Kummer quartics and associated

symplectic 6-folds

Abstract

Kondo(1998) described the automorphism group of the generic Jacobean Kummer surface $\mathrm{Km}(\mathrm{C})$ using a Conway chamber in the nef cone. As a sample of higher dimensional analogue, we describe the binational automorphism group of a certain holomorphic symplectic 6 -fold associated with $\mathrm{Km}(\mathrm{C})$ using the Borcherds(2000) reflection group. Bir-Aut is generated by 896 involutions and an extended extraspecial group $2 \wedge\{1+8\} .2$ whose center is Rapagnetta(2007)'s involution.

§1 Motivation/Introduction

General Study Bir-Aut(IHS) similarly to Aut(K3), replacing the nef cone $\operatorname{Nef}(\mathrm{K} 3)$ with the movable cone $\operatorname{Mov}(I H S)$

Peculiar (today) 1. Higher dimensional analogue of Kondo(1998)'s description of Aut(generic Jacobian Kummer)
2. 5 reflection groups in $\mathbf{R}^{\wedge}\{1,17\}$
$L:=I_{-}\{1,17\}(2 \wedge\{+2 a\}), \quad a=0,1,2,3,4$
even integral lattice of signature $(1,17), 2$-elementary, and

$$
q_{L}: L / L=\mathbf{Z} / 2 \mathbf{Z}^{2 a} \rightarrow \mathbf{Q} / 2 \mathbf{Z} \text { is even }
$$

$\mathrm{a}=0,1,2 \rightleftarrows \mathrm{~L}$ is realized as the Picard lattice of a K 3

2 a	0	2	4	\vdots	8
		6	6		

unimodular U+E8+D8 U+D8+D8 U+Kum U+Bw U+E8+E8
realization $\mathrm{S} \longrightarrow \mathbf{P}$ 1 double $\mathrm{Km}(\mathrm{E} 1 \times \mathrm{E} 2)$ today not (yet) with $2 \widetilde{E 8} \quad \mathbf{P} 1 \times \mathbf{P} 1$

\# of (-2) 's	19	20	24	64	0
and (-4) 's	0	2	24	896	∞

Fact: Reflections generate a subgroup of finite index in $\mathrm{O}_{\mathbb{Z}}(\mathrm{L})$ in each case.

Remark II_\{1, 17\}(2^\{+2\}), 2a=2, belongs to the Conway-Vinberg chain, on which I gave a talk in the last JES(2022).

Notation $U=\left(Z^{\wedge} 2,\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$,
An, Dr, E6, E7, E8: negative definite root lattices, \widetilde{A} n etc.: affine negative definite $\{$ Kum $\boldsymbol{\text { 16A1 Summer lattice }}$ rank 16 EBW Barnes-Wall lattice, (Leech lattice) ${ }^{2}$

Borcherds(2000, 2a=6)
(*) $\quad \mathrm{O}_{\mathbb{Z}^{+}}^{+\left(I __\{1,17\}(2 \wedge\{+6\})=\right.} \quad\binom{$ group generated by }{960 reflections }$\rtimes G \cdot L_{4}^{(2)}$ G. $L_{4}(2)=($ symmetry of fundamental domain $), \# G=2^{\wedge} 10, L_{4}(2) \cong V_{8}$

Today Give a geometric interpretation of (*), that is, describe BirPut (X) for holomorphic symplectic 6-fold $\mathrm{X}=\mathrm{X}(\mathrm{S}, \mathrm{h})$ associated with (Picard general) Kummer quartic surface (S, h).
$S=K m(C) \quad \rho(S)=17$, h: pull-back of $O_{B}(1)$
$\mathrm{Jac} \mathrm{C} / \pm 1 \hookrightarrow \mathbf{P}$ ^3
|2Ө|

Kum is an overlattice of $16 \mathrm{A1}=\oplus \mathrm{Ze}_{\boldsymbol{i}}, \quad\left(\mathrm{e}_{\boldsymbol{i}}{ }^{\wedge}\right)=-2$ $z \in T_{\text {(} 2)}$
$T=\mathbf{C}^{\wedge} 2 / \Gamma, \Gamma \cong \mathbf{Z}^{\wedge} 4, \mathrm{~T}_{(2)}$: group of 2-torsions
Mum $=\oplus \underset{i \in T_{(2)}}{ } \mathrm{Ze}_{i}+Z\left\{\left.\frac{1}{\frac{1}{H}} \sum_{H} \right\rvert\, H \subset T_{(2)}\right.$ subgroup of order 8, 16\}C $\underset{i \in T_{(2)}}{\oplus Q e_{i}}, ~$
BN * sublattice of index 2 and of Leech type, i.e., $\neq(-2)$-element

§2 Another background

$X_{a}=M_{S}(0, h, a), a=0,1$, holomorphic symplectic 6 -fold $\begin{cases}\text { birationally equivalent to } S^{[J]} & \begin{array}{l}\text { when } \mathrm{a}=1 \\ \text { not equivalent }\end{array} \\ \text { when } \mathrm{a}=0\end{cases}$
Binational double cover of $\widetilde{K_{J_{c}}}(0,2 \Theta, 2 a)$, which is OG6 (symplectic resolution of Albanese fibration
$\mathrm{M}_{\mathrm{Jac}}(2 \mathrm{v}) \longrightarrow \mathrm{Jac} \times \widehat{\mathrm{Jac}, \mathrm{v}=(0, \Theta, \mathrm{a}), ~}$
of moduli of sheaves on Jac = Jac C. (Studied by Rapagnetta(2004, thesis), Mongardi-Rapagnetta-Sacca(2018), etc.)
$\xi \in M_{\mathcal{S}}(0, h, a)$ torsion sheaf on S

This morphism is a Lagrangian fibration. Generic fiber is $\mathrm{Pic}^{\text {a }} D$ (Abelian 3-fold).
(Pic X, Beauville form) $\cong(0, h, a)^{\perp}$ in $\mathbf{Z} \oplus \operatorname{Pic} S \oplus \mathbf{Z}$
$=\left\{\begin{array}{l}\text { inc } S+<-4> \\ U+\left(h^{~} \text { in Pic } S\right)=U+\text { Kim } \quad \text { when } \mathrm{a}=1 \\ \mathrm{a}=0\end{array}\right.$
$x:=X_{0}=M_{s}(0, h, 0)$ from now on
Advantage of X : Fourier-M. transform with Kernel 8 Poincare line bdl descends to $S \times S=S \times M_{S}\left(2,-\frac{1}{2} \sum_{1}^{16} e_{i},-2\right)$ $\mathrm{Jac} \times \mathrm{Jac}$
 transf.

$$
\Phi_{2}=\Phi_{\left|H_{2}\right|}: \mathrm{X} \rightarrow \mathrm{P} \wedge 3 \quad \hat{S}=\mathrm{S}, \xi \mapsto \operatorname{Supp} \hat{\xi}
$$

$$
\left\langle H_{1}, H_{2}\right\rangle
$$

Rapagnetta's symplectic birational involution

960 reflections $=64(-2)$ refl's and $896(-4)$ refl's
$\diamond(-2)$'s : effective irreducible divisors Dc X with Beauville norm (D^{\wedge}) $=-2$

$64(-2)$ effective divisors $=32 \tilde{\text { Al }} \bigcirc \longrightarrow$
$\diamond(-4)$'s: $\mathfrak{\jmath}$ (-4)-divisor classes with divisibility $2, \quad \#=896=32 \times 28$ corresponding to binational involutions of X

Main Theorem (S, h): Picard general Summer, $X=M_{S}(0, h, 0)$
(1) $\operatorname{Bir}-\mathrm{Aut}(X)=\binom{$ group generated }{ by 896 involutions }$>\mathbb{G}$, where G is Borcherds group of order $2^{\wedge} 10$.
(2) (Geom. interpretation of G) G is the semi-direct product H.C ${ }_{2}$ of an extraspecial group, i.e., finite analogue of Heisenberg group,
$1 \rightarrow$ Rapagnetta's inv. $\rightarrow \mathrm{H} \rightarrow(\mathrm{Jac} \times \widehat{\mathrm{Jac}})_{(2)} \rightarrow 0$
by C_{2} generated by FM transf. (cf. Mongardi-Wandel(2017)).
(3) J 28 curves of genus $2 \mathrm{C}=\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{28}$ such that $\mathrm{X} \cong$ $\mathrm{M}_{\mathrm{s}_{i}}\left(0, \mathrm{~h}_{\boldsymbol{i}}, 0\right)$ for $\mathrm{i}=1, \ldots, 28$ (by Corelli type theorem). Each C_{i} gives 32 binational involutions of X. Hence we have 896 involutions.

References

§1 Motivation/Introduction

Kondo, S.: The automorphism group of a generic Jacobian Kummer surface, J. Alg. Geom. 7(1998), 589-609.

Borcherds, R.: Reflection groups of Lorentzian lattices, Duke Math. J., 104(2000), 319-366.

Nikulin, V.V.: On Kummer surfaces, Math. USSR Izv., 9(1975), 261-275.

Nikulin, V.V.: Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2reflections. Algebrogeometric applications, J. Soviet Math., 22(1983), 14-1-1475.

Conway, J.H. and Sloane, N.J.A.: Sphere packings, lattices and groups, Springer-Verlag, 1988.
§2 Another background
Rapagnetta, A.: Topological invariants od O'Grady's six dimensional irreducible synplectic variety, Math. Z., 256(2007), 1-34.

Mongardi, G., Rapagnetta, A. and Sacca, G.: The Hodge diamond of O'Grady's six-dimensional example, Comp. Math., 154(2018), 984-1013.

§3 Main Theorem

Mongardi, G. and Wandel, M.: Automorphisms of O'Grady's manifolds acting trivially on cohomology, Alg. Geom., 4(2017), 104-119.

