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Abstract. In this paper, we study some group-theoretic constructions as-
sociated to arithmetic fundamental groups of hyperbolic curves over finite
fields. One of the main results of this paper asserts that any Frobenius-
preserving isomorphism between the geometrically pro-l fundamental groups
of hyperbolic curves with one given point removed induces an isomorphism
between the geometrically pro-l fundamental groups of the hyperbolic curves
obtained by removing other points. Finally, we apply this result to obtain
results concerning certain cuspidalization problems for fundamental groups
of (not necessarily proper) hyperbolic curves over finite fields.
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Introduction

In the present paper, we consider the following problem:

Problem.
Suppose that we are given a hyperbolic curve over a finite field in which l is

invertible. Then, given the geometrically pro-l fundamental group of the curve
obtained by removing a specific point from this hyperbolic curve, is it possible
to reconstruct the geometrically pro-l fundamental groups of the curves obtained
by removing other points which vary “continuously” in a suitable sense?

1



2 Yasuhiro Wakabayashi

x

‘varying x’

group-
theoretic

reconstruction!

We shall formulate the above problem mathematically.
Let l be a prime number, X a hyperbolic curve over a finite field K in which l
is invertible. For n a positive integer, we denote by Xn the n-th configuration
space associated to X (hence, X1 = X), and write ΠXn for the geometrically
pro-l fundamental group of X. Here, the fiber of X2 → X over a K-rational
point x ∈ X may be naturally identified with X\{x}, so we may regard X2 → X
as a continuous family of cuspidalizations of X. Therefore, the above problem
can be formulated as follows (where Y denotes a hyperbolic curve over a finite
field L in which l is also invertible, and we use similar notations for Y to the
notations used for X):

Theorem A.
Let

α : ΠX\{x}
∼−→ ΠY \{y}

be a Frobenius-preserving isomorphism [cf. Definition 3.5] which maps the de-
composition group Dx of x (well-defined up to ΠX\{x}-conjugacy) onto the de-
composition group Dy of y (well-defined up to ΠY \{y}-conjugacy). Here, we shall

denote by α : ΠX
∼→ ΠY (resp., Dx, Dy) the isomorphism (resp., the decomposi-

tion group of x in ΠX , the decomposition group of y in ΠY ) obtained by passing
to the quotients ΠX\{x} � ΠX , ΠY \{y} � ΠY .

Then there exists a unique isomorphism

α2 : ΠX2

∼−→ ΠY2

which is compatible with the natural switching automorphisms up to an inner
automorphism and fits into a commutative diagram

ΠX2

α2−−−→ ΠY2⏐⏐�
⏐⏐�

ΠX
α−−−→ ΠY

that induces α by restricting α2 to the inverse images (via the vertical arrows)
of Dx and Dy.

In particular, if x′ (resp., y′) is a K-rational point of X (resp., an L-rational
point of Y ), and we assume that the decomposition groups of x′, y′ correspond
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via α, then we have an isomorphism

α′ : ΠX\{x′}
∼−→ ΠY \{y′}

such that α and α′ induce the same isomorphism ΠX
∼→ ΠY .

In Section 1, we recall the notion of the (log) configuration space associ-
ated to a hyperbolic curve and review group-theoretic properties of the various
fundamental groups associated to such spaces. In particular, the splitting de-
termined by the Frobenius action on the pro-l étale fundamental group ΔXn of
Xn⊗K K gives rise to an explicit description of the graded Lie algebra obtained
by considering the weight filtration on ΔXn (cf. Definition 1.6). This explicit
description will play an essential role in the proof of Theorem A.

In Section 2, we discuss a certain specific choice (among composites with in-
ner automorphisms) of the morphism between geometrically pro-l fundamental
groups obtained by switching the two ordered marked points parametrized by
the second configuration space. This choice will play a key role in the proof of
Theorem A.

Section 3 is devoted to proving Theorem A. Roughly speaking, starting from
a given geometrically pro-l fundamental group ΠX\{x}, we reconstruct group-
theoretically a suitable topological group, i.e., ΠLie

X2
(cf. Definition 3.1), which

contains the geometrically pro-l fundamental group of the second configuration
space, by using the explicit description of graded Lie algebra studied in Section
1. Next, we reconstruct the automorphism on ΠLie

X2
induced by the specific

choice of the switching morphism studied in Section 2. Finally, we verify that
ΠX2 can be generated, as a subgroup of ΠLie

X2
, by the given fundamental group

ΠX\{x} and the image of this fundamental group via the specific choice of the
switiching morphism studied in Section 2; this allows us to reconstruct ΠX2 as
a subgroup of ΠLie

X2
.

In Section 4, as an application of (a slightly generalized version of) Theorem
A, we give a group-theoretic construction of the cuspidalization of an affine
hyperbolic curve X over a finite field at a point “infinitesimally close” to the
cusp x. That is to say, we give a construction, starting from the geometrically
pro-l fundamental group ΠX of X, of the geometrically pro-l fundamental group
Π

X
log
x

of the log scheme obtained by gluing X to a tripod (i.e., the projective

line minus three points) at a cusp x of X:

Theorem B.
Let X (resp., Y ) be an affine hyperbolic curve over a finite field K (resp., L),

x a K-rational point of X \ X (resp., y an L-rational point of Y \ Y ). Let

α : ΠX
∼−→ ΠY

be a Frobenius-preserving isomorphism such that the decomposition groups of x
and y (which are well-defined up to conjugacy) correspond via α. Then there
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exists a unique isomorphism

α̃ : Π
X

log
x

∼−→ Π
Y

log
y

well-defined up to composition with an inner automorphism which maps the

decomposition group (well-defined up to conjugacy) of x̃ in X
log

x to that of ỹ in

Y
log

y , and induces α by passing to the quotients Π
X

log
x

� ΠX , Π
Y

log
y

� ΠY .

x

group-
theoretic

reconstruction! x

Finally, we consider the cuspidalization problem for (geometrically pro-l) fun-
damental groups of configuration spaces of (not necessarily proper) hyperbolic
curves over finite fields (cf. Theorem 4.4):

Theorem C.
Let X (resp., Y ) be a hyperbolic curve over a finite field K (resp., L). Let

α1 : ΠX
∼−→ ΠY

be a Frobenius-preserving isomorphism. Then for any n ∈ Z≥0, there exists a
unique isomorphism

αn : ΠXn

∼−→ ΠYn

well-defined up to composition with an inner automorphism, which is compatible
with the natural respective outer actions of the symmetric group on n letters and
makes the diagram

ΠXn+1

αn+1−−−→ ΠYn+1

pi

⏐⏐�
⏐⏐�pi

ΠXn

αn−−−→ ΠYn

(i = 1, · · · , n + 1) commute.

This statement is already proved in [11] for the case where n = 2 and X is
proper, and in [4] for the case where n ≥ 3 and X is proper. On the other hand,
by combining results obtained in this paper with the result obtained in [11], we
obtain a shorter proof of the statement for n ≥ 3 which includes, for the first
time, the affine case.
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Notations and Conventions

Numbers:
We shall denote by Q the field of rational numbers, by Z the ring of rational

integers, and by N ⊆ Z
(
resp., Z≥a ⊆ Z

)
the additive submonoid of integers

n ≥ 0
(
resp., the subset of integers n ≥ a for a ∈ Z

)
. If l is a prime number,

then Zl

(
resp., Ql

)
denotes the l-adic completion of Z

(
resp., Q

)
.

Topological Groups:
For an arbitrary Hausdorff topological group G, the notation

Gab

will be used to denote the abelianization of G, i.e., the quotient of G by the
closed subgroup of G topologically generated by the commutators of G.

If G is a center-free, then we have a natural exact sequence

1 −→ G −→ Aut(G) −→ Out(G) −→ 1

— where Aut(G) denotes the group of automorphisms of the topological group
G; the injective (since G is center-free) homomorphism G → Aut(G) is obtained
by letting G act on G by inner automorphisms; Out(G) is defined so as to render
the sequence exact. If the profinite group G is topologically finitely generated,
then the groups Aut(G), Out(G) are naturally endowed with a profinite topol-
ogy, and the above sequence may be regarded as an exact sequence of profinite
groups.

If J → Out(G) is a homomorphism of groups, then we shall write

G
out
� J := Aut(G) ×Out(G) J

for the “outer semi-direct product of J with G”. Thus, we have a natural exact
sequence

1 −→ G −→ G
out
� J −→ J −→ 1.

It is verified (cf. [4], Lemma 4.10) that if an automorphism φ of G
out
� J preserves

the subgroup G ⊆ G
out
� J and induces the identity morphism on G and the

quotient J , then φ is the identity morphism of G
out
� J .

Log schemes:
Basic references for the notion of log scheme are [7] and [6]. In this paper,

log structures are always considered on the étale sites of schemes. For a log
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scheme X log, we shall denote by X (resp.,MX) the underlying scheme of X log

(resp., the sheaf of monoids defining the log structure of X log). Let X log and
Y log be log schemes, and f log : X log → Y log a morphism of log schemes. Then we
shall refer to the quotient of MX by the image of the morphism f∗MY → MX

induced by f log as the relative characteristic sheaf of f log. Moreover, we shall
refer to the relative characteristic sheaf of the morphism X log → X (where, by
abuse of notation, we write X for the log scheme obtained by equipping X with
the trivial log structure) induced by the natural inclusion O∗ ↪→ MX as the
characteristic sheaf of X log.

We shall say that a log scheme X log is fs if MX is a sheaf of integral monoids,
and locally for the étale topology, has a chart modeled on a finitely generated
and saturated monoid. If X log is fs, then, for n a nonnegative integer, we shall
refer to as the n-interior of X log the open subset of X on which the associated
sheaf of groupifications of characteristic sheaf of X log is of rank ≤ n. Thus, the
0-interior of X log is often referred to simply as the interior of X log.

Curves:
Let f : X → S be a morphism of schemes. Then we shall say that f is

a family of curves of type (g,r) if it factors X ↪→ X → S as the composite
of an open immersion X ↪→ X whose image is the complement X \ D of a
relative divisor D ⊆ X which is finite étale over S of relative degree r, and a
morphism X → S which is proper, smooth, and geometrically connected, and
whose geometric fibers are one-dimensional of genus g. We shall refer to X as
the compactification of X.

We shall say that f is a family of hyperbolic curves (resp., tripod) if f is
a family of curves of type (g, r) such that (g, r) satisfies 2g − 2 + r > 0
(resp., (g, r) = (0, 3) and the relative divisor D is split over S).

We shall denote by

Mg,[r]+s

the moduli stack of r+s-pointed stable curves of genus g for which s sections are
equipped with an ordering. This moduli stack may be obtained as the quotient
of the moduli stack of ordered (r+s)-pointed stable curves of genus g (cf. [8] for
an exposition of the theory of such curves) by a suitable symmetric group action

on r letters. We shall denote by Mlog

g,[r]+s the log stack obtained by equipping

Mg,[r]+s with the log structure associated to the divisor with normal crossings
which parametrizes singular curves.

Fundamental Groups:
A basic reference for the notion of Kummer étale covering is [6]. For a locally

Noetherian, connected scheme X (resp., a locally Noetherian, connected, fs log
scheme X log) equipped with a geometric point x → X (resp., log geometric
point x̃log → X log), we shall denote by π1(X, x) (resp., π1(X

log, x̃log)) the étale
fundamental group of X (resp., logarithmic fundamental group of X log). Since
one knows that the étale and logarithmic fundamental groups are determined
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up to inner automorphisms independently of the choice of basepoint, we shall
omit the basepoint, and write π1(X) (resp., π1(X

log) ).
For a scheme X (resp., fs log scheme X log) which is geometrically connected

and of finite type over a field K in which a prime number l is invertible, we
shall refer to the quotient ΠX of π1(X) (resp., the quotient ΠXlog of π1(X

log))
by the closed normal subgroup obtained as the kernel of the natural projection
from π1(X ⊗K K) (resp., π1(X

log ⊗K K)) (where K is a separable closure of
K) to its maximal pro-l quotient ΔX (resp., ΔXlog) as the geometrically pro-l
étale fundamental group of X (resp., geometrically pro-l logarithmic fundamen-
tal group of X log). Thus, (if we write GK for the Galois group of a separable
closure of K over K, then) we have a natural exct sequence

1 −→ ΔX −→ ΠX −→ GK −→ 1

(resp., 1 −→ ΔXlog −→ ΠXlog −→ GK −→ 1).

Note that if the log structure of X log is trivial, then we have natural isomor-
phisms ΔX

∼= ΔXlog , ΠX
∼= ΠXlog .

If K is finite, then write G†
K ⊆ GK for the maximal pro-l subgroup of GK (so

G†
K
∼= Zl). Also, we shall use the notation

Π† := Π ×GK
G†

K ⊆ Π

— where Π denotes either the geometrically pro-l étale or logarithmic funda-
mental group of X — as the restricted pro-l étale or logarithmic fundamental
group of X.

1. Fundamental groups of (log) configuration spaces

The purpose of this section is to recall the notion of the (log) configuration
space associated to a curve and review group-theoretic properties of the various
fundamental groups associated to such spaces.

Let l be a prime number, K a field in which l is invertible, K a separable
closure of K — where we shall denote by GK the Galois group of K over K —
and X a hyperbolic curve over K of type (g, r).

Definition 1.1.

(i) For n ∈ Z≥1, Write X×n for the fiber product of n copies of X over
K. We shall denote by

Xn

(⊆ X×n
)
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the n-th configuration space associated to X, i.e., the scheme which rep-
resents the open subfunctor

S 	→ {
(f1, · · · , fn) ∈ X×n(S)

∣∣ fi 
= fj if i 
= j
}

of the functor represented by X×n.

(ii) Let us denote by X
log

n the n-th log configuration space associated to X
(cf. [14]), i.e.,

X
log

n := Spec K ×Mlog
g,[r]

Mlog

g,[r]+n

— where the (1-)morphism Spec K → Mlog

g,[r] is the classifying mor-
phism determined by the curve X → Spec K, and the (1-)morphism

Mlog

g,[r]+n → Mlog

g,[r] is obtained by forgetting the ordered n marked points

of the tautological family of curves over Mlog

g,[r]+n. In the following, for

simplicity, we shall write X
log

for X
log

1 .

Proposition 1.2.

(i) The 0-interior (cf. § 0) of the log scheme X
log

n is naturally isomorphic
to the n-th configuration space Xn associated to X.

(ii) The log scheme X
log

n is log regular and its underlying scheme is connected
and regular.

(iii) The projection plog
k : X

log

n → X
log

n−1, induced from the (1-)morphism

Mlog

g,[r]+n → Mlog

g,[r]+n−1 obtained by forgetting the k-th (k = 1, · · · , n)

ordered points of the tautological family of curves over Mlog

g,[r]+n, is log
smooth (cf. § 0) and its underlying morphism of schemes is the natural
projection pk : Xn � Xn−1 obtained by forgetting the k-th factor, and
hence, is flat, geometrically connected, and geometrically reduced.

Proof. See, for example, [4], Proposition 2.2. �

Definition 1.3.
We shall denote (cf. § 0) by

ΠXn (resp., ΔXn)

the geometrically pro-l étale fundamental group of Xn (resp., Xn ⊗K K), and

Π
X

log
n

(resp.,Π
X

log×n)

the geometrically pro-l log fundamental group of X
log

n (resp., the fiber product

X
log×n

of n copies of X
log

over K). Moreover, we shall denote (cf. § 0) by

Π†
Xn

, Δ†
Xn

(∼= ΔXn), Π†
X

log
n

, Π†
X

log×n
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respective restricted pro-l fundamental groups. If we write

ik : Δk
Xn/n−1

↪→ ΔXn

for the kernel of the surjection pΔ
k : ΔXn � ΔXn−1 , where pΔ

k denotes the
morphism induced by the projection pk : Xn � Xn−1 obtained by forgetting
the k-th factor, then we have exact sequences

1 −→ ΔXn −→ Π
(−)
Xn

−→ G
(−)
K −→ 1

1 −→ Δk
Xn/n−1

ik−→ ΔXn

pk−→ ΔXn−1 −→ 1

1 −→ Δk
Xn/n−1

ik−→ Π
(−)
Xn

pk−→ Π
(−)
Xn−1

−→ 1

— where the symbol (−) denotes either the presence or absence of “†”, and when
there is no fear of confusion, we shall write “ ik ”, “ pk” (by abuse of notation)
for the morphisms induced by ik, pk, respectively.

Also, we have a square diagram

Π
(−)
Xn−1

pk←−−− Π
(−)
Xn

−−−→
n︷ ︸︸ ︷

Π
(−)
X ×

G
(−)
K

· · · ×
G

( )
K

Π
(−)
X⏐⏐�

⏐⏐�
⏐⏐�

Π
(−)

X
log
n−1

plog
k←−−− Π

(−)

X
log
n

−−−→ Π
(−)

X
log×n

— which can be made commutative without conjugate-indeterminacy by choos-
ing compatible base points — arising from a natural commutative diagram

Xn−1
pk←−−− Xn −−−→ Xn×

⏐⏐�
⏐⏐�

⏐⏐�

X
log

n

plog
k←−−− X

log

n −−−→ X
log×n

.

Then, it follows from Proposition 1.2 (i), (ii) together with the log purity the-
orem (cf. [6], [9]) that the two vertical homomorphisms are isomorphisms. In the

following, we shall identify Π
(−)
Xn

with Π
(−)

X
log
n

, Π
(−)

X
log×n with

n︷ ︸︸ ︷
Π

(−)
X ×

G
(−)
K

· · · ×
G

( )
K

Π
(−)
X

and the surjection pk : ΠXn → ΠXn−1 with the surjection pk : Π
(−)

X
log
n

→ Π
(−)

X
log
n−1

by means of these specific isomorphisms.

Proposition 1.4.

(i) Δk
Xn/n−1

may be naturally identified with the maximal pro-l quotient of

the étale fundamental group of a geometric fiber of the projection mor-
phism pk : Xn → Xn−1.

(ii) The images of the ik : Δk
Xn/n−1

→ ΔXn, where k = 1, · · · , n, generate

ΔXn.
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(iii) The profinite groups ΔXn, Δk
Xn/n−1

, Π†
Xn

, Π†
X×n are slim (i.e., every open

subgroup of each profinite group is center-free).

Proof. Assertion (i) follows from [14], Proposition 2.2, or [18], Proposition 2.3.
Assertions (ii) and (iii) follow from induction on n, together with the exact
sequence

1 −→ Δn
Xn/n−1

in−→ ΔXn

pn−→ ΔXn−1 −→ 1

displayed in Definition 1.3. Indeed, with regard to (ii), Δk
Xn/n−1

maps to Δk
Xn−1/n−2

(for k = 1, · · ·n − 1) via pn : ΔXn → ΔXn−1 , and it is verified that this map
Δk

Xn/n−1
→ Δk

Xn−1/n−2
is surjective by regarding it as the morphism induced by

an open immersion between the hyperbolic curves that arise as geometric fibers
of the projection morphisms involved. With regard to (iii), the slimness of ΔX

is well-known (cf., e.g., [10], Lemma 1.3.10); the slimness of Π†
X follows from the

fact that the character of G†
K arising from the determinant of Δab

X coincides with
some positive power of the cyclotomic character; the other statements follow
from the fact that an extension of slim profinite groups is itself slim. �

Next, we recall from [11], § 3, the theory of the weight filtration of fundamen-
tal groups and the associated graded Lie algebra.

Definition 1.5.
Let l be a prime number; G, H, A topologically finitely generated pro-l

groups; φ : H � A a (continuous) surjective homomorphism. Suppose further
that A is abelian, and that G is an l-adic Lie group.

(i) We shall refer to as the central filtration {H(n)}n≥1 on H with respect
to the homorphism φ the filtration defined as follows:

H(1) := H

H(2) := Ker(φ)

H(m) :=
〈
[H(m1), H(m2)]

∣∣ m1 + m2 = m
〉

for m ≥ 3

— where 〈Ni | i ∈ I〉 is the group topologically generated by the Ni’s.
In the following, for a, b, n ∈ Z such that 1 ≤ a ≤ b, n ≥ 1, we shall
write

H(a/b) := H(a)/H(b)

Gr(H) :=
⊕
m≥1

H(m/m + 1)

Gr(H)(a/b) :=
⊕

b>m≥a

H(m/m + 1)

GrQl
(H) := Gr(H) ⊗Zl

Ql

GrQl
(a/b) := Gr(H)(a/b) ⊗Zl

Ql
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H(a/∞) := lim←−
b>a

H(a/b) .

(ii) We shall denote by Lie(G) the Lie algebra over Ql determined by
the l-adic Lie group G. We shall say that G is nilpotent if there exists a
positive integer m such that if we denote by {G(n)} the central filtration
with respect to the natural surjection G � Gab (cf. (i)), then G(m)={1}.
If G is nilpotent, then Lie(G) is a nilpotent Lie algebra over Ql, hence
determines a connected, unipotent linear algebraic group Lin(G), which
we shall refer to as the linear algebraic group associated to G. In this
situation, there exists a natural (continuous) homomorphism (with open
image)

G −→ Lin(G)(Ql)

(from G to the l-adic Lie group determined by the Ql-valued points of
Lin(G)) which is uniquely determined (since Lin(G) is connected and
unipotent) by the condition that it induce the identity morphism on the
associated Lie algebras.

In the situation of (i), if 1 ≤ a ∈ Z, then we shall write

Lie(H(a/∞)) := lim←−
b>a

Lie(H(a/b))

Lin(H(a/∞)) := lim←−
b>a

Lin(H(a/b))

— where we note that each H(a/b) is a nilpotent l-adic Lie group.

Definition 1.6.
For n ∈ Z≥1, we shall denote by

{ΔXn(m)}
the central filtration of ΔXn with respect to the natural surjection ΔXn � Δab

X
×n

(where X denotes the smooth compactification of X (cf. § 0)), and refer to it
as the weight filtration on ΔXn .

Proposition 1.7.
If we equip Δk

Xn/n−1
with the central filtration induced from the identifica-

tion given by Proposition 1.4 (i) and its weight filtration, then the sequence of
morphisms of graded Lie algebras

1 −→ Gr(Δk
Xn/n−1

)
ik−→ Gr(ΔXn)

pk−→ Gr(ΔXn−1) −→ 1

induced by the second displayed exact sequence of Definition 1.3 is exact.

Proof. See [4], Proposition 4.1. �
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Next, let us fix a section σ : GK → ΠXn of the surjection ΠXn � GK induced
by the structure morphism of Xn. This section σ determines natural conjugate
actions of GK on ΔXn , hence also on

GrQl
(ΔXn)(a/b)

LieXn(a/b) := Lie(ΔXn(a/b))

LinXn(a/b) := Lin(ΔXn(a/b))(Ql)

for a, b ∈ Z such that 1 ≤ a ≤ b.

Proposition 1.8.
Let us assume that K is a finite field whose cardinality we denote by qK, and

write Fr ∈ GK for the Frobenius element of GK. Then:

(i) The eigenvalues of the action of Fr on LieXn(a/a + 1) are algebraic

numbers all of whose complex absolute values are equal to q
a/2
K (i.e.,

weight a).

(ii) There is a unique GK-equivariant isomorphism of Lie algebras

LieXn(a/b)
∼→ GrQl

(ΔXn)(a/b)

which induces the identity isomorphism

LieXn(c/c + 1)
∼→ GrQl

(ΔXn)(c/c + 1)

for all c ∈ Z≥1 such that a ≤ c < b.

Proof. Assertion (i) follows from the “Riemann hypothesis for abelian varieties
over finite fields” (cf., e.g., [15], p. 206). Assertion (ii) follows formally from
assertion (i) by considering the eigenspaces with respect to the action of Fr. �

The following proposition is a special case of a result proven previously
(cf. [17]). For simplicity, we discuss only the case used in the proofs of the
present paper.

Proposition 1.9.
For n = 1, 2, the graded Lie algebra Gr(ΔXn) has the following presentation.

(i) The case n = 1 (i.e., Xn = X):

generators (1 ≤ j ≤ r, 1 ≤ i ≤ g)

•1 ζj ∈ ΔX(2/3)

•2 αi, βi ∈ ΔX(1/2)

relation
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•1

∑r
j=1 ζj +

∑g
i=1[αi, βi] = 0

— where ζj (j = 1, 2, · · · , r) topologically generates the inertia subgroup
in ΔX (well-defined up to conjugacy) associated to the j-th cusp [relative
to some ordering of the cusps of X ×K K].

(ii) The case n = 2:

generators (1 ≤ j ≤ r, 1 ≤ i ≤ g, k = 1, 2)

•1 ζ ∈ ΔX2(2/3)

•2 ζk
j ∈ Δk

X2/1
(2/3)

•3 αk
i , βk

i ∈ Δk
X2/1

(1/2)

relations (1 ≤ j, j ′ ≤ r, j 
= j′, 1 ≤ i, i′ ≤ g, i 
= i′, {k, k′} =
{1, 2})

•1 ζ +
∑r

j=1 ζk
j +

∑g
i=1[α

k
i , β

k
i ] = 0

•2 [αk
i , ζ

k′
j ] = [βk

i , ζk′
j ] = [ζk

j , ζk′
j′ ] = 0

•3 [αk
i , α

k′
i′ ] = [αk

i , β
k′
i′ ] = [βk

i , βk′
i′ ] = 0

•4 [α1
i , α

2
i ] = [β1

i , β
2
i ] = 0

•5 [α1
i , β

2
i ] = ζ

— where ζ topologically generates the image in ΔX2(2/3) of the inertia
subgroup in ΔX2 (well-defined up to conjugacy) associated to the diagonal
divisor of X ×K X, and ζk

j generates the image in Δk
X2/1

(2/3) of the

inertia subgroup in Δk
X2/1

asssociated to the j-th cusp [relative to some

ordering of the cusps of X ×K K] of the k-th factor of X2.

2. Switching morphism on configuration spaces

We continue to use the notation of Section 1. In this section, we consider

various automorphisms induced by the automorphism of X
log

2 determined by
switching the two factors of X. The group-theoretic uniqueness of such induced
switching morphisms between fundamental groups (Proposition 2.5) plays a key
role in the proof of Theorem A.
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We denote by

Dlog

the log scheme obtained by equipping the diagonal divisor X ⊆ X2 (which is
the restriction of the (1-)morphism Mg,[r]+1 → Mg,[r]+2 obtained by gluing the

tautological family of curves over Mlog

g,[r]+1 to a trivial family of tripods along

the final ordered marked section) with the log structure pulled back from X
log

2 .

Thus, if we write d : Dlog → X
log

2 for the natural diagonal embedding, then it

follows immediately from the definitions that p1 ◦ d = p2 ◦ d : Dlog → X
log

is
a morphism of type N (cf. [2]), i.e., the underlying morphism of schemes is an
isomorphism, and the relative characteristic sheaf (cf. § 0 ) is locally constant
with stalk isomorphic to N.

Observe that the (1-)automorphism on Mlog

g,[r]+2 over Mlog

g,[r] given by switch-
ing the two ordered marked points of the tautological family of curves over

Mlog

g,[r]+2 induces automorphisms s, s, and sD, which fit into a commutative
diagram as follows:

Dlog d−−−→ X
log

2

p=(p1,p2)−−−−−→ X
log ×K X

log

s

⏐⏐� s

⏐⏐� s

⏐⏐�
Dlog d−−−→ X

log

2

p=(p1,p2)−−−−−→ X
log ×K X

log
.

(∗)X

Lemma 2.1.
In the notation of the above situation,

(i) s is the morphism determined by switching the two factors.

(ii) s is the identity morphism on the underlying scheme; on the sheaf of
monoids defining the log structure of Dlog, for any étale local section θ
of MD such that “θ = 0” defines the diagonal divisor X ⊆ X2,

s(θ) = −θ .

Proof. Recall that X2 is obtained by blowing-up X×K X along the intersection
of the diagonal divisor and the pull-backs of the cusps via p1, p2 : X2 → X.
Thus, one verifies easily that assertions (i) and (ii) follow immediately from the
fact that the ring homomorphism corresponding to s in an affine neighborhood
of any diagonal point may be expressed as

A ⊗K A −→ A ⊗K A

∑
j

aj ⊗ a′
j 	→

∑
j

a′
j ⊗ aj ,

hence maps θ to −θ for any local section θ such that “θ = 0” defines the diagonal
divisor X ⊆ X ×K X. �
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Remark 2.1.1.
Lemma 2.1 (ii) can be interpreted as the assertion that the automorphism

induced by s on the sheaf of monoids MD defining the log structure of Dlog
X

may be expressed, relative to the étale local splitting of MD � MD/O∗
X

∼= N

corresponding to θ, as
N ⊕ O∗

X
∼−→ N ⊕ O∗

X

(m, v) 	−→ (m, (−1)mv) .

The above diagram (∗)X induces a diagram of profinite groups as follows:

ΠDlog

[dΠ]−−−→ ΠX2

[pΠ]−−−→ ΠX ×GK
ΠX

[sΠ]

⏐⏐�� [sΠ]

⏐⏐�� [sΠ]

⏐⏐��

ΠDlog

[dΠ]−−−→ ΠX2

[pΠ]−−−→ ΠX ×GK
ΠX .

(∗)Π

Note that the arrows in the diagram (∗)Π are only defined (i.e., in the absence
of appropriate choices of basepoints of respective log schemes) up to conjugacy.

Next, we observe that since the subgroups of the conjugacy class of subgroups
determined by the image of [dΠ] may be naturally regarded as decomposition
groups associated to the diagonal divisor of X2, any choice of a specific homo-
morphism dΠ : ΠDlog → Π

X
log
2

(i.e., among its various conjugates) determines a

specific decomposition group
DX ⊆ Π

X
log
2

— where we write dΠ : DX ↪→ Π
X

log
2

for the natural inclusion — associated

to the diagonal divisor (i.e., among its various Π
X

log
2

-conjugates), as well as a

specific inertia subgroup
IX ⊆ Π

X
log
2

associated the diagonal divisor (i.e., among its various Π
X

log
2

-conjugates). Here,

we recall that IX is canonically isomorphic to Zl(1).

Definition 2.2.
Let xlog → X

log
be a strict morphism (cf. [6], 1.2) such that the underlying

scheme of xlog is equal to Spec(K). We shall write

X
log

x := X
log

2 ×
X

log xlog,

x̃log := Dlog ×
X

log xlog,

G
(−)

Klog := Π
(−)

xlog

— where the morphism X
log

2 → X
log

(resp., Dlog → X
log

) in the fiber product

defining X
log

x (resp., x̃log) is p1 (resp., p1 ◦ d = p2 ◦ d), and the symbol “(−)”

denotes either the presence or absence of “†” — and refer to X
log

x (resp., x̃log)
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as the cuspidalization of X at x (resp., diagonal cusp of X
log

x ). We note that

both the log structure of xlog and the underlying scheme of X
log

x depend on the
choice of x ∈ X:

(1) The Case x ∈ X:
In this case, x = xlog, i.e., the log structure of xlog is trivial. As we

discussed in Section 1, the underlying scheme of X
log

x is naturally iso-

morphic to X; this isomorphism maps x̃ to x and the interior of X
log

x

onto X \ {x}.
(2) The Case x ∈ X \ X:

In this case, the log structure of xlog has a chart modeled on N, which
determines a local uniformizer of X at x. The scheme Xx consists of
precisely two irreducible components, one of which maps to the point

x ∈ X (resp., maps isomorphically to X) via X
log

x

p2◦i1−→ X
log

; denote
this irreducible component by PK (resp., X, via a slight abuse of no-
tation). Thus, X, PK are joined at a single node νx. Let us refer to
X (resp., PK , νx) as the major cuspidal component (resp., the minor

cuspidal component, the nexus) at x, and denote by X
log′

, P
log

K , ν log
x the

log schemes obtained by equipping X, PK , νx with the respective log

structures pulled back from X
log

x (cf. [13], Definition 1.4). Note that the

1-interior of X
log′

(resp., P
log

K ) is isomorphic to X (resp., is a tripod).

�

�x

Cuspidalization
at x ∈ X(K)

ν log
x

Case (1) Case (2)

x̃

X

X
log

x X
log′ P

log

K

cusps

(the two thick arrows in the picture do not represent morphisms of log schemes)
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In the following, we fix choices of specific [i.e., in the sense that they are not
subject to conjugacy indeterminacy!] homomorphisms

iΠ1 : Π
X

log
x

−→ ΠX2 , pΠ
1 : ΠX2 −→ ΠX

induced by the morphisms of log schemes i1 : X
log

x → X
log

2 , p1 : X
log

2 → X
log

and a choice of a specific decomposition group

Dx̃ ⊆ Π
X

log
x

associated to x̃log of X
log

x among the various conjugates of this subgroup. Write

γ : Dx̃ ↪→ Π
X

log
x

for the natural inclusion. These choices determine a homomorphism of profinite
groups

fX : Π
X

log
x

−→ GKlog ,

arising from the structure morphism X
log

x → xlog, by taking fX := iΠ1 ◦ pΠ
1 :

Π
X

log
x

→ GKlog

(
:= Im(Π

X
log
x

iΠ1 ◦pΠ
1→ ΠX)

)
, as well as a profinite group

Ix̃ := Ker(Dx̃

γ
↪→ Π

X
log
x

f→ GKlog)

— where we note that Ix̃ is naturally isomorphic to Zl(1) (i.e., a Tate twist of
Zl).

Lemma 2.3.

(i) The subgroup Dx̃(
γ

↪→ Π
X

log
x

) is the normalizer of Ix̃ in Π
X

log
x

.

(ii) For any choice of a specific decomposition group dΠ : DX ↪→ ΠX2 (i.e.,
among its various conjugates) associated to the diagonal divisor of X2 ,
the subgroup DX of ΠX2 coincides with the normalizer of IX in ΠX2.

Proof. Note that we have commutative diagrams

Ix̃ −−−→ Dx̃

iΠ1 ◦γ|Ix̃

⏐⏐� iΠ1 ◦γ
⏐⏐�

Δ1
X2/1

i1−−−→ ΠX2

1 −−−→ IX −−−→ DX

pΠ
1 ◦dΠ

−−−→ ΠX −−−→ 1

dΠ|IX

⏐⏐� dΠ

⏐⏐� id

⏐⏐�

1 −−−→ Δ1
X2/1

i1−−−→ ΠX2

pΠ
1−−−→ ΠX −−−→ 1,

— where the two horizontal sequences in the second diagram are exact, and both
the first displayed diagram and the left-hand square in the second diagram are
cartesian. Next, let us recall the well-known fact (cf., e.g., [16], (2.3.1)) that
Ix̃ and IX coincide with their respective normalizers in Δ1

X2/1
. Thus, assertion
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(ii) follows immediately from the surjectivity of pΠ
1 ◦ dΠ. On the other hand,

assertion (i) follows immediately from the observation that the images of Dx̃ and
Π

X
log
x

via pΠ
1 ◦ iΠ1 coincide. This observation is a consequence of the geometry of

the corresponding morphisms of log schemes, which implies that these images
coincide with a decomposition group ⊆ ΠX associated to the point x. �

Lemma 2.4.
Under the determination discussed preceding Lemma 2.3, we can uniquely

take a pair of specific homomorphisms

dΠ : DX −→ ΠX2 , pΠ
2 : ΠX2 −→ ΠX

among the various conjugates of these subgroups, obtained by morphisms between

log schemes d : Dlog → X
log

2 , p2 : X
log

2 → X, satisfying the following conditions:

(1) The image of the inertia subgroup IX (via dΠ) coincides with the image
of Ix̃ via iΠ1 .

(2) DX maps (via (pΠ
1 , pΠ

2 ) ◦ dΠ : DX → ΠX ×GK
ΠX) onto the image of the

diagonal embedding ΠX ↪→ ΠX ×GK
ΠX .

Proof. Since DX is the normalizer of IX in Π
X

log
2

by Lemma 2.3, it is enough to

take DX as the normalizer of Ix̃ in Π
X

log
2

, and take pΠ
2 so as to pΠ

1 ◦dΠ = pΠ
2 ◦dΠ.

Uniqueness follows from the requred two conditions. �

Now, before we continue the discussion, we shall give comments for Proposi-
tion 2.5.

(1) Recall that the natural surjection Dx̃ � GK (since GK is abelian, this
map is uniquely determined without the discussion of base points) has
a section. Indeed, fixing a choice of such a section is equivalent to
extracting roots of any local uniformizers of the divisors Xx ⊆ X2 and
D ⊆ X2 at x̃.

(2) We shall consider the restriction map H1(GK , Zl(1)) → H1(G†
K , Zl(1))

of cohomology groups induced by the natural inclusion G†
K ↪→ GK .

Since G†
K is the maximal pro-l subgroup of GK and Ix̃ is isomorphic

to Zl(1) as GK-module, H1(GK , Zl(1)) is isomorphic to H1(G†
K , Zl(1))

and is isomorphic to the maximal pro-l completion (K×)∧ of the multi-

plicative group K× of K. Therefore, if we denote by Z1(G†
K , Ix̃) (resp.,

Z1(GK , Ix̃)) the set of (continuous) 1-cocycle maps of G†
K (resp., GK)

with coefficients in Ix̃, then we can refer to any element of Z1(G†
K , Ix̃)

(resp., Z1(GK , Ix̃)) belonging to the inverse image of a ∈ (K×)∧ ∼=
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H1(G†
K , Ix̃) (resp., ∼= H1(G†

K , Ix̃) via the natural surjection as a (con-
tinuous) 1-cocycle map representing the Kummer class a

Proposition 2.5.
Following the discussions and results in this section until now, we shall fix a

choice of a section
σ : GK −→ Dx̃

(hence also a choice of an induced morphism σ† : G†
K −→ D†

x̃) of the surjection
Dx̃ → GK.

Then, for any 1-cocycle map

δ : G†
K → Ix̃

representing the Kummer class −1 ∈ (K×)∧, there exists a unique triple (s†δ, s
†
δ, s

†
δ)

of vertical automorphisms in the following diagram

D†
X

d†−−−→ Π†
X2

p†−−−→ Π†
X ×G†

K
Π†

X

s†δ

⏐⏐� s†δ

⏐⏐� s†δ

⏐⏐�

D†
X

d†−−−→ Π†
X2

p†−−−→ Π†
X ×G†

K
Π†

X

(∗)†

— where p† : Π†
X2

→ Π†
X ×G†

K
Π†

X (resp., d† : D†
X → Π†

X2
) denotes the morphism

induced by pΠ
1 , pΠ

2 (resp., dΠ) determined in the preceding disucussions — which
makes (∗)† commute and satisfies the following two conditions:

(1) s†δ : Π†
X ×G†

K
Π†

X

∼−→ Π†
X ×G†

K
Π†

X is the morphism obtained by switching

the two factors.

(2) The continuous function from G†
K to Π†

X
log
2

defined by

g 	→ (s†δ ◦ σ†)(g) · σ†(g)−1

is valued in Ix̃ ⊆ Π†
X2

and coincides with δ.

Proof. We begin by proving the existence portion. By the surjectivity of p†, we
can take s†δ, s

†
δ such that the right-hand square of the diagram (∗)† commutes

and the condition (1) is satisfied. If we take arbitrary s†δ ∈ Aut(D†
X) from the

conjugacy class, commutativity of the rectangle in (∗)† up to conjugacy implies

that there exists λ ∈ Π†
X ×G†

K
Π†

X such that s†δ ◦ (p† ◦ d†) = Inn(λ) ◦ (p† ◦ i†) ◦ s†δ
(where Inn(λ) denotes the inner automorphism obtained by conjugating by λ).

As obtained in Lemma 2.4, p† ◦ d† maps D†
X onto the diagonal subgroup of

Π†
X ×G†

K
Π†

X , hence Inn(λ) preserves the diagonal subgroup. Since Π†
X is center-

free (by Lemma 1.4 (iii)), it is verified that λ lies in the diagonal. By taking a

lifting λ̃ ∈ D†
X of λ and replacing s†δ by Inn(λ̃−1)◦s†δ, we can make the rectangle

in (∗)† commute in the strict sense. Next, we observe that s†δ◦d† = Inn(μ)◦d†◦s†δ
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for some μ ∈ Π†
X2

. By the commutativity of the rectangle in (∗)†, μ projects

via p† into the center of Π†
X ×G†

K
Π†

X (hence, to the unit element). Therefore,

replacing s†δ by Inn(μ−1) ◦ s†δ, we can make (∗)† commute.
Thus, we obtain an automorphism of an exact sequence

1 −−−→ IX −−−→ D†
X

p†1◦d†=p†2◦d†−−−−−−−→ Π†
X −−−→ 1

id

⏐⏐�� s†δ

⏐⏐�� id

⏐⏐��

1 −−−→ IX −−−→ D†
X

p†1◦d†=p†2◦d†−−−−−−−→ Π†
X −−−→ 1

which consists of the identity morphisms of Π†
X and IX . Let M ⊆ Q be the

monoid of positive rational numbers with denominators of l-power, and N the
global sections of the sheaf of monoids defining the log structure on a universal
geometrically pro-l két covering of Dlog ×

X
log xlog. Then, N forms a direct

product splitting N ∼= M⊕M⊕K
×
, where (cf. the discussion (1) preceding this

proposition) the first (resp., second) factor of direct product is due to extracting
roots of a local uniformizer of the divisor Xx ⊆ X2 (resp., D ⊆ X2) at x̃ inside

of a choice of σ. Then the automorphism s†δ of D†
X may be characterized by

the choice of a projective system {(−1)
1

lm }m∈Z≥0
of l-power roots of −1 (well-

defined up to multiplications by projective systems of l-power roots of 1) in a

way that the automorphism of N ∼= M ⊕ M ⊕ (K
×
) is expressed as

(
a1

lm1
,

a2

lm2
, k) 	→ (

a1

lm1
,

a2

lm2
, (−1)

a2
lm2 · k)

(cf. Lemma 2.1 (ii))). We observe that for any element g of G†
K , the auto-

morphism of N corresponding to σ†(g) (resp., (s† ◦ σ†
X)(g)) ∈ Π†

X2
is expressed

as
(

a1

lm1
,

a2

lm2
, k) 	→ (

a1

lm1
,

a2

lm2
, g(k))

(
resp., (

a1

lm1
,

a2

lm2
, k) 	→ (

a1

lm1
,

a2

lm2
,
g((−1)

a2
lm2 )

(−1)
a2

lm2

· g(k))
)

Thus, (s† ◦ σ†
X)(g) · σ†

X(g)−1 is valued in IX (∼= Ix̃ by Lemma 2.3) and the

1-cocycle g 	→ (s† ◦σ†
X)(g) ·σ†

X(g)−1 represents, by definition, the Kummer class

−1 ∈ (K×)∧ ∼= H1(G†
K , Zl(1)). Therefore, after modifications of s†δ, s†δ by some

IX-inner automorphisms, condition (2) is satisfied. This completes the existence
assertion.

Next we prove the uniqueness portion. If we take two triples (s†1, s
†
1, s

†
1),

(s†2, s
†
2, s

†
2) so as to satisfy conditions (1) and (2), then s†1 ◦ (s†2)

−1 = Inn(η) ∈
Aut(Π†

X2
) for some η ∈ Π†

X2
and we see that Inn(η) preserves the subgroup

D†
X ⊆ Π†

X2
. Since D†

X is normally terminal in Π†
X2

, it is verified that η is in

Π†
Dlog

X

. Moreover, from condition (1) and the fact that Π†
X is center-free, η lies

in Ker
(
D†

X

p†◦d†→ Π†
X ×G†

K
Π†

X

)
, i.e., η ∈ IX . On the other hand, as the section
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σ† acts on IX via the cyclotomic character, which is a faithful action, condition
(2) implies that η is the unit element, i.e., that s†1 = s†2, hence (s†1, s

†
1, s

†
1) =

(s†2, s
†
2, s

†
2). �

Remark 2.5.1.
In the case l 
= 2, −1 coincides with the unit element 1 in (K×)∧. Then, in

the statement of Proposition 2.5, by taking a 1-cocycle map δ to be trivial, we
may obtain s†δ satisfying s†δ ◦ σ† = σ†.

3. The proof of Theorem A

We begin with a review of the notation and the setup. Let l be a prime number,
K a finite field in which l is invertible, and K a separable closure of K. We
shall denote by GK the Galois group of K over K. Next, let X be a hyperbolic

curve over K of type (g, r), xlog a strict K-rational log point of X
log

:= X
log

1 ,

and write X
log

x := X
log

2 ×
X

log xlog, x̃log := Dlog ×
X

log
1

xlog, GKlog := Πxlog . In

addition, we assume that we have fixed choices of specific homomorphisms

iΠ1 : Π
X

log
x

−→ ΠX2 , pΠ
1 : ΠX2 −→ ΠX

(they determine a structure morphism fX : Π
X

log
x

→ GKlog by taking fX = iΠ1 ◦
pΠ

1 : Π
X

log
x

→ GKlog

(
:= Im(Π

X
log
x

iΠ1 ◦pΠ
1→ ΠX)

)
), within in the respective conjugacy

classes determined by these homomorphisms, a choice of specific decomposition
group Dx̃ ⊆ Π

X
log
x

associated to x̃, where we write

γx : Dx̃ −→ Π
X

log
x

for the natural inclusion, and a choice of a section

σX : GK −→ Dx̃

of the composite surjection Dx̃
γx→ Π

X
log
x

fX→ GKlog → GK .

Definition 3.1.

(i) The section σX determines, by composing with the morphism Dx̃
γx→

Π
X

log
x

(resp., Dx̃

iΠ1 ◦γx−→ ΠX2 , Dx̃

pΠ◦iΠ1 ◦γx−→ ΠX×2), a natural conjugate GK-

action on Δ1
X2/1

∼= Ker(Π
X

log
x

fX� GKlog) (resp., on ΔX2 , on ΔX×2), hence

also on
Gr1

X2/1
:= GrQl

(Δ1
X2/1

),
(
resp., GrX2 := GrQl

(ΔX2), GrX×2 := GrQl
(ΔX×2)

)
,
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Lie1
X2/1

:= Lie(Δ1
X2/1

(1/∞)),
(
resp., LieX2 := Lie(ΔX2(1/∞)), LieX×2 := Lie(ΔX×2(1/∞))

)
,

Lin1
X2/1

:= Lin(Δ1
X2/1

(1/∞))(Ql).(
resp., LinX2 := Lin(ΔX2(1/∞))(Ql), LinX×2 := Lin(ΔX×2(1/∞))(Ql)

)
.

In the following, we regard these objects as to be equipped with the
GK-actions in this sense. From the discussion in Definition 1.5 (ii), we
have the following commutative diagram consisting of GK-equivariant
morphisms

Δ1
X2/1

i1−−−→ ΔX2

p−−−→ ΔX×2⏐⏐�
⏐⏐�

⏐⏐�

Lin1
X2/1

iLin
1−−−→ LinX2

pLin−−−→ LinX×n

and topological groups equipped with the additional GK-action struc-
tures

ΔLie
X2

:= ΔX×2 ×LinX×2 LinX2 , ΠLie
X2

:= ΔLie
X2

� GK

as well as GK-equivariant homomorphisms of topological groups

IntΔ
X : ΔX2 → ΔLie

X2
, IntΠ

X : ΠX2 → ΠLie
X2

.

(ii) We shall fix a 1-cocycle map δX : GK → Ix̃ := Ker(Dx̃ � GKlog) repre-
senting the Kummer class −1 (cf. the discussion preceding Proposition
2.5). Then, taking a product

σδX
: GK −→ Dx̃; g 	→ δX(g) · σX(g)

— which is a homomorphism of topological groups — gives a new section
of the surjective homomorphism Dx̃ � GK . In a similar way to (i), the
section σδX

determines a natural conjugate GK-action on

Ğr
1

X2/1
:= GrQl

(Δ1
X2/1

),

(
resp., ĞrX2 := GrQl

(ΔX2), ĞrX×2 := GrQl
(ΔX×2)

)
,

L̆ie
1

X2/1
:= Lie(Δ1

X2/1
(1/∞)),

(
resp., L̆ieX2 := Lie(ΔX2(1/∞)), L̆ieX×2 := Lie(ΔX×2(1/∞))

)
,

L̆in
1

X2/1
:= Lin(Δ1

X2/1
(1/∞))(Ql).

(
resp., L̆inX2 := Lin(ΔX2(1/∞))(Ql), L̆inX×2 := Lin(ΔX×2(1/∞))(Ql)

)
.

— where, in the following, we regard these objects as to be equipped with
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the GK-actions in this sense — as well as topological groups equipped
with the additional GK-action structures

Δ̆Lie
X2

:= ΔX×2 ×L̆inX×2
L̆inX2 , Π̆Lie

X2
:= Δ̆Lie

X2
� GK

Next, by taking account of δX and the setup of iΠ1 , pΠ
1 , γx, σX fixed

above, we may take an automorphism sΠ
δX

: ΠX2

∼→ ΠX2 , arising from the

switching morphism sX : X
log

2 → X
log

2 inducing a uniquely determined

morphism s†δX
: Π†

X2
→ Π†

X2
obtained in Section 2, and obtain GK-

equivariant homomorphisms of topological groups

sΔLie

δX
: ΔLie

X2

∼−→ Δ̆Lie
X2

, sΠLie

δX
: ΠLie

X2

∼−→ Π̆Lie
X2

induced by sΠ
δX

.

Lemma 3.2.
The GK-action induced by σδX

defined in Definition 3.1 (ii) on ΔX2 (hence

also on ĞrX2, L̆ieX2, L̆inX2 and Δ̆Lie
X2

) coincides with the action defined in a way
that

GK −→ Aut(ΔX2); g 	→ Inn(sΠ
δX

◦ iΠ1 ◦ γx ◦ σX(g)).

Proof. It follows immediately from the definition of GK-action induced by σδX
.

�

Lemma 3.3.
IntΔ

X and IntΠ
X are injective.

Proof. It is enough to verify that ΔX2 → LinX2 is injective. But it follows from
the discussion in Definition 1.5 (ii) and the fact that

⋂
m≥1 ΔX(m) = 1 (cf. [17],

Corollary 2.6). �

Definition 3.4.

(i) Let us fix a choice of each inertia subgroup Ij ⊆ Δ1
X2/1

∼= Ker(Π
X

log
x

fX�
GKlog) (j = 1, 2, · · · , r) associated to the j-th cusp (relative to some
ordering of the cusps of X ×K K) among the various Δ1

X2/1
-conjugates

of these subgroups. Then, we have a canonical isomorphisms

ηj : Ix̃
∼−→ Ij (j = 1, 2, · · · , r)

For n = 1, 2 we shall denote by Vn the completion with respect to the
filtration topology of the free Lie algebra generated by

V n := Ix̃ ⊕
( r⊕

j=1

Ij ⊕ Δab
X

)⊕n
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equipped with a natural grading (hence also a filtration) by taking Ix̃, Ij

to be of weight 2, Δab
X

to be of weight 1.

(ii) If X has genus ≥ 1, then we shall write

MX := HomZl
(H2(ΔX , Zl), Zl) .

Note that MX is canonically isomorphic to Ix̃ as a GK-module. The cup
product on the group cohomology of ΔX

2∧
H1(ΔX , MX) −→ H2(ΔX ,MX ⊗Zl

MX)

determines an isomophism

Hom(Δab
X

,MX)
∼−→ Δab

X
,

hence compositions of natural homomorphisms

φ : Ix̃
∼−→ MX −→

2∧
Δab

X
, ψ :

2∧
Δab

X
−→ MX

∼−→ Ix̃

(iii) If X has genus ≥ 1 (resp., genus = 0), then we define Ln
X to be the

quotient of Vn by the relations determined by the images of the following
morphisms:

(1) When n = 1,

•1 Ix̃ −→ V1(2/3) ; m 	→ (idIx̃
+

∑
ηj + φ)(m)

(
resp., •1 Ix̃ −→ V1(2/3) ; m 	→ (idIx̃

+
∑

ηj)(m)
)
.

(2) When n = 2 (1 ≤ i ≤ g, 1 ≤ j ≤ r, {k, k′} = {1, 2}),
•1 Ix̃ −→ V2(2/3) ; m 	→ m + ik(

∑
ηj + φ)(m)

•2 Ix̃ ⊗Zl
Δab

X
−→ V2(3/4) ; m ⊗ a 	→ [ik ◦ ηj(m), ik′(a)]

•3

∧2 Δab
X

−→ V2(2/3) ; a ∧ a′ 	→ [ik(a), ik′(a′)]

•4,5

∧2 Δab
X

−→ V2(2/3) ; a ∧ a′ 	→ ik(a) ∧ ik′(a′) − ψ(a ∧ a′)
(
resp., •1 Ix̃ −→ V2(2/3) ; m 	→ m + ik(

∑
ηj)(m)

)

— where “[ , ]” denotes the Lie bracket, and for k = 1, 2, ik : (
⊕

Ij ⊕∧2 Δab
X

) ↪→ (
⊕

Ij⊕
∧2 Δab

X
)⊕2 denotes the inclusion into the k-th factor.

(iv) If we consider a GK-action on Vn as that taking the natural action on
each direct summand in Vn, then the ideal generated by the relations
defined in (iii) is invariant under this action. Hence, we may equip the
graded Lie algebra

L1
X (resp.,L2

X)
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with the additional GK-action structure and have a GK-equivariant ho-
momorphism

iL1 : L1
X −→ L2

X

of graded Lie algebras given by

Ix̃ ⊕
( r⊕

j=1

Ij ⊕ Δab
X

) −→ Ix̃ ⊕
( r⊕

j=1

Ij ⊕ Δab
X

)⊕2

(a, b) 	→ (a, i1(b))

and a GK-equivariant isomorphism

sLX : L2
X

∼−→ L2
X

of graded Lie algebras given by

Ix̃ ⊕
( r⊕

j=1

Ij ⊕ Δab
X

)⊕2 −→ Ix̃ ⊕
( r⊕

j=1

Ij ⊕ Δab
X

)⊕2

(a, b1, b2) 	→ (a, b2, b1)

Lemma 3.5.
Let h1

Gr : L1
X → Gr1

X2/1
, h̆1

Gr : L1
X → Ğr

1

X2/1
be homomorphisms of graded

Lie algebra given by the natural inclusions Δab
X

↪→ GrQl
(Δ1

X2/1
)(1/2), Ix̃ ↪→

GrQl
(Δ1

X2/1
)(2/3) and Ij ↪→ GrQl

(Δ1
X2/1

)(2/3).

Then h1
Gr and h̆1

Gr are GK-equivariant isomorphisms of graded Lie algebras.

Proof. It is enough to verify the assertion in the case where x is cusp of X. But
since ΔPX

is trivial, it follows that the natural inclusion Π
X

log′ ↪→ Π
X

log
x

(well-

defined up to inner automorphisms) induces a GK-equivarinant isomorphism

Δab
X

∼→ Δab
Xx

. This completes the proof by Proposition 1.9 (i). �

Lemma 3.6.
Let

iLie
1 : Lie1

X2/1
−→ LieX2 , iLie

2 : L̆ie
1

X2/1
−→ L̆ieX2 , sLie

δX
: LieX2

∼−→ L̆ieX2

be the GK-equivariant homomorphisms of graded Lie algebras induced by iΠ1 :
Π

X
log
x

→ ΠX2, iΠ1 : Π
X

log
x

→ ΠX2 and sΠ
δX

: ΠX2

∼→ ΠX2 respectively.

Then there exist GK-equivariant isomorphisms of graded Lie algebras

h1
X : L1

X
∼−→ Lie1

X2/1
, h̆1

X : L1
X

∼−→ L̆ie
1

X2/1

h2
X : L2

X
∼−→ LieX2 , h̆2

X : L2
X

∼−→ L̆ieX2
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which fit into the following commutative diagrams consisting of GK-equivariant
mophisms

L1
X

iL1−−−→ L2
X

h1
X

⏐⏐�� h2
X

⏐⏐��

Lie1
X2/1

iLie
1−−−→ LieX2

L1
X

iL1−−−→ L2
X

h̆1
X

⏐⏐�� h̆2
X

⏐⏐��

L̆ie
1

X2/1

ĭLie
1−−−→ L̆ieX2

L2
X

sLδX−−−→ L2
X

h2
X

⏐⏐�� h̆2
X

⏐⏐��

LieX2

sLie
δX−−−→ L̆ieX2 .

Proof. Let h2 : L2
X → GrQl

(ΔX2) be the homomorphism given by

Ix̃ ⊕
( r⊕

j=1

Ij ⊕ Δab
X

)⊕2 −→ GrQl
(ΔX2)

(a, b1, b2) 	→ iGr
1 ◦ h1

Gr(a + b1) + sGr
δX

◦ iGr
1 ◦ h1

Gr(b2).

It is verified that h2 is an isomorphism of graded Lie algebras by Proposition
1.9 (ii) and GK-equivariant when we regard it as a map h2

Gr : L2
X → GrX2 as

well as h̆2
Gr : L2

X → ĞrX2 . If we denote iGr
1 : Gr1

X2/1
→ GrX2 , ĭGr

1 : Ğr
1

X2/1
→

ĞrX2 , sGr
δX

: GrX2

∼→ ĞrX2 be the GK-equivariant homomorphisms of graded Lie

algebras induced by iΠ1 : Π
X

log
x

→ ΠX2 , iΠ1 : Π
X

log
x

→ ΠX2 and sΠ
δX

: ΠX2

∼→ ΠX2

respectively, then we have the following GK-equivariant commutative diagram

L1
X

iL1−−−→ L2
X

h1
Gr

⏐⏐�� h2
Gr

⏐⏐��

Gr1
X2/1

iGr
1−−−→ GrX2

L1
X

iL1−−−→ L2
X

h̆1
Gr

⏐⏐�� h̆2
Gr

⏐⏐��

Ğr
1

X2/1

ĭGr
1−−−→ ĞrX2

L2
X

sLδX−−−→ L2
X

h2
Gr

⏐⏐�� h̆2
Gr

⏐⏐��

GrX2

sGr
δX−−−→ ĞrX2 .

On the other hand, by taking account of the compatibility of GK-actions (cf.
Lemma 3.2) together with Proposition 1.8, we have the following GK-equivariant
commutative diagram

Gr1
X2/1

iGr
1−−−→ GrX2⏐⏐��

⏐⏐��

Lie1
X2/1

iLie
1−−−→ LieX2

Ğr
1

X2/1

ĭGr
1−−−→ ĞrX2⏐⏐��

⏐⏐��

L̆ie
1

X2/1

ĭLie
1−−−→ L̆ieX2

GrX2

sGr
δX−−−→ ĞrX2 .⏐⏐��

⏐⏐��

LieX2

sLie
δX−−−→ L̆ieX2 .

By composing the vertical arrows in these commutative diagrams, we obtain
the required isomorphisms. �

Now, let L be a finite field of cardinality prime to l, Y a hyperbolic curve over

L of type (g′, r′), ylog a strict L-rational log point of Y
log

:= Y
log

1 ; we shall use

similar notation for objects obtained from Y (e.g., Y2, Y
log

y , ΠY2 , Π
Y

log
y

, GLlog ,
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etc.) to the notation used for objects obtained from X. Moreover, we shall fix
a choice of homomorphisms

iΠ1 : Π
Y

log
y

−→ ΠY2 , pΠ
1 : ΠY2 −→ ΠY

arising from the morphisms Y
log

y
i1→ Y2, Y2

p1→ Y within in the respective conju-
gacy classes determined by these homomorphisms.

Definition 3.7.
Let β be an isomorphism of profinite groups Π

X
log
x

∼→ Π
Y

log
y

or ΠX
∼→

ΠY . Then the natural quotient Π
X

log
x

� GK (resp., Π
Y

log
x

� GL, ΠX �
GK , ΠY � GL) arising from the structure morphism X

log

x → Spec(K) (resp.,

Y
log

y → Spec(L), X → Spec(K), Y → Spec(L)) may be characterized group-

theoretically (cf. [19], Proposition 3.3) as the (unique) maximal (Ẑ-)free abelian
quotient of Π

X
log
x

(resp., Π
Y

log
y

, ΠX , ΠY ). Therefore β induces an isomorphism

β0 : GK
∼→ GL.

Now we shall say that β is Frobenius-preserving if the isomorphism β0 : GK
∼→

GL obtained as above preserves the Frobenius elements.

In the following, suppose further that we have given a Frobenius-preserving

isomorphism α : Π
X

log
x

∼→ Π
Y

log
y

that maps Dx̃(
γx
↪→ Π

X
log
x

) onto a specific decom-

position group Dỹ of ỹ. Then we may take a section σY : GL → Dỹ of the natural
surjection Dỹ � GL and a 1-cocycle map δY : GL → Iỹ := Ker(Dỹ � GLlog) of
GL with coefficients in Iỹ so as to be compatible with σX , δX via isomorphisms

α and α0 : GK
∼→ GL induced by α. By applying the preceding discussion and

results in Section 2 to Y , we obtain objects ΠLie
Y2

, IntΠ
Y , sΠLie

δY
, etc.

Proposition 3.8.
In the notation of the above situation, there exist a GK-equivariant iso-

morphism αΔLie

2 : ΔLie
X2

∼→ ΔLie
Y2

such that it is also GK-equivariant when we

regard it as a map Δ̆Lie
X2

∼→ Δ̆Lie
Y2

and that if we denote by αΠLie

2 : ΠLie
X2

∼→ ΠLie
Y2

,

ᾰΠLie

2 : Π̆Lie
X2

∼→ Π̆Lie
Y2

the semi-direct products of αΔLie

2 in these two ways, then
these morphisms make the following diagrams commute

Π
X

log
x

IntΠX◦iΠ1−−−−→ ΠLie
X2

−−−→ ΠX×2

α

⏐⏐�� αΠLie

2

⏐⏐�� α×α

⏐⏐��

Π
Y

log
y

IntΠY ◦iΠ1−−−−→ ΠLie
Y2

−−−→ ΠY ×2

ΠLie
X2

sΠLie

δX−−−→ Π̆Lie
X2

αΠLie

2

⏐⏐� ᾰΠLie

2

⏐⏐�

ΠLie
Y2

sΠLie

δY−−−→ Π̆Lie
Y2

.

Proof. Since α is assumed to be Frobenius-preserving, it follows from [10],
Lemma 1.3.9 and [12], Corollary 2.8 that (g, r) = (g′, r′) and that α induces
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an isomorphism αcpt : Δab
X

∼→ Δab
Y

and a bijective correspondence between the

respective sets of cusps of X
log

x , Y
log

y as well as isomorphisms of the decompsition
(inertia) groups of cusps corresponding via this bijection. By using these isomor-
phisms (together with constructions of L1

X , L2
X , L1

Y , L2
Y ), Lemma 3.6 induces

GK-equivariant isomorphisms αLie : Lie1
X2/1

∼= Lie1
Y2/1

, ᾰLie : L̆ie
1

X2/1

∼= L̆ie
1

Y2/1
,

αLie
2 : LieX2

∼= LieY2 and ᾰLie
2 : L̆ieX2

∼= L̆ieY2 such that αLie = ᾰLie (by com-
patibility of GK-actions induced by as a morphism of underlying graded Lie
algebras and that these maps which make the following diagram commute in
the sense of GK-equivariant

Lie1
X2/1

iLie
1−−−→ LieX2

sLie
δX−−−→ L̆ieX2

ĭLie
1←−−− L̆ie

1

X2/1

αlie

⏐⏐�� αLie
2

⏐⏐�� ᾰLie
2

⏐⏐�� ᾰlie

⏐⏐��

Lie1
Y2/1

iLie
1−−−→ LieY2

sLie
δY−−−→ L̆ieY2

ĭLie
1←−−− L̆ie

1

Y2/1
.

Since σX , σδX
have been taken to be compatible with σY , σδY

via α respec-

tively, we have αLie = ᾰLie, iLie
1 = ĭLie

1 ) as morphisms of underlying graded Lie

algebras. On the other hand, LieX2 (resp., L̆ieX2) is, as a Lie algebra, generated

by the images of Lie1
X2/1

iLie
1→ LieX2 (resp., L̆ie

1

X2/1

ĭLie
1→ L̆ieX2) and the composition

Lie1
X2/1

iLie
1→ LieX2

sLie
δX→ L̆ieX2 = LieX2 (resp., L̆ie

1

X2/1

ĭLie
1→ L̆ieX2 = LieX2

sLie
δX→ L̆ieX2),

hence we have αLie
2 = ᾰLie

2 . Therefore, it follows from the functoriality of Lin(−)
that this diagram induces the required diagram.

�

One of main results of this paper, i.e., Theorem A, is as follows:

Theorem 3.9.
Let X (resp., Y ) be a hyperbolic curve over a finite field K (resp., L), x a

K-rational point of X (resp., y an L-rational point of Y ), X2 (resp., Y2) the

second configuration space associated to X (resp., Y ), X
log

x (resp., Y
log

y ) the

cuspidalization of X at x (resp., of Y at y) [cf. Definition 2.2], Dx̃

γx
↪→ Π

X
log
x

(resp., Dỹ

γy

↪→ Π
Y

log
y

) the decomposition group of the diagonal cusp x̃log (resp.,

ỹlog).
Let

α : Π
X

log
x

∼−→ Π
Y

log
y

be a Frobenius-preserving isomorphism [cf. Definition 3.5] which maps Dx̃ onto

Dỹ. Here, we shall denote α : ΠX
∼→ ΠY , (resp., Dx

γx
↪→ ΠX , Dy

γy

↪→ ΠY ) by the
isomorphism (resp., the decomposition group of x, the decomposition group of
y) obtained by passing to the quotients Π

X
log
x

� ΠX , Π
Y

log
y

� ΠY .
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Then there exists a unique isomorphism

α2 : ΠX2

∼−→ ΠY2

which is compatible with the natural switching automorphisms [cf. the discussion
following Remark 2.1.1] up to an inner automorphism and fits into the following
commutative square

ΠX2

α2−−−→ ΠY2⏐⏐�
⏐⏐�

ΠX
α−−−→ ΠY

(∗∗)

which induce α by restricting α2 to the inverse images (via the vertical arrows)
of Dx and Dy.

Proof. Let us take sΠ
δX

, sΠ
δY

, αΠLie

2 , and ᾰΠLie

2 as we obtained up to now. If we

identify (sΠ
X ◦ iΠ1 )(Δ1

X2/1
) with iΠ2 (Δ2

X2/1
) via the inclusion IntΠ

X : ΠX2 ↪→ ΠLie
X2

,

then it follows from Proposition 1.4 (ii) that iΠ1 (Π
X

log
x

) and (sΠ
δX

◦ iΠ1 )(Δ1
X2/1

))

generate ΠX2 (similarly, ΠY2 is generated by iΠ1 (Π
Y

log
y

) and (sΠ
δY

◦ iΠ1 )(Δ1
Y2/1

)) ).

Therefore, since the diagram

Π
X

log
x

iΠ1−−−→ ΠLie
X2

sΠ
δX−−−→ ΠLie

X2

α

⏐⏐� αΠLie

2

⏐⏐� ᾰΠLie

2

⏐⏐�

Π
Y

log
y

iΠ1−−−→ ΠLie
Y2

sΠ
δY−−−→ ΠLie

Y2

commute, αΠ
2 maps ΠX2 onto ΠY2 . Thus, the restriction α2 of αΠ

2 to ΠX2 makes
the diagram (∗∗) commutes.

Next we consider the uniqueness. Let us take two maps β, β′ : ΠX2

∼→ ΠY2

both of which make the diagram (∗∗) commutes. Then β−1 ◦ β′ induces an
automorphism of the exact sequence

1 −→ Δ1
X2/1

iΠ1−→ ΠX2

pΠ
1−→ ΠX −→ 1

which consisits of the identities of Δ1
X2/1

and ΠX . This implies that β−1 ◦ β′ is

the identity morphism (cf. § 0). �

Corollary 3.10.
Let X (resp., Y ) be a hyperbolic curve over a finite field K (resp., L), x, x′

K-rational points of X (resp., y, y′ L-rational points of Y ). Let

α : Π
X

log
x

−→ Π
Y

log
y

be a Frobenius-preserving isomorphism such that α (resp., the isomorphism α :

ΠX
∼→ ΠY induced by passing to the quotients Π

X
log
x

� ΠX , Π
Y

log
y

� ΠY ) maps
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the decomposition group of the diagonal cusp x̃ (resp., x′) to the decomposition
group of the diagonal cusp ỹ (resp., y′) up to conjugation.

Then there exists a unique Frobenius-preserving isomorphism

α′ : Π
X

log

x′
−→ Π

Y
log

y′

well-defined up to an inner automorphism which induces α by passing to the
quotients and maps the decomposition group of the diagonal cusp x̃′ to the de-
composition group of the diagonal cusp ỹ′ up to conjugation.

Proof. The existence assertion follows from Theorem 3.8 and the fact that if
Dx′ ⊆ ΠX , Dy′ ⊆ ΠY denote the decomposition groups of x′, y′ respectively,
then we have Π

X
log

x′
∼= Dx′ ×ΠX

ΠX2 , Π
Y

log

y′
∼= Dy′ ×ΠY

ΠY2 .

We consider the uniqueness assertion. Let us take two isomorphisms α̇′, α̈′ :
Π

X
log

x′
∼→ Π

Y
log

y′
which induce α : ΠX

∼→ ΠY by passing to the quotients. and

write β := (α̇′)−1 ◦ α̈′ ∈ Aut(Π
X

log

x′
) which yields, from the existence assertion,

β2 ∈ Aut(ΠX2) reducing to the identity morphism of ΠX×2 by passing to the
natural quotient ΠX2 � ΠX×2 . Then β2 define an element [β2] of OutFC(ΔX2)
and [β2] reduce to the unit element in Out(ΔX) by the definitions of α̇′, α̈′.
But OutFC(ΔY2) → Out(ΔY ) is injective (cf. [5] for the definition and results
concerning to “OutFC”), so we have [β2] = 1. This completes the proof. �

Remark 3.10.1.
Any Frobenius-preserving isomorphism is quasi-point-theoretic (cf. [19], Corol-

lary 2.10, Proposition 3.8 and [12], Corollary 2.8), i.e., induces a bijection be-
tween the set of decomposition groups of the points of X, Y . Therefore, in the
statement of Corollary 3.10, a closed point y′ of Y which corresponds to x′ via
α necessarily exists (but this choice is not unique).

4. Cuspidalization Problems for hyperbolic curves

In this last section, we apply of Theorem 3.9 to obtain group-theoretical con-
structions of the cuspidalization of a hyperbolic curve at a point infinitesimally
close to a cusp (cf. Theorem 4.3), as well as of arithmetic fundamental groups
of configuration spaces (cf. Theorem 4.4).

We maintain the notation of Section 3; moreover, until the end of Theorem
4.3, we shall assume that both X and Y are affine (i.e., r, r′ > 0), and x, y are
split cusps of X, Y , respectively, i.e., x ∈ X(K) \ X(K), y ∈ Y (L) \ Y (L). As
discussed in Definition 2.2, we obtain the major and minor cuspidal components
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X
log′

, P
log

X at x, together with the nexus ν log
x at x as strict log closed subschemes

of X
log

x (cf. [6], 1.2), which determine subgroups well-defined up to conjugacy,

Π
X

log′ , Π
P
log
X

, Πνlog
x

⊆ Π
X

log
x

— which we shall refer to, respectively, as major verticial, minor verticial, and
nexus subgroup (cf. [17], Definition 1.4).

Lemma 4.1.
The composition of morphisms X

log′ → X
log

x (resp., P
log

X → X
log

x ) and X
log

x →
X

log ×K xlog (resp., X
log

x → P
log

X ×K xlog) induces an isomorphism

Π
X

log′
∼−→ ΠX ×GK

GKlog

(
resp., Π

P
log
X

∼−→ ΠPX
×GK

GKlog

)
.

In particular, the major verticial subgroups may be thought of as defining sec-
tions of the projection Π

X
log
x

� ΠX ×GK
GKlog .

Proof. We shall only consider the non-resp’d portion due to a similar argument.
We recall that the category of két coverings has the étale descent property and
invariance for restriction from an henselian trait to its closed point (cf. [6]).

Since X
log′ → X

log ×K xlog is an isomorphism on X \ {x}, it is enough to
see isomorphicity of the morphism between the log inertia groups of ν log

x and
xlog ×K xlog, i.e., Ker(Πνlog

x
� GK) and Ker(Πxlog×Kxlog � GK) (cf. [6], 4.7 for

the terminology “log inertia subgroup”). If we fix a chart, modeled on N, of
xlog (i.e., roots of a local uniformizer at x in X), then we may give xlog ×K xlog

(resp., ν log
x ) a chart of the form N ⊕ N, where the first factor of direct sum

is that pulled back from the ground log scheme xlog and the second factor is

that pulled back from xlog as an exact closed subscheme of X
log

(resp., via

p2 ◦ i1 : X
log

x → X
log

). By using these splittings, we may express a chart of the
homomorphism of monoids induced by the morphism ν log

x → xlog ×K xlog as

N ⊕ N −→ N ⊕ N

(a, b) 	→ (a, a + b)

Then, by applying the functor Hom(( )gp, Zl(1)) to this morphism of monoids,
it is verified that the induced morphism of log inertia groups between ν log

x and
xlog ×K xlog is an isomorphism. �

Lemma 4.2.

(i) Suppose that we fix a choice of a nexus subgroup Πνlog
x

⊆ Π
X

log
x

among

its various Π
X

log
x

-conjugates. Then there exists a unique pair of inclu-

sions
Π

X
log′ ⊆ Π

X
log
x

, Π
P
log
X

⊆ Π
X

log
x
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(among their various Π
X

log
x

-conjugates) both of which contain Πνlog
x

⊆
Π

X
log
x

.

(ii) The compatible inclusions Πνlog
x

⊆ Π
X

log′ ⊆ Π
X

log
x

, Πνlog
x

⊆ Π
P
log
X

⊆
Π

X
log
x

obtained in (i) make a commutative square

Πνlog
x

−−−→ Π
P
log
X⏐⏐�

⏐⏐�
Π

X
log′ −−−→ Π

X
log
x

which is co-cartesian in the category of extensions of GKlog by pro-l
groups.

Proof. We consider assertion (i). If we fix a universal (geometrically pro-l) két

covering U log → X
log

x , then the fixed inclusion Πνlog
x

⊆ Π
X

log
x

corresponds, by

definition, to a log geometric point ν̃ log
x of U log over ν log

x . Therefore it is enough
to take Π

X
log′ ⊆ Π

X
log
x

, Π
P
log
X

⊆ Π
X

log
x

as those of corresponding to unique

irreducible components of U log over X
log′

, P
log

X which contain ν̃x. Assertion (ii)
follows from the construction of colimit and the “van Kampen Theorem” in
algebraic topology. �

Now we consider Theorem B. Once we shall consider, for simplicity of the
proof, a slightly weaker statement with respect to the case where the types
(g, r) of the hyperbolic curves satisfy that (g, r) = (0, 3) as stated below. But by
giving directly a proof of Theorem 4.4, which contain the statement of Theorem
B, we also can conclude the same statement as the case (g.r) 
= (0, 3).

Theorem 4.3.
Let X, Y be affine hyperbolic curves over a finite field K, L, respectively, of

type (g, r) 
= (0, 3) (resp., of type (g, r) = (0, 3)), x a K-rational point of X \X,
y an L-rational point of Y \ Y . Let

α : ΠX
∼−→ ΠY

(resp., α′ : ΠX×KK′
∼−→ ΠY ×LL′)

be a Frobenius-preserving isomorphism such that the decomposition groups of x
and y (which are well-defined up to conjugacy) correspond via α (resp., where
K ′, L′ are the unique extensions of K, L whose degrees of extensions are two).

Then there exists a unique isomorphism

α̃ : Π
X

log
x

∼−→ Π
Y

log
y

(resp., α̃′ : Π
X

log
x

×GK
GK′

∼−→ Π
Y

log
y

×GL
GL′)

well-defined up to composition with an inner automorphism which maps the

decomposition group (well-defined up to conjugacy) of x̃ in X
log

x to that of ỹ
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in Y
log

y and induces α (resp., α′) by passing to the quotients Π
X

log
x

� ΠX ,

Π
Y

log
y

� ΠY (resp., Π
X

log
x

×GK
GK′ � ΠX×KK′, Π

Y
log
y

×GL
GL′ � ΠY ×LL′).

Proof. The proof of uniqueness is similar to that of Corollary 3.8.
Now we consider the existence assertion. In the case (g, r) = (0, 3), X ×K K ′

is isomorphic to a tripod. Let D′
x

ι
↪→ ΠX×KK′ be a natural inclusion of a specific

decomposition group D′
x of x in ΠX×KK′ and κX : D′

x×GK′ ΠX×KK′ ↪→ Π
X

log
x
×GK

GK′ (resp., κP : ΠX×KK′ ×GK′ D′
x ↪→ Π

X
log
x

×GK
GK′) the injective morphism

induced by the isomorphism, obtained in Lemma 4.1, with respect to the major
(resp., minor) verticial subgroup. If we fix an identification D′

x
∼= Zl(1) � GK ,

then the automorphism κ of (Zl(1)×Zl(1))�GK′ given by (s1, s2, t) 	→ (s1, s1−
s2, t) coincides with (κP)

−1 ◦ κX |D′
x×GK′ D′

x
: D′

x ×GK′ D′
x

∼→ D′
x ×GK′ D′

x. Hence

the square
D′

x ×GK′ D′
x −−−→ ΠX×KK′ ×GK′ D′

x⏐⏐� κP

⏐⏐�
D′

x ×GK′ ΠX×KK′
κX−−−→ Π

X
log
x

×GK
GK′

— where the left hand vertical arrow is the natural inclusion and the upper
horizontal arrow is the composition of κ and the natural inclusion — is co-
cartesian in the category of extensions of D′

x by pro-l groups by Lemma 4.2.
Therefore, by comparing this diagram to that of Y , the proof is completed.

In the case (g, r) 
= (0, 3), by considering the number of topological generators
of profinite groups, we take an open subgroup ΠŻ ⊆ ΠX such that the corre-

sponding étale covering Ż of X satisfies the following condition: Ż is also étale
over x in their (smooth) compactification, and have at least two split points
z, z′ over x (where we shall choose z so that a suitable choice of decomposition
group Dz ⊆ ΠŻ of z coincides with Dx). Let Z be the partial compactification

of Ż at z′, Z
log

z the cuspidalization of Z at z. Moreover, let Z
log′

, P
log

Z , ν log
z be

the major, minor cuspidal component and the nexus of Z
log

z at z. Then we have
a sequence of inclusions

Πνlog
z

−→ ΠPZ
×GK

Dz
∼−→ ΠPX

×GK
Dx (�)

and a commutative diagram

ΠX ×GK
Dx ←−−− ΠŻ ×GK

Dz −−−→ ΠZ ×GK
Dz ←−−− Π

Z
log′⏐⏐�

⏐⏐�
⏐⏐�

⏐⏐�
ΠX ←−−− ΠŻ −−−→ ΠZ ←−−− Π

Z
log
z

— where the upper sequence induces a sequence of morphisms, by restricting
to subgroups,

ΠX ×GK
Dx ←− Dz ×GK

Dz
∼−→ Dz ×GK

Dz
∼←− Πνlog

z
(��).
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Hence, combining (�) with (��) yields the lower horizontal sequence of the
commutative diagram

Π
X

log′ ←−−− Πνlog
x

−−−→ Π
P
log
X⏐⏐��

⏐⏐��
⏐⏐��

ΠX ×GK
Dx ←−−− Πνlog

z
−−−→ ΠPX

×GK
Dx

Therefore, the colimit of the following diagram

ΠX ×GK
Dx ←− Πνlog

z
−→ ΠPX

×GK
Dx

in the category of extensions of Dx by pro-l groups coincides (by Lemma 4.2)
with Π

X
log
x

. Therefore, by comparing this diagram to that of Y , the proof is

completed. �

Finally, we consider Theorem C, i.e., the cuspidalization problem for geo-
metrically pro-l fundamental groups of configuration spaces of (not necessarily
proper) hyperbolic curves over finite fields:

Theorem 4.4. (cf. [11], Theorem 3.10, [4], Theorem 4.1)
Let X (resp., Y ) be a hyperbolic curve over a finite field K (resp., L). Let

α1 : ΠX
∼−→ ΠY

be a Frobenius-preserving isomorphism. Then for any n ∈ Z≥0, there exists a
unique isomorphism

αn : ΠXn

∼−→ ΠYn

well-defined up to composition with an inner automorphism, which is compatible
with the natural respective outer actions of the symmetric group on n letters and
makes the diagram

ΠXn+1

αn+1−−−→ ΠYn+1

pΠ
i

⏐⏐�
⏐⏐�pΠ

i

ΠXn

αn−−−→ ΠYn

(i = 1, · · · , n + 1) commute.

Proof. If n = 2 and X is proper, it follows from [11], Theorem 3.1. We shall
consider the case where n = 2 and X is affine. It follows from Theorem 3.8
and Proposition 4.3 that α1 induces an isomorphism α0 : GK

∼= GL and α′
2 :

ΠX2 ×GK
GK′ ∼= ΠY2 ×GL

GL′ — where GK′ ⊆ GK (resp., GL′ ⊆ GL) denotes
an open subgroup corresponding to some finite extension K ′ of K (resp., L′

of L) — as well as an isomorphism αΔ
2 : ΔX2

∼= ΔY2 . Now let us denote by
τX : GK → Out(ΔX2) (resp., τY : GL → Out(ΔY2)) the morphism obtained
naturally by lifting elements of GK (resp., GL) via the surjection ΠX2 � GK

(resp., ΠY2 � GL). Then αΔ
2 , α0 construct two morphisms

τY ◦ α0, [αΔ
2 ] ◦ τX : GK −→ Out(ΔY2)
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— where [αΔ
2 ] denotes the isomorphism Out(ΔX2)

∼→ Out(ΔY2) that sends
each element g ∈ Aut(ΔX2) to αΔ

2 ◦ g ◦ (αΔ
2 )−1 ∈ Aut(ΔY2) — which coincide

after composing with the natural homomorphism Out(ΔY2) → Out(ΔY ) by
definitions of α0, αΔ

2 . On the other hand, the images of τY ◦ α0 and [αΔ
2 ] ◦

τX lie in OutFC(ΔY2) and OutFC(ΔY2) → Out(ΔY ) is injective (cf. [5] for the
definition and results concerning to “OutFC”), so τY ◦α0 = [αΔ

2 ]◦τX . Therefore,

since ΠX2
∼= ΔX2

out
� GK (resp., ΠY2

∼= ΔY2

out
� GL), we have an isomorphism

ΠX2
∼= ΠY2 , which satisfies the required uniqueness and compatibility from the

construction. This completes the assertion in the case where n = 2 and X is
affine.

The assertion of the case n ≥ 3 follows from a very similar argument as the
above discussion. Indeed, we can apply an inductive argument on n together
with the natural extension

1 −→ Δ(X\{x})n−1 −→ ΠXn −→ ΠX −→ 1

(hence ΠXn
∼= Δ(X\{x})n−1

out
� ΠX) for an arbitrary K-rational point x ∈ X, and

the fact that OutFC(Δ(X\{x})n−1) → OutFC(Δ(X\{x})n−2) is injective. �

The following corollary follows immediately from Theorem 4.4, together with
the fact that any Frobenius-preserving isomorphism between hyperbolic curves
over finite fields preserves the set of decomposition groups of closed points (as
stated Remark 3.10.1).

Corollary 4.5. (cf. [4], Corollary 4.1)
Let X (resp., Y ) be a hyperbolic curve over a finite field K (resp., L), and

n ∈ Z≥0. Let

α : ΠX
∼−→ ΠY

be a Frobenius-preserving isomorphism, and {x1, · · · , xn} an ordered set of dis-
tinct K-rational points of X. Then there exists a ordered set {y1, · · · , yn} of
distinct L-rational points of Y and uniquely exists an isomorphism

α̃ : ΠX\{x1,··· ,xn}
∼−→ ΠY \{y1,··· ,yn}

well-defined up to composition with an inner automorphism, which induces α by
passing to quotients ΠX\{x1,··· ,xn} � ΠX , ΠY \{y1,··· ,yn} � ΠY .
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