
1 (Upy) — Aut((m (X xg Ksep)(E))aby

induced by the above outer representation factors through (Ug)®). Now
this is immediate. This completes the proof of assertion (iii).

Next, we prove (iv). The assertion that the first morphism is an isomor-
phism follows immediately from (i). Let  — X(,) be a geometric point of
X whose image lies on U(,). Then, by considering the Hochschild-Serre
spectral sequence ([19], Theorem 2.1.5) associated to the exact sequence ob-
tained in (iii)

. log
log VI& P(ryrt1 Hlog 1

r+1) (r)

l— 7 —1I
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(where m = m(X (lfil) X vz T)) and the Leray spectral sequence associated
™)

to the morphism p(),41 |U<r 1> We obtain the following morphism of spectral
sequences:

: 1 1
Eg a — Hp(].—.[(f:‘%, Hq(ﬂ', A)) — HP+Q(H(3§_1), A) f—— EIFH]
E;p,q — Hgt(U(T%Rq(p(r)r-i-l |U(r))*FA) = Hg‘:rq(U(T-&-l)’fA) e El p+q'

Now, by considering the “compactification” of p().4+1 |U(r .

p(r)'r«kl‘U(,,‘_,'_l) Xpr(r+1)r+1‘U(T+l)

Upr+1) Uy Xk X
p(r)r+1|U<T+1)l lprl
Un) — Uy,

it follows that the sheaf R?(p(),41 |U<r))*~7: 4 1is locally constant and con-
structible ([2], Corollary 10.3); moreover, the Il 1)-module (RY(pgyr41 |vr,,
)«Fa)z is naturally isomorphic to H(U, Fa |7) ([2], Theorem 7.3). Therefore,
it is enough to show that the natural morphism

H"(m, A) — Hg (U, Fa v)

1 -
98 | X 4105 T. Thus, one then

(r+1) 7 X
verifies immediately that it is enough to verify that eve(r)y étale cohomology
class of U (with coefficients in F, |y) vanishes upon pull-back to some (con-
nected) finite étale Y-covering V' — U. Moreover, by passing to an appro-
priate U, we may assume that F,4 |y is trivial. Then the vanishing assertion
in question is immediate (respectively, a tautology) for n = 0 (respectively,
n = 1). Moreover, the vanishing assertion in question is immediate for n > 3
by [2], Theorem 9.1. If U is affine, then since HZ (U, F4 |y) vanishes for
n = 2 ([2], Theorem 9.1), the assertion is immediate. If U is proper, then it
is enough to take V' — U so that the degree of V' — U annihilates A (cf.,
e.g., the discussion at the bottom of [2], p. 136).

Finally, we prove (v). The assertion that the first morphism is an isomor-
phism follows from (i). Moreover, by a similar argument to the argument
used in the proof (iv), the second morphism is also an isomorphism. U

Remark 7.7.

is an isomorphism, where U is the interior of X

(i) By Lemma 7.6, (iv), (v), together with a similar argument to the
log

argument used in [15], Lemma 4.3, any invertible sheaf on Xy or
e

X i P satisfies the condition (%) in Proposition 5.23.
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(ii) By (i) and Lemma 7. 6 (iv), (v), the equivalence class of the extension of
H( 7y (respectively, H( % X, I28) associated to an invertible sheaf £ on

Xy (respectively, X X xPj) (see Definition 5.24) depends only on the
étale-theoretic) first Chern class of L |y, (respectively, L |y, . x.vs)-

() () *KUp
In particular, for example, the extension

log
L= A — T e g5 — 1

of Hl(‘;% by A (i.e., the extension of Htc;% associated to (a(’rlﬂ){m})*E(TH){LQ})
is isomorphic to the extension of Hl(‘;% by A associated to the invertible

sheaf (a, +1 y.2y) (P D) (Layzy) (0 # 1, 2) (cf. Lemma 6.12,
(iii)).

Lemma 7.8.

(i) Let r > 2 be an integer and 2 < i < r an integer. Then the following
diagram 1s cartesian:

. log
log VI8P (ryita log
H(r+l){1,2} H(r){l 2}

via a(H_l){l Q}J( lv1a a( ){1 2}

via pl((;gil)i log
IT

log
I (1) -

(r)

(i) Let r > 2 be an integer. Then the following diagram is cartesian:

. log
log V18 Piry1 log
Hoines —— Yepg
Vla a(7+1){2 S}J( J/Vla a< ){1 2}
log via pl(ig—l)l log
1) Iy

(7ii) Let v > 3 be an integer and 3 < i < r an integer. Then the following
diagram is cartesian:

. log
log VI8 P(ryit1 log
H(r+1){2,3} H(r){? 3}

via a(T+1){2 S}J( J/Vla a(r){2 3}

VPG o
IT

log
II (r1) -

(r)
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(iv) Letr > 2 be an integer, and j = 1, 2 or 3. Then the following diagram
1S cartesian:

log via p(T) log
Hoinpesy  — Hopa
via U5 1,2 S}l l“a )
log log  Via pry log
H(T 1) XGx 1T, H(ril).

(v) Let r > 3 be an integer and 2 < i < r — 1 be an integer. Then the
following diagram is cartesian:

. log
V& P(yita

log log
H(r+1){123} 1_[( ){1,2,3}
via bS5 2 3}l lwa (BT

via p(r,Q)iXid

Hlog

log
(1) X Hp

Pplog log log
H(er) XGk HIP’ .

Proof. First, we prove assertion (i). By Remark 7.7, (ii), the extension

via a

log (T){l 2} rylog
L= A=y — ey —1
of Hl(‘;% by A is isomorphic to the extension of Hl((;% associated t0 (p(r)j [y 4101y
V' Loyzy (7 # 1, 2). On the other hand, by the commutativity of the dia-
gram

U(r+1){1,2} O(r41){1,2}
Xy = Denpay ——— Xy

p(rfl)il l lp(rwfl

a(r){l 2} 5(r){1 2}
Xe-1y +—— Dppy — (r)

(cf. the definition of “a(yp1,23” in Definition 6.15) implies that
(a; ! (1)1, 2}) (Peryita |D(T+1){1,2})*£(r){1,2} is naturally isomorphic to

*

P r—l)z( {1 2}) L)1,2y- Therefore, the fiber product of

log
i)

lwa a(?"){l 2}

is isomorphic to the extension of Hl((;% associated to (a(;il){l,z})*(p(r)iﬂ [Doinypo

) Lry1,2y; thus, by Lemma 6.21, (i) (cf. also the argument in Remark 7.7,

(ii)), this fiber product is isomorphic to H(T {12}
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Assertion (ii) follows from a similar argument to the argument used in the
proof of assertion (i), Lemma 6.21, (ii) (cf. also the argument in Remark 7.7,
(ii)), together with the commutativity of the following diagram:

R dr41)(2,3)
Xy ——— Diynpesy — X+

p(r—l)lJ{ J{ lp(rn

(r){1,2}

Or
Xooy ——— Dppy —5

Xy

(cf. the definitions of “a()(1,2y” and “a(q2,3y” in Definition 6.15).
Assertion (iii) follows from a similar argument to the argument used in the

proof of assertion (i), Lemma 6.21, (ii) (cf. also the argument in Remark 7.7,

(ii)), together with the commutativity of the following diagram:

*(r4+1){2,3} 5
~ (r+1){2,3}
Xpy ——— Duynpesy — Xpt

p(r—l)iJ{ l J{p(r)i+1

4r){2,3}

O(r 5
Xpoyy —— Dy —=5

Xy
(cf. the definition of “a(.yf23;” in Definition 6.15).

Assertion (iv) follows from a similar argument to the argument used in the
proof of assertion (i), Lemma 6.21, (iii) (cf. also the argument in Remark 7.7,
(ii)), together with the commutativity of the following diagram:

b
(rnn2s) S(r+1){1,2,3)

Xpo1y Xk P «—————— Diynpesy ——— Xt

l l [

o O (1,2}
X(r-1) —  Dppzy —— X,

where the left-hand vertical arrow is the first projection (cf. the definitions
of “aqyq1,2y” and “bwyf1,2,3y” in Definition 6.15 and Definition 6.18).

Assertion (v) follows from a similar argument to the argument used in the
proof of assertion (i), Lemma 6.21, (iii) (cf. also the argument in Remark 7.7,
(ii)), together with the commutativity of the following diagram:

b(r+1)N{1,2,3}
Xy Xk P —— Dirinypn2s) Xty

p(r72)i><id]}>}( l l J/p(r)i+2

s 8r) (1,23}
Xe—2) Xg Py ——  Dpypezy ——— X

O(r4+1){1,2,3}
_—
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cf. the definition of “br.123” in Definition 6.18). ]
(0){1,2,3}

Lemma 7.9.

(i) Letr > 2 be an integer, and I = {i,i+1} (i = 1, 2). Then the following
diagram s cartesian:

. 1
via pr °%

log (r)i,it1 log
II — 11
(1 (2){1,2}
. log . lo,
via a(rg)’ll lwa a(2§{1,2}
. log
log VI& DL (" 1)
11 Iy .

(r—1)
(i) Let r > 3 be an integer. Then the following diagram is cartesian:

|
via pr °8

log (r)1,2 log
—_
Heyazs e
. 1o, . lo
via b<f§{l’273}l lwa a(2§{1y2}
Hlog Hlog pri Hlog via prl(igfl)l I
(r—2) XGg Up 7 (r—2) X -

Proof. Assertion (i) (respectively assertion (ii)) follows immediately from
Lemma 7.8, (i), (ii) (respectively, (iv)), by induction on 7. O

Definition 7.10.

(i) Let » > 2 be an integer, and I = {i,i + 1} (i = 1, 2). Then, by

Lemma 7.9, (i), the morphism HI)‘;%T) ;= Hl)‘zi_l) induced by al)(}i) ; and

. log log . log . .
the morphism II Xy — 1 Xy (1.2} induced by pry; ;i induces an iso-
log
) ><1_[X HX(Q){LQ}'
. 1 . .. . 1 . 1
phism by ay® ;. For simplicity, we shall write a§; instead of ay? ;

. 1 ~ ..
morphism IT? , — I We shall denote this isomor-

when there is no danger of confusion.

(ii)) Let r > 3 be an integer. Then, by Lemma 7.9, (ii), the morphism

log log log . log .
Xm{1,23} Iy, X, induced by bX(7->{172,3} and the morphism
lOg log

ﬁ
X {1,2,3} HX(2){1,2}

log ~ log log log e e
HX(7~>{17273} — I Xy HX(PQ) XTIy HX(z){L?}' We shall denote this iso

. 1 . . .
induced by pr;;f 12 induces an isomorphism
™ b

morphism by ﬁﬁ?i) (1.03)- For simplicity, we shall write ﬁéi)g{172,3} instead

log . .
of 3 X {1.2,3) when there is no danger of confusion.
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Definition 7.11. Let * = 0, 1 or oo, and D C m;(P'%) the decompositon
group at * € P, (well-defined up to conjugation by an element of 71 (P\2.,)).
Then we shall refer to the quotient of D by the kernel of the composite

D — m (PgF) — Il
as the pro-(X) decomposition group at x € P

Next, we will define the collection of data used in the reconstruction
of the fundamental groups of higher dimensional log configuration schemes
performed in Theorem 7.15 below.

Definition 7.12. Let r > 2 be an integer.

(i) We shall denote by Dx (), or Dx, () the collection of data consisting
of

e the profinite groups

log log log .
HX(Q)’ Hx, HX(g){l,?}’ GK, and HIP’K7

e the morphisms

log pX(vl)Z
e, x (i=1,2),
via 61§g 19
log (2) {12} log
X{1,2} X2

and the morphisms induced by the respective structure morphisms
Ix — Gk,
Hﬁ?}% — G ; and

e the subgroups
1 1
D € 1lpy

determined by the pro-(X) decomposition groups D22 at * € P
(* =0, 1 and o0).

(ii) We shall denote by D, (¥) the collection of data consisting of
e the profinite groups

lo; 1o, lo
HXi) 2<k<r+1), HXi){lz}’ Iy, Gk, and H]Pi :
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e the morphisms

log vi px(kfl)z log
HX(k) Koo, 2<k<r+1,1<i<k),
3
log : aX(Q){l’Q}
—5
X2){1,2} X

and the morphisms induced by the respective structure morphisms
HX B GK7
H}Pﬁ’i — Gk ;

e the composites

lo, —
(an {1,2}) ! . log
| . (r) . via 6X( it
198 xqp, 1198 - Iy - o
X(T') HX X(Q){LZ} X('r+l){172} X(T+1)

(where the morphism implicit in the fiber product Hl)‘éi) — Ilx is

log I
X x),
log -1
(@) 231) via 818
Hlog % log ~ log 1123 og
X(r) Ix X2){1,2} Xer41)12:3} X(r1)

wnere € Imor 1S 1MMplIC1t 1n (§} €I produc — x 1S
(where th phism implicit in the fiber prod t11§i> Iy i

. via pr};? 2
Iy, — " lly) and

1 —
C

via 6198
log log log ~ log Xr1){1,2,3} log
— —
HPKXGKHX(rfl) XHXHX(Q){LQ} HX(T.+1){172,3} X(r+l)
. . o 1
(where the morphism implicit in the fiber product IT )‘;% o, — Ik

via prlog
X(po1)l

: log .
is Iy, IIx); and
e the subgroups
1 1
D C gy

determined by the pro-(X) decomposition groups Z)lf‘;g* at * € PL
(* =0, 1 and o0).
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(iii) We shall denote by D)g((r) (32) the collection of data consisting of

e the profinite groups

19 M (2<k<r), T

log .
Xr41)? X(Q){I,Q}’ HX7 GK7 and H]PK )

e the morphisms

log log
viapy> ofy
G () (7“) log <<
X Iy, (1<i<r+1),
log
log X(k—1)! log
Xo Ko 2<k<r 1<i<k),

via a'%®
X(2){1,2}

log <
)

X(Q){172}

and the morphisms induced by the respective structure morphisms
lx — Gk,
Hlog — Gk
e the composites

log —1
(aX(T){1’2}) via 69

lo lo ~ lo X(T+1){1 2 g
H g % 2 2
IIx 22X {1,2} ’ Xr41){1,2} ’ X(r41)

whnere € 1mor 1S 1MMplIC1t 1n (§} €I produc — x 1S
(where th phism implicit in the fiber prod tHI)‘;i) Iy i

via prlog
log Xt

I, — M),

log -1
(aX(7'){2’3}) via 69108
Hlog Hlog ~ log X(T+1){2 3} g
X {12} Xera1{2:3} X(r41)

wnere € 1mor 1S 1MMplICc1t 1n (§} €I produc — x 1S
(where th phism implicit in the fiber prod tng‘;i) Iy i

via prl;()% 2
My, — 1 x) and

log -1
(BX(T){1’2’3}) via 69108

lo lo ~ Io X 1123} g
I1* s x H X s = s -
Gk -y T Hx HX(2){172} Xer+1{1,2,3} X(r+1)

(where the morphism implicit in the fiber product Hlog 7 Iy

via er(r—l) 1

IIx); and
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e the subgroups
1 1
D C ey
determined by the pro-(X) decomposition groups Qlfég* at * € P}
(* =0, 1 and o).

In the following, let Y be a smooth, proper, geometrically connected curve
of genus gy > 2 over a field L whose (not necessarily positive) characteristic
we denote by pr, and IP’ILOg the log scheme obtained by equipping P} with the
log structure associated to the divisor {0,1,00} C PL. Moreover, we shall
fix a separable closure L*P of L and denote by G, the absolute Galois group
Gal(L*?/L) of L.

Definition 7.13. Let » > 2 be an integer.
(i) We shall refer to isomorphisms

Hl(%% log ~ log
Py HX<2> HY(2) ;

¢?1) (x — Iy ;
¢H1(;g);{172} . T1log 1l .
1) T X(9{1,2} Y2){1,2}°
¢ : Gk — Gp; and

Ba 1

L

Hlog |
o) - 1"
which are compatible with the morphisms and subgroups given in the

definitions of Dx(X) and Dy (Xy) as an isomorphism of Dx(X) with
Dy (Xy).

(ii) We shall refer to isomorphisms
log

Wiy rlog ~ qlo )
o IE L INE (1< k<r1);

12 2 lo lo
. .
(T) ' ‘<(2){172} )(2){1)2} !

gbg) : G — Gy ; and
11 lo ~ lo
(b(rﬂ; : HP}% - l_[]P)Lg
which are compatible with the morphisms and subgroups given in the

definitions of Dx (¥) and Dy, (Xy) as an isomorphism of Dx,,, (%)
with D}/(T)(Zy).
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(iii) We shall refer to isomorphisms

g8 ~
(r+1) . 179 g .
¢(T) : HX(r+1) HY(r+1) '

GILGE  log ~ il
Qb(r)( i H((/)gg) I H((J)S (1 <k< 7")5

lo.
¢9H<2§{1,2} . 1ylog
(r)

T X {12}

¢%§:GKL>GL;and

~

Hlog

Yoy {1,2}

~

log
gug* | log
— Ip;

log
ng(T) e
which are compatible with the morphisms and subgroups given in the
definitions of D)g((r)(E) and D%T)(Ey) as an isomorphism of D%(T)(E)
with DY, (Ey).

Proposition 7.14. Let r > 2 be an integer, and Xx (respectively, Yy) a
set of prime numbers that is innocuous in K (respectively, L). Let qb(gr) :

D)g((T)(EX) = D}gfm(Ey) be an isomorphism. Then the following hold:

(i) There exists an isomorphism Fgl(gf)(gr)) : Dx,,_,,(Xx) = Dy, _,,(Xy).
Moreover, the correspondence

is functorial.
glog
(144) [fqb(xﬂ) induces an isomorphism of the kernel of the morphism H%(TH) —

o . lo . .
HIXiH) induced by inH) (33) with the kernel of the morphism H%’grm
Hlyo(in induced by f;ﬁfﬂ) (X), then there exists an isomorphism Fg(¢(gr)) :

Dx,,,(Xx) = Dy, (Xy). Moreover, the correspondence

by = FO(90)
s functorial.

Proof. First, we prove assertion (i). If we write

- lo. e ngOg
FO (60" g P (1< k<),

lo;
def GTG5 0
r

:¢() s

F9,(69,) "0
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3 def
Fgl(gb(gr))G = CbgG and

1118 def Hlog

FS (60" & 7]

then we obtain an isomorphism F _1(¢(r)) of the desired type.
Next, we prove Assertion (ii). We denote by Ny (respectively, Ny ) the

kernel of the morphism 119 Xosn — 1;% " (respectively, H% " H;(gH)) in-

duced by f)l?(g+1 (X2) (respectively, fy’ log )(E)). Then, by the assumption, the
glog ) ) ) glog
isomorphism ¢ (r+v) H% - = H%TH induces an isomorphism ¢(7f; vy
log

g . .
Nx = Ny. Therefore, the isomorphism ng(( "V induces an isomorphism
glog

(T“ /N : X( +1)/NX = ng/(rH)/NY‘ Since the morphism Hg((TH)
1;% o (respectively, H% vy Hl;ﬁ(g+ ) induced by f;?(gﬂ)( ) (respectively,
log
f;}?in( ) is surjective (Theorem 7.4), we obtain that ¢((T+1>/N g?iﬂ) =
1% . Therefore, if we write
(r+1)
(¢Q ) ( 1 @ gi:il)/N - T8 118
) T X Yirdn)?
lo log
(¢g)Hgdef¢ (k)(1<k‘§7“),
-~ log
Fg<¢% ) (2){1 2} def ¢(gl)_[(2){1 .2} :
F9(67))% = 60, and
5 g def  GTI™
Fg(¢(g )H ¢(7« )
then we obtain an isomorphism F g(gb(r)) of the desired type. O

Theorem 7.15. Let r > 3 be an integer, and Xx (respectively, Yy) a
set of prime numbers that is K-innocuous (respectively, L-innocuous). Let
-1y : DX<,.,1>(ZX) = Dy(ril)(Ey) be an isomorphism. Then there exists an
isomorphism F¢\ (¢—1)) : D%(T)(EX) = D%T.)(Zy) such that

F9,(F9,(¢r—1)) = b1

lo.
and that the isomorphism Ffl(qS(,, 1))%&1) arises from an isomorphism of
graphs of groups of g;?iﬂ)(i]) with Qlog ( ). Moreover, the correspondence

be—1) — F{ 1 (dp-1))

s functorial.
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Proof. First, we define isomorphisms

¢(r (7‘+1){1 2} . Hlogr XHX H HIYO(%) XHY Hlog

X2{1,2} Yio){1,2}?
¢gnl<3g+1>{2,s} LR L LT Hlog d
(r) SxGy Kk Hix g 2,3y iy Xy Hyg 2,3y Al
¢g Htiil){l,zs} . Hlog X & Hlog x Hlo ;} l—Ilog>< Hlog > Hlog
(r) s P NGr 1y T Hx X0 {1,2} PL N GL Y gy Ny g {1,2)

verify the desired compatibilities.
gnlog
Now We show that if we denote by ¢, +DE2 the isomorphism

log

I
(r) (2){1 2} log ~ log log
O ey Se 7 TN, X TIRE 10y = T2 Xy T )
) log

log . log . log e er(T !
(where IT®>  — HX [respectively, Iy, — Iy ] is Iy, — lx [respec-

. via pr ( )
tively, H;(g” IIy]), then, for any 1 <i < r+ 1, the following diagram
commutes:

log
¢f ?(r+1){1,2}
log log "
X

l l

~ log log
_— X
H}/(r) il H§/(2){L2}

log
4’?%
log - log
X MOK
where the left-hand vertical arrow is
log 1 . G log log log
via §
18 s [qios (X 121)” log Mot 2 g via P, X °Ix a1y o
Xy THx X () {1,2} Xr+1{1,2} X(r41) X
and the right-hand vertical arrow is
log —1 . G log log log
o8 5 qios O 2) g, RNy g TR o e ™ iog
Yiry Sy Hy(9) {1,2} Ve {1,2} ’ Yirt1) Yiry ©

Indeed, if 7+ = 1 or 2, then since the vertical arrows in the above diagram
are the first projections (Lemma 7.9, (i)), the above diagram commutes.
Moreover, if i > 3, then since the left-hand vertical arrow (respectively, the
right-hand vertical arrow) in the above diagram is

! .
Vlap)?i 1)%.71><1d log

B X(gy{1,2}

(2)

Hlog log log log

log -1
X1, 11 X1, 11 @xy2y)
Xy X 2 X(5){1,2} X1y TIx X0 {1,2}

—
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via 6%

log X(T){l 2 log
—
Xm{1,2} HX(T)
(respectively,
. log .
via p i Xid lo _
Hlog Hlog Y(ip—1)i-1 D;(‘z){l,g} Hlog Hlog (ay<i71){1,2}) 1
X — X —
Yoy Sy () {1,2} Yooy Ty (5 {1,2}
v1a5
log (T){l 2 log
— 4 11
Yir{1,2} Yir) )

(Lemma 7.8, (i) and 7.9, (i)) the above diagram commutes. By a similar ar-
GII &
gument to the above argument, if we denote by ¢, D13 the isomorphism

log

(r) {1 2} log log ~ log log
X117, 1 — 11 X1, 11
Prlny) Xl ¢o’ xe *mx Ly, 12y Vi X1y Iy 19y
1 ) via prl;;g )2
(where H;f = Ik [respectively, Hy( ;= Iy ] is H;‘? ;o= Iy [respec-

. Og
via er('r) 9

tively, H%?(g” IIy]), then, for any 1 <i < r+ 1, the following diagram

commutes:
log
(H—l){? 3}
log log (T) ~ log
_
HX(T) X HX(Q){L?} HY( ) Xy HY(2){1’2}
log
(T)
®r-1)
log log
X(r) Y("‘) ’
where the left-hand vertical arrow is
log —1 . G log log log
« via §
T8 s [yios L Xeap2® g Xyl I
Xy M Hx X (9 {1,2} Xr41){2,3} X(rt1)
and the right-hand vertical arrow is
log —1 . G log log log
Hlog Hlog (aY(T){2’3}) log Ve 6Y(r+1){2’3} g via py( )’ fy( +1)( )
— —
Yo Ty 1y (o) (1,2} Yorn{2,3} Yrsn) Yo

by Lemma 7.8, (ii), (iii) and 7.9, (i). Moreover, by a similar argument to
gnlog
the above argument, if we denote by qb(r) D23 the isomorphism

log

11
(r—1) (2){1 2} log log log
gb(r 1) ¢(r 1 ¢(r PK Xax HX(r—l) Xy HX(2){172}

Hlog

¢(7~P71) X 4G

PG—1)
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~ log log log
— HPL Xap Hy(r_l) XTIy HY(Q){LQ}

via pricé
X(po1)l
—

Ix

(where Hl)c(’i — IIx [respectively, Ho(‘f — Tly] is HX( i

_1)

via pry(r_l)1

[respectively, Hlog i Iy ]), then, for any 1 < i < r+1, the following

diagram commutes.

1
I 1y (1,2,3)
(r)

log log log ~ log log log
e
I K *G H —1) Xlx HX(2){172} HPL Xa H -1) Xy HY@){LQ}
log
o)
(r-1)
log log
X Yy ?

where the left-hand vertical arrow is

log

log log (IBX(T){1‘2’3})71 log
HJP’Eg XGx HX(rfl) XIlx HX(2){1,2} Xr+1{1,2,3}
G log log
X123 o via Py, X Ixiny®
(r+1) X(r)

and the right-hand vertical arrow is

via

log —1
I Hlog Hlog IBY(T){LQ’B}) log
—
plos XGre Hy ) Xy Uy 2y Yoy {1,2.3}
G log log log
via 6Y(r+1){1 23} ¢ via Pyl i) ) Hlog
(r+1) Y(r)

from Lemma 7.8, (iv), (v) and 7.9, (ii).

By the above arguments, the isomorphisms ng oo . qb(r e , and
g s
b ooz induce an isomorphism

R — ~ e
qb(?") : HX<T+1> Yirin)
such that, for any 1 <7 <r + 1, the following diagram commutes:

log

. ¢((£+1) .
_—
X(r41) HY<T+1>
log log : log log
via it ot (3 >l lwapy( ol )
log
o)
(r-1)
log ~ Hlog
X(r) Yir)
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Therefore, the isomorphisms

. . 119 ~ g .
+1(¢(T 1)) H HX(T+1) 7 HY(r+1>’

def lo. [ lo
FJ€1<¢(T—1)) = ¢(7~ NE Hxi) ’ Hy(i) (1<k<r)
g grge 05512y o ~ . 1lo .
F§y(9—0) 00 £ g O TR ST gy

FO\(¢pr1))¢ & ¢E:L1 . Gx > Gp; and

g 1 def log ~ . Trlos
F—i—l(¢(7‘ ) ¢ 7‘ 1 : Pr I H]P’

L

form an isomorphism FY,(¢¢_1)) of D)g(m (Xx) with Dg,m (3y) of the desired
type. [

A Appendix

In this section, we prove the well-known fact that the category of ket coverings
of a connected locally noetherian fs log scheme is a Galois category; this
implies, in particular, the existence of log fundamental groups.

Definition A.1. Let P be a monoid. We shall say that P is clean if P is an
fs monoid and P* = {0} (P* is the set of invertible elements of P).

For example,
o N7
e the characteristic of an fs log scheme at any geometric point

are clean.

Definition A.2. Let P be a torsion-free fs monoid. We shall denote by
(1/n)P the monoid {p € P* ®z Q | np € Im(P — P* ®; Q)}. Then
(1/n)P is a torsion-free fs monoid. Moreover, if P is clean, then (1/n)P is
S0.

Note that the natural inclusion P — P ®; Q factors through (1/n)P
Thus, we always assume that (1/n)P is a P-monoid via the natural inclusion
P < (1/n)P

Note that the morphism

(1/n)P — (1/n)P
p = np
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factors through P (C (1/n)P). Moreover, the resulting morphism (1/n)P —
P is an isomorphism. We shall denote by (1/n)p the inverse isomorphism

P — (1/n)P.

Proposition A.1. Let P be a torsion-free fs monoid, and () a monoid. Then
for any Kummer morphism f : P — @), there exists a positive number n such

that the natural inclusion P — (1/n)P factors as a composite P EN Q%
(1/n)P. Moreover, then n - (1/n)P C Img. If Q is torsion-free, then g is
injective. In particular, g is Kummer.

Proof. Since f is Kummer, there exists a positive natural number n such
that n - @ C Imf. Thus, it follows from the injectivity of f that for any
q € @, there exists a unique element p, € P such that ng = f(p,). Now
define g : @ — (1/n)P by ¢ — (1/n)p(p,). It is immediate that ¢ is a
homomorphism of monoids and go f(p) = p for any p € P. Moreover, for any
(1/n)p(p) € (1/n)P,n((1/n)p(p)) = p = gof(p); hence n((1/n)p(p)) € Img.

It remains to show that if ) is torsion-free, then ¢ is Kummer. If g(q) =
g(¢"), then ng = nq’. Since @ is torsion-free, ¢ = ¢'; thus, g is injective. [

Definition A.3. Let P be a monoid. We shall refer to an element p € P as
wrreducible if p satisfies the following:
If p=p1 + p2, then pr =0 or p, = 0.

Proposition A.2. Let P be a clean monoid.

(i) The set of irreducible elements is the smallest set which generates P.
In particular, the set is finite.

(i) The group of automorphisms of P is finite.

Proof. First, we prove assertion (i). It follows immediately from the defini-
tion of irreducible elements that the set of irreducible elements is contained
in any subset of P which generates P. Let {p1,---,p,} C P be a minimal set
which generates P. Assume p; is not irreducible. Then there exist natural
numbers n;, - - -, n, such that p;, = nyp1+---+n,p,, and 2 <n; +---+n,. If
n; # 0, then nyp; +- -+ (n;—1)p;+- - - +n,.p, = 0. However, since P* = {0},
we obtain a contradiction. Thus, n, = 0. However, since we are operating
under the assumption that {py,---,p,.} C P is a minimal set which generates
P, we obtain a contradiction. Therefore, p; is irreducible. This complete the
proof of assertion (i).

Next, we prove assertion (ii). Since any automorphism of P preserves
the irreducible elements of P, we obtain a natural homomorphism from the
group of automorphisms of P to the group of permutations of the set of
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irreducible elements of P. Since the set of irreducible elements of P generates
P by (i), this homomorphism is injective. On the other hand, since the set
of irreducible elements of P is finite by (i), we conclude that the group of
automorphism of P is also finite. O

Proposition A.3.

(i) Let L be a torsion-free finitely generated abelian group, and P a finitely
generated submonoid of L. Then the submonoid P = {l € L | nl € P
for some n € N} of L is finitely generated.

(ii) Let P be a torsion-free fs monoid, and Q) a torsion-free saturated monoid.
Let f: P — @ be a Kummer morphism. Then Q) is finitely generated.

Proof. First we prove assertion (i). Let us fix elements pq,---,p,. € P of P

which generate P. We denote by Cp the cone in Ly e ®z R generated
by P (ie., Cp = {eip1 + -+ ¢pr € Lr | ¢; € Rxo}). Then it is immediate

that P C Cp N L (in Lg). Therefore, for any [ € P there exist n; € N and
¢; € [0,1) N Q such that

l=(mi+a) p+-(n.+c) pr.

Here, since the set S = {cipy + ---¢,p, € P | ¢; € [0,1)} is contained in
the intersection of L and a bounded subset of C'p, S is finite. Moreover, any
element of P is written by a sum of an element of P and an element of S;
therefore, since P is generated by p1, - - -, p, and this finite set S, P is finitely
generated.

Next, we prove assertion (ii). By Proposition A.1, the natural inclusion

P — (1/n)P factors as a composite P EN Q 2 (1/n)P of f and a Kummer
morphism g. By taking the groups associated to P, () and (1/n)P, we obtain
the following commutative diagram:

S J — 5 (1/n)P

Lo l

pe I Qe T (1/n)Per.
Note that the all arrows in the above diagram are injective, and that (%P
is a torsion-free finitely generated abelian group. Now we denote by P the
submonoid {g € Q# | ng € P for some n € N} of Q#. I claim that P = Q.
Indeed, if p € P, then p € Q% and np € P C Q. By the saturatedness of Q
implies that p € Q. If ¢ € Q, then by the Kummerness of f, ¢ € P; therefore
P = Q. Thus, by (i), P = Q is finitely generated. O
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Proposition A.4. Let X'° be an fs log scheme whose underlying scheme
X is the spectrum of a strictly henselian local ring A. Let us fiz a global
clean chart P — Ox (see Definition 2.3). Then any connected ket covering
of X'°¢ is of the form (X ®zp) Z|Q])"*® — X'°¢ where, P — Q is a Kummer
morphism of fs monoids such that nQQ C Im(P — Q) for some integer n
invertible on X, and the log structure of (X ®zp) Z[Q])'*¢ is induced by the
natural morphism Q — Ox ®gzp) Z|Q]. Conversely, if Y'°8 — X'°¢ has this
form, then it is a ket covering.

Proof. The last assertion is immediate from the definition. Let Y% — Xlog
be a connected ket covering. Since ¥ — X is finite, YV is affine. Let us
write Y = Spec B. Since A — B is finite and Y is connected, B is a strictly
henselian local ring. By [10], Theorem 3.5, there exists an fs chart @ — B

of Y8 and a chart
Spec B —— Spec A

Spec Z[Q)] —— Spec Z[P]
of X' — Y'°8 guch that the following conditions hold:

(i) P — @ is injective, and the cokernel of P8 — (&P is finite and of order
n invertible on A.

(ii) Spec B — Spec A ®zp) Z[Q)] is étale.
(iii) P — Q/(Q — B)~Y(B*) is Kummer.

By conditions (i) and (iii), P — @ is Kummer, and satisfies n@) C
Im(P — Q).

Since Z[P] — Z[Q)] is finite, A ®zp Z[Q)] is a strictly henselian local ring.
Thus, it follows from the fact that A ®zp) Z[Q] — B is finite étale that
A ®gp) Z|Q)] is isomorphic to B. O

Proposition A.5. Let X, Y and Z be locally noetherian fs log schemes, and
flos . Xlos  ylog gnd gloe : Yloo — 7198 morphisms, write g'°% o fl°8 = hlog,
Then if g'°¢ and h'°® are ket coverings, then so is f°8.

Proof. The finiteness of f is clear. For the log étaleness of f1°¢, we consider
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the following commutative diagram

/
1
T’ log S5 Xlog

jlog l l flog

lo slos lo
Tlos =%, ylog

lglog

lo
208

where T 108 s T'™® is an exact closed immersion defined by a quasi-coherent
nilpotent Or-ideal. Since h'°8 is log étale, there exists ¢°8 : T'%¢ — X'°8 such
that s'1°8 = 18 0§18 and ¢'°% o 5198 = Alo8 o t1o8(= glog o flo8 o {1%8), Now gl°#
is log étale; thus, 58 = f1°8 o ¢!°¢. Therefore f'°# is log étale.

For the Kummerness of f°8, we take a geometric point z — X of X. Let
us write P = (Mx/OX)z, @ = (My/O5 )5y and R = (Mz/O% ). Thus,
we obtain the following diagram:

R o™ p

Assume that (f1°8)*(q) = (f°¢)*(¢'). Since it follows from the Kummer-
ness of (¢'°8)* that there exsit a positive integer n and elements 7, ' € R
such that (¢'°®)*(r) = nqg and (¢'°8)*(r') = nq¢/, this implies that (h'°®)*(r) =
(R'°&)*(r"). Thus, the injectivity of (h!°¢)* and the torsion-freeness of @ im-
ply that ¢ = ¢’. Hence (f!°8)* is injective. Next, we take p € P. Then it
follows from the Kummerness of h'°8 that there exists an integer n such that
np € Im (h!°8)*, hence np € Im (f'°8)*. Therefore, f* is Kummer. O

Proposition A.6. A ket covering is an open and closed map. In particular,
a connected ket covering over a connected fs log scheme is a surjection.

Proof. This follows from Proposition A.4 and [8], Proposition 3.2. L

Proposition A.7. Let X'¢ and Y'°% be connected fs log schemes whose

underlying schemes are the spectra of strictly henselian local Tings, and f'°& :
X8 — Y& g ket covering. If the ket covering f'°¢ : X' — Y% has q
section, then f°8 is an isomorphism.

Proof. This follows immediately from Proposition A.4. O

Proposition A.8. Let X'°¢ be an fs log scheme whose underlying scheme
X is the spectrum of a strictly henselian local ring A whose residue field is
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k, and (Speck)'® = 76 — X!¢ q strict geometric point over a geometric
point of X for which the tmage of the underlying morphism of schemes is
the closed point of X. Then T — X'°¢ induces an equivalence between the
category of ket coverings of X'°® and the category of ket coverings of T'°8.

Proof. 1t follows immediately from Proposition A.4 that the functor in ques-
tion is essentially surjective, and full. Thus, we prove that the functor is
faithful. Let Y;°® — X% and Y, — X'°% be ket coverings. Our claim is
that the morphism

log /1 1 _ 1 _
¢ : Hom yios (Y%, Y,%8) — Homios (V7% X y10s T8, Y3 X y10x T'°8)

is injective. To show the injectivety of ¢, we consider morphisms f'°8, ¢'°8 :
V1% — Y, over X8 which satisfy f1°8 X yios T'% = 18 X yioe T : Y18 X y10s
%% — V)% Xy 2°. Then, by Proposition A.5, f°¢ and ¢'% are ket
coverings. It is immediate that we may assume that Y; and Y5 are connected.
Now write

def . 1 1 1
Fflog —= ldY11°g X ylog flOg . Ylog N Ylog X ylog }/205;

def . 1 1 1
Fglog = ldyllog X ytog glog . Y'log _ leog X xlog }/205
Then since I dr tions of the projection ¥, Y, — Y[
en since I oz and I jioe are sections of the projection Y% X x10e Y57 — Y| %,
and the projection is a ket covering (Proposition A.5), I'jiz (respectively,

. . . 1 .

['jioz) determines an isomorphism of Y;* with a connected component of
1 1 o . _

Y, %8 x x Y5 (Proposition A6 and A.7). Thus, since f1°8 X 105 T8 = g% X y10

7'°8 we obtain f1°¢ = g'°8. O

Proposition A.9. Let X8 be an fs log scheme, fl°% : Y18 — X198 ¢ ket cov-
ering, and Ux C X (respectively, Uy CY) the interior of X'°¢ (respectively,
Y8). Then the projection Y18 X yioe Ux — Y% induces an isomorphism
YlOg X xlog UX ~ Uy.

Proof. Since Ux — X'°8 is a strict open immersion, Y'°8 X yis Ux — Y8 is
an open immersion. Now since the log structure of Uy is trivial, the Kum-
merness of Y1°% x yi: Ux — Ux implies that the log structure of Y1°% X yios Ux
is trivial. Thus, the open immersion Y'°¢ x yi: Uy — Y% factors through
Uy. On the other hand, since the Kummerness of f'°® implies that f°¢ |,
factors through Uy, we obtaine that Y18 x yi, Uy ~ Uy O

Proposition A.10. Let X' be a log regular, quasi-compact fs log scheme
and Ux C X be the interior of X'°. Then the morphism Ux — X'°® induces
an equivalence of the category of ket coverings of X'°8 and the category of
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tamely ramified covering of Ux along Dx = X \ Ux. (We shall say that
V' — Ux is a tamely ramified covering along Dx, if V. — Ux 1is finite étale,
and at all points x of Dx with dim Ox , = 1, the normalization of X in V
is tamely ramified over x.)

Proof. First, we prove that the morphism Uy < X' induces a functor
from the category of ket coverings of X'°% to the category of tamely ramified
covering of Ux along Dx. Let Y'°¢ — X% be a connected ket covering and
T — X a geometric point of X. It follows from the Kummerness of Y& —
X8 that if the log structure of X'°8 at 7 is trivial, then the log structure
of Y'°¢ at any geometric points over T is trivial. Therefore, since a log étale
morphism from a log scheme equipped with the trivial log structure to a log
scheme equipped with the trivial log structure is étale, Y'°8 X yioe Ux — Uy
is finite étale. Next, we will prove the tameness of Y'°¢ x v, Ux — Ux. By
base-changing, we may assume that X is the spectrum of a strictly henselian
discrete valuation ring. Then it follows immediately from Proposition A.4
that Y12 — X'¢ is tamely ramified. This completes the proof of that the
morphism Uy < X% induces a functor from the category of ket coverings
of X' to the category of tamely ramified covering of Ux along Dyx.

Next, we show that this functor is fully faithful. Let Y]°® — X'"& and
Y,%® — X2 be ket coverings. Our claim is that the morphism

gb . Homxlog(}/llog, }/210g) e HomUX (}/fogXXlogUX7 )éogXXlogUX> - HOIIlUX (UY17 UYQ)

is an isomorphism, where Uy, (respectively, Uy,) is the interior of Y; (re-
spectively, Y;). The last equation follows from Proposition A.9. To show
the injectivity of ¢, let f1°%, g8 : Y] — Y,°% be ket coverings over X°8
such that f¢ [y, = ¢'% |y, : Uy, — Uy,. Now since X'*® is log regular,
and Y[ — X" and Y;% — X2 are log étale, Y{°¢ Y, are log regu-
lar ([11], Theorem 8.2). Therefore, Uy, C Y) (respectively, Uy, C Y3) is
dense open subset of ) (respectively, Y3). Thus, f' [y, = ¢'® |y, implies

f = g. Now since Yllog (respectively, Y;Cg) is log regular, the log structure
of Y% (respectively, ;%) is Oy, N (Uy, — Y1).0p,, — Oy, (respecrively,
Oy, N (Uy, = Y2).0p, = Oy,). Therefore, a morphism from Y; to Y3 of
log schemes determined by the underlying morphism of schemes. In other
words, f = ¢ implies f!°¢ = ¢'°%; we thus conclude that ¢ is injective. Next,
to show the surjectivity of ¢, Let fy : Uy, — Uy, be a morphism over Ux.
Since the normalization of X in Uy, (respecrively, Uy,) is Y7 (respecrively,
Y5), the morphism fi; extends to a morphism f : Y3 — Y;. By an argu-
ment similar to the argument used to prove the injectivity of ¢, a morphism
from Yllog to Yglog of log schemes determined by the underlying morphism of
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schemes. Therefore f:Y; — Y5 extends to a morphism f1°8 : V%% — Y,°% of
log schemes. We thus conclude that ¢ is surjective.

Finally, we show the essential surjectivity of this functor. Let V' — Ux be
a tamely ramified covering along Dx. Then, by the log purity theorem in [14],
this covering extends to a ket covering over X'°¢. (See Remark 2.10.) O

Proposition A.11. Let X'°¢ and Y'°% be log schemes, and f'°¢, g'° : X8 —
Y'°¢ morphisms of log schemes such that f = g. Let T — X be a geometric
point of X (we denote the image by x € X). If there exist a log scheme X '8,
a morphism h'°¢ : X8 — X8 gnd o geometric point T — X' (we denote
the image by x' € X') for which the image of the composite T — X' X s
x such that the following conditions hold, then f'°% coincides with ¢'°% on an
¢tale neighborhood of T — X :

(i) h is flat at 2’ € X'.

(i1) The homomorphism (Mx/O%)z — (Mx://O% )z induced by h'°% is
mjective.

(i11) flo2 o8 coincides with g'° o h1°8 on an étale neighborhood of T — X'.

Proof. We denote by y — Y the geometric point determined by the com-

posite * — X =Y. Then it is immediate that it is enough to show that
the homomorphism My, — Mx; induced by f°¢ coincides with the ho-
momorphism My — Mz induced by ¢'°¢. Now, in the following diagram
induced by h'°s

kg —— Mxz —— (Mx/O%)z

l l l

O;{’,f’ _— MX’,E, e (MX//O;(’)fla

since the left-hand vertical arrow is injective (by assumption (i)), and the
right-hand vertical arrow is injective (by assumption (ii)), we obtain that
the homomorphism Mx z — Mx & is injective. Therefore, by assumption
(iii), the homomorphism My; — Mxz induced by f°¢ coincides with the
homomorphism My — Mz induced by g'°8. O

Proposition A.12. A strict étale surjection is a strict epimorphism in the
category of log schemes.

Proof. Let X8 Y& and Z'°¢ be log schemes, f'8 : Y18 — X8 g strict,
étale surjection, and pllog (respectively, pg’g) the 1-st (respectively, 2-nd) pro-

jection Y198 x yie Y198 — Y198 Note that our claims are
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(i) the morphism Hom(X'"8 Z°¢) — Hom(Y'°8, Z!°¢) induced by f°8 is
injective; and

(ii) if a morphism g% : Y'& — 72 gatisfies the equality g8 o p*® =
g% 0 pi8 then ¢'°% extends to a morphism X'08 — Zlos.

(i) follows immediately from Proposition A.11. (ii) may be verified as follows:
Since ¢'°¢ o pllOg = g'°¢o pl;g7 we obtain that gop; = gop,. Since a strict étale
morphism is a strict epimorphism in the category of schemes, it thus follows
that there exists an extension g : X — Z of g (i.e.,, go f = §). Moreover,
since My is a sheaf on the étale site of X, and Y& — X% strict étale
surjection, it thus follows from the fact that the morphism (gop;)* Mz — M
(where M is the sheaf of monoids which determines the log structure of
Y198 x y10s Y1) coincides with the morphism (g o py) '*Myz — M that the
morphism ¢~ Mz — My extends to a morphism §~'M, — Myx. This
completes the proof of (ii). O

Proposition A.13. Let X8 be a locally noetherian fs log scheme. Then
for a morphism f°¢ in the category of ket coverings of X'°8, f'°¢ is a strict
epimorphism in the category of ket coverings of X'°8 if and only if f'°¢ is a
surjection.

Proof. Tt is immediate that if f1°¢ is not surjective, then f°¢ is not a strict
epimorphism in the category of ket coverings of X'°¢. Thus, assume f'°% is
surjective.

(Step 1) The case where X is the spectrum of a strictly henselian ring.

Then, by Proposition A.8, by base-changing, we may assume that X is the
spectrum of a separably closed field k. Let us fix a clean chart P — k of X8
Now we denote by X'°¢ the log scheme obtained by equipping Spec k[[P]]
with the log structure defined by the natural morphism P — k[[P]]. Then
the following hold:

o X8 is log regular ([11], Theorem 3.1)

e The natural surjection k[[P]] — k[[P]]/m ~ k (where m C k[[P]] is the
maximal ideal of k[[P]]) induces the strict morphism X8 — X8,

e The strict morphism X log _, X2 induces a natural equivalence be-
tween Két(X'°8) and Két(X'°8) (Proposition A.8).

Thus, by replacing X'°¢ by X8 we may assume that X'°¢ is log regular.
Moreover, if we denote by Ux C X the interior of X8, then the strict
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morphism Uy — X'°8 induces a natural equivalence between Két(X'°8) and
Két(Ux) (Proposition A.10). In Két(Ux), a surjection is faithfully flat, thus,
strict eqimorphim (in the category of ket coverings of Uy).

(Step 2) The general case.

Let V{8 — Xlg v, — X8 and 78 — X% ket coverings, f°% :
Y% — Y,% a surjection over IX log " and 1pllog (1relspectively7 PYE) the 1-st
(respectively, 2-nd) projection Y7 Xy10s Y17 — Y. Note that our claims

2
are

(i) the morphism Hom yig (Y,%, Z'°) — Hom yioe (Y%, Z'°%) induced by
flo8 is injective;

(ii) if a morphism ¢'°8 : Y/ — Z'2 gatisfies the equality ¢'°8 o p\*® =
g% 0 p8 then ¢'°% extends to a morphism Y,% — Z'°%.

First, we prove assertion (i). Let ¢\ and g5 : Y,°® — Z'°¢ be morphisms

over X'°¢ such that ¢i°® o f1o5 = g} o fl°8 Then, by Step 1, there exists a
strict étale surjection X 18 — X'& guch that the morphism glllog obtained
by base-changing of ¢\°® by X'1°6 — X'°& coincides with the morphism g,'°
obtained by base-changing of gi® by X8 — X'°¢ On the other hand, since
a strict étale surjection is a strict epimorphism (by Proposition A.12), we
obtain that ¢\°® = g%, This completes the proof of assertion (i).

Next, we prove assertion (ii). By Step 1, there exists a strict étale surjec-
tion X '1°¢ — X'°¢ such that the morphism ¢ '8 obtained by base-changing of

’ . ~ log "og def + 1 /
g'°8 by X 18 — X198 extends to a morphism ¢/ =~ : Y, % = V5% X y10 X 18 —

7'log X 7log . X8 Now if we denote by ¢ (respectively, ¢i®) the 1-st
(respectively, 2-nd) projection Y, '*® Xyoe ¥ 8 _ ¥, '8 then the composite

log ~ log
1 "log 4 "log ¢’ ’
D R L /i
2

coincides with the composite

log ~ log
"1 "1 a2 "log 9 /

Y, 1% X0 Yy 08 2 Y, 08 L 70108 o8

2

, ~log ,
Therefore, by Proposition A.12, the composite Y, ' — 2108 — 71°% extends
to a morphism §'°% : Y)°% — Z¢ (note that Y,'% — Y,° is a strict étale
surjection). This complete the proof of assertion (ii). O
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Theorem A.1. Let X'°¢ be a connected locally noetherian fs log scheme and
78 — X198 q log geometric point of X'°8. For the category Két(X'8) of ket
coverings of X'°¢ and X'°¢-morphisms, we denote by F = Fpos the functor

Két(Xle)  — (the category of finite sets)
(Yle — X&) s {log geometric points of Y8 over 718 — X8}
Then (Két(X'9#), F) is a Galois category.
Note that, by Proposition A.4, the set
{log geometric points of Y'°® over 7'°¢ — X'°8}

is finite. We must verify that (Két(X'°#), F') satisfies the conditions (G, ), ..., (Gs)
and (Gg) in definition of Galois category in [7], Exposé V, 4.

(G1) Két(X'®) has a final object and there exists a fiber product in
Két(X's),

Proof. It is immediate that X'°® is a final object of Két(X'®). Next, we will
prove the existence of a fiber product. Since any object Y& of Két(X'"®)
is a fs log scheme, for the existence of a fiber product, it is enough to show
that finiteness, log étaleness and Kummerness is stable under composition
and base-change. The assertion for finiteness is classical, the assertion for
log étaleness and Kummerness follows immediately from the definition. [

(Gs) There exists a finite sum in Két(X'°8). Moreover, if fl°& : Ylos — Xlos
is an object of Két(X' %) and G is a finite group of automorphisms of Y108
in Két(X'8), then there exists a quotient Y'°8 /G of Y!°¢ by G in Két(X!8),
and the natural morphism Y'°¢ — Y8/ is a strict epimorphism.

Proof. The existence of finite sums is immediate by the definition of a ket cov-
ering. In the following, we prove the existence of quotients. By Lemma 5.20,
by base-changing, we may assume that the underlying scheme X of X'°# is
the spectrum of a strictly henselian local ring. Moreover, by a similar argu-
ment to the argument used in the proof of Proposition A.13, (Step 1), we
may assume that there exists a separably closed field k and a clean monoid P
such that the underlying scheme X of X'°¢ is the spectrum of k[[P]], and the
log structure of X'°¢ is the log structure induced by the natural morphism
P — E[[P]]. Moreover, by taking a connected component of Y and the stabi-
lizer of the connected component with respect to the action of G on the set
of connected components of Y, we may assume that Y is connected. Then,
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by Proposition A .4, there exists a clean monoid @), and a Kummer morphism
u : P — @ such that Y is isomorphic to Spec (k[[P]] ®zp) Z[Q)]) ~ Spec k[[Q]]
(E[[P]] ®zip Z]Q)] ~ K[[Q]] follows from the Kummerness of u), the log struc-
ture of Y'°8 is the log structure induced by the natural morphism Q — k[[Q]]
and the morphism Y'°¢ — X'°8 is determined by u. Now we have a following
commutative diagram:

P —— Mx(X)/K[IP]" —— Mx(X) — K{[P]
o Qo My()T = K[Q°
Q —— My(M)/MIQ" —— My(Y) —— Q]

where O % My (V)% /(a%) ([Q)I°)"

Let @ — My (Y) be a clean chart of Y'°¢. Then the chart induces a
(non-canonical) splitting k[[Q]]* & Q — My (Y). Since the action of G on
Y98 is over X% and u : P — @ is Kummer, for any g € G, there exists
( ) € HQII" such that (f,¢) = (oy(q) - £,q) ((f,0) € KQI" ® =

My (Y)); therefore, for (f,q) € My(Y), (f,q) € My(Y)C if and only if
=0,(q) - f? for any g € G. Note that it is immediate that

Q — K[Q]
q = Ug(Q)

is a homomorphism; moreover, since o,(p) = 1 for any P, we obtain that
o4(q) is a root of 1 € E[[Q]].
Now I claim that

My (V) ={(f.0) | f € (K[[QI"), a4(q) =1 for any g € G},

i.e., if we denote by Q¢! the submonoid of Q) of elements which satisfy o.(q) =
1 for any g € G, then My (V)¢ = (k[[Q]]* )G@Q (¥, and the natural surjection
My (Y)¢ — @ induces an isomorphism QI 5 Q Indeed, since k[[Q]] is a
local k-algebra whose residue field is k, we have a split exact sequence:

0—m—k[[Q]] — k—0,

where m is the maximal ideal of k[[Q]]; i.e., m & k = K[[Q]]. Thus, for
f € Ek[lQ]]*, there exists t € m and a € k such that f = ¢+ a. Let g be an
element of G. Then since the action of G on Y% is over X'°¢, f9 = t9 4 q
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and t9 € m. If (f,q) € My (Y)Y, then f9 = o,(q) - f. Thus, t9 +a =
o4(q) - (a + t); therefore, o,(q) = 1 and t9 = t. (Here we use the fact
that since o4(q) is a root of 1 € k[[Q]]; in particular, o,(q) € k*.) This
completes the proof of the above claim. In particular, My (Y)% — k[[Q]]¢
is a log structure on Spec k[[Q]]¢ (i.e., (a®)~1(K[[Q]]%)* = (K[[Q]]%)*), whose
characteristic Q [= Q'] is a submonoid of @ (thus, Q is integral and torsion-
free) and the log structure coincides with the log structure induced by the
morphism ul® : QI — My (V)¢ — E[[Q]]®. Now we shall denote by Yo
the log scheme obtained by equipping Spec k[[Q]] with this log structure
My (V)¢ — [[Q]]¢. Note that it follows from the definition of Q¢! that Q¢!
is saturated. Therefore, by Proposition A.3, (ii), Q¢! is fs; thus, Y'log is an
fs log scheme.

Next, I claim that the (clean) chart ul® : QI — My (V)¢ — k[[Q]]¢
obtained as above induces an isomorphism v : K[[QI%]] = K[[Q]]®. Since
Q%! and @ are Kummer over P, to show this, it is enough to show that the
natural morphism v’ : k[QI%] — k[Q]¢, which satisfies v'®ypk[[P]] = v, is an
isomorphism. Indeed, the claim may be verified as follows: As a k-module,
E[QY]] (respectively, k[Q]) is freely generated by ¢’ € Q!¢ (respectively,
q € ). On the other hand, by the definition of o,, for ¢ € k[Q)], we obtain
that ¢9 = 04(q) - ¢. Then the above claim follows from this observation.

Therefore, we conclude that the fs log scheme Y''°¢ is the log scheme
obtained by equipping Spec k[[Q!?)]] with the log structure induced by the
natural morphism Q¢! — k[[Q!®]]]. In particular, by Proposition A.4,
Y'log . Xlg i a ket covering. Moreover, by the construction of Y18,
it is immediate that the ket covering Y 18 — X8 is a quotient of the action
of G on the ket covering Y'°® — X8 in Két(X™¢). Finally, by Proposition
A.13, the natural morphism Y18 — Y18 /G is strict epimorphism. 0

(G3) Any morphism f8 : Y]°® — Y, in Két(X'°%) admits a factorization

"log ’ log ’ . . . . :
Yllog = Y21°g EAN 1/21°g, where f'1°¢ is a lstrlctly epimorphism and ¢'°% is a
monomorphism. Moreover, then Y, =Y, 81 7! (disjoint union) for some
object 798 of Két(X'"#).

Proof. This follows immediately from Proposition A.6 and A.13. O
(G4) F is left exact.

Proof. Let Y1°8 be an object of Két(X' %) and 7 — Y a geometric point of
Y. Then any log geometric point '8 of Y'°¢ over the geometric point 7 — Y
factors through a reduced covering point yllog — Y& over the geometric
point § — Y. Thus, since a fiber product in Két(X'°®) is a fiber product in
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the category of fs log schemes and F(Y'°®) is finite, /' commutes with the
operation of taking fiber product. O

(Gs) F commutes with the operation of taking a finite sum and the quo-
tient by a action of a finite group (cf, (G2)). Moreover, if f1°8 is a strict
epimorphism, then F'(f°%) is surjective.

Proof. The assertion for a finite sum is immediate. The assertion for quotient
follows from a similar argument to the argument used in the proof of (Gy).
The assertion for a strict epimorphism follows from Proposition A.13 and the
definition of a log geometric point. O

(Gs) If f1°% is a morphism in Két(X'#), then f°% is an isomorphism if
and only if F'(f'°®) is an isomorphism.

Proof. For this assertion, by base-changing, we may assume that X is the
spectrum of a strictly henselian local ring, and the image of the underlying
morphism of scheme of the log geometric point 7'°¢ — X% is a closed point
of X. Then the assertion follows immediately from Proposition A.4. ]

Theorem A.2. Let X' and Y'°8 be connected locally noetherian fs log
schemes, and f°6 : X8 — Y& o morphism of log schemes. Then the

functor

log\*
Két(yles) L2 Két(X1°5)

(Y’ log _ Ylog) N (Y’ log X ylog Xlog N Xlog)
induced by f'°8 is exact. In particular, (by [7], Exposé V, Corollaire 6.2) for
any log geometric point 7% — X8 of X'¢ the functor (f°%)* induces a
morphism
7Tl(flog) ) (Xlog’ jlog) — (Ylog’ flog(i,log» 7
where f1°8(31°8) — Y8 s the log geometric point obtained as the composite

loa
jjlog _ Xlog f_>0g Ylog'

Proof. Let 7'°¢ — X' be a log geometric point of X'°¢. Then, by [7], Exposé
V., Proposition 6.1, it is enough to show that the composite of functor

, log (flog)* ’ log Fa'ch)g .
Két(Y'?) — Két(X'°®) = (the category of finite sets)

is a fundamental functor over Két(Y'°¢). Now, by the definitions of (f!°¢)*
and Fjuee, for any ket covering Y18 — Y18 FLi, o (flo8)*(Y'loe — ylog) =
Fflog(jlog)(yl log — y1o8) ie., Fyoso (flo8)* = Fpios(z105). By Theorem A.1, the
functor F' flog (los) 1S & fundamental functor over Két(Ylog). This completes
the proof of Thereom A.2. O
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