Igusa 3-fold and Enriques surfaces
Shigeru MUKAI
Abstract: This quartic was first found as the projective dual of Segre's 10-nodal cubic, the moduli of 6 points on the projective line. It was re-discovered as moduli of p.p.a.s's by Igusa(1962). I explain its new interpretation (Contemp. Math., 2012) as the moduli of Enriques surfaces of certain root type.

Two modular interpretations of Igusa (+ Steiner)
2-dim'I analogue of

$$
\begin{align*}
& X(2)=h_{y} / T(2) \cong \mathbb{P}^{\prime} \backslash\{0,1, \infty\} \text { A } \\
& X_{1}(2)=\operatorname{hy} / P_{0}(2) \cong \mathbb{P}^{\prime} \backslash\{0, \infty\} \text { B } \tag{B}
\end{align*}
$$

$\frac{A}{B}$ moduli of genus 2 curves with (full) level 2 str. Enrique's surface of HG-type

Igusa as moduli of curves
(1) Period

$$
\begin{aligned}
& C y^{2}=f_{6}(x) \\
& \downarrow \\
& \mathbb{P}^{\prime}
\end{aligned} \quad \Omega:=\binom{w_{1}}{w_{2}}=\binom{d x / \sqrt{f_{6}}}{x d x / \sqrt{f_{6}}}
$$

periods $\quad \int_{\alpha_{i}} \Omega, \int_{p_{1}} \Omega \in \mathbb{C}^{2} \quad(i<1,2)$

$$
\begin{aligned}
& \text { ac } C:=\mathbb{C}^{2} /\binom{\mathbb{Z}^{4} \text { geurcted }}{\text { by periods }}
\end{aligned}
$$

$$
\begin{aligned}
& z \in h_{y_{2}} / \Gamma(1)<h_{y_{2}} / \rho(1) \text { Sitcke } \\
& \left\{\begin{array}{l}
t z=z \\
I_{m} z>0
\end{array}\right. \\
& \Gamma(1)=S_{p}(4, \mathbb{Z}) /\left\{ \pm 1_{4}\right\} \quad \frac{1}{h_{y_{2}} / \Gamma(2)} \\
& \Gamma(2)=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \equiv 1_{4} \quad \bmod 2\right\} \\
& P(2) / P(1) \simeq S_{p}(4, \pi / 2) \simeq \sigma_{6}
\end{aligned}
$$

Igusa (1964) embedding by 10 even theta "constants"

Image is a quartic 3 -fold whose singular locus is union of 15 lines.

Each $v_{m}^{4}(z)=0$ cuts a (double) quadric surface Q_{m} for even m.
(2) $\underset{\substack{\mathbb{S}_{6} \\ \text {-covering }}}{\underset{m_{2}}{\downarrow} \underset{\substack{\text { period } \\ \text { map }}}{C} \overline{\mathrm{~m}_{y_{2}} / \Gamma(2)} \underset{\text { lgusa }}{\longrightarrow} \mid P^{4}}$

Fact: $\widetilde{m_{2}}$ is the complement of $\bigcup Q_{m}$.
$R_{m k} Q_{m} \approx \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}=\overline{X(2)} \times \overline{X(2)}$ parametrizes product abelian surfaces $E_{1} \times E_{2}=J_{a c} F_{1}{ }^{V} E_{2}$, the Jacobean of stable curve of compact type.

(3) Bielliptic curves and Steiner surfaces
def.
C is bielliptic $\Longleftrightarrow \nsupseteq$ involution σ such that C / σ is elliptic
$\Leftrightarrow\left\{\overline{w_{1}}, \cdots, \bar{w}_{6}\right\} \subset P^{\prime}$ is a line section of a complete quadrangle $\bigcup_{1 \leqslant i \alpha j \leqslant 4} \overline{p_{i} p_{j}}$ in \mathbb{P}^{2}.

This classical theorem gives a morphism
$\left.\mathbb{P}^{2, *} \longrightarrow \overline{\left(\begin{array}{l}\text { moduli of } \\ \text { bielliptic } \\ \text { curves }\end{array}\right.}\right)$
onto one of 15 components in Igusa.
Image of $\mathrm{IP}^{2 \text { in }^{*}}$ is a Steiner (Roman) surface.

$$
\binom{\text { tetrahedron }}{\text { xyzt }=0} /\binom{\text { Klein's }}{4 \text {-group }}
$$

Non-normal quartic surface singular along (line) V (line) V (line).

Fact: Igusa quartic has 15 linear involutions σ with Fix σ Steiner surfaces

Key for passing from A to B

$$
\begin{aligned}
& \begin{array}{l}
\Gamma_{l}(2):=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \equiv\left(\begin{array}{ll}
l_{2} & k \\
O_{2} & 1_{2}
\end{array}\right) \bmod 2\right\} \\
U \text { index } 8
\end{array} \\
& \text { Fact: } \overline{X_{1}(2)} \\
& \text { is again Igusa } \\
& \text { quartic. } \\
& \text { moduli of } \\
& \text { (} c, G \text {) } \\
& G \subset\left(J_{a c} C\right)_{(z)} \\
& \text { Giopel, ide., \# } G=4
\end{aligned}
$$

Igusa quartic has a selfWerlpaining $\left.\right|_{G} \equiv 0$ morphism of degree 8.

B Igusa as moduli of Enrique's surfaces

Q. Find $*$.

Answer by M.-Ohashi(2013):

* should be Hutchinson-Gopel (HG) type.
mini-history
Kummer(1864) Found 3-dim'I family of quartic surfaces with 16 nodes (16 is maximal possible)

Borchardt(1877) Uniformize them by abelian surfaces, or he. functions.
Kummer's equation is equivalent to Gopel's one found in 1847.

Hutchinson(1901) Found a new equation of Kummer quartic $\overline{K_{m}}(c) \subset \mathbb{P}^{3}$, with
reference to Gopel subgroup $G \subset\left(J_{e c} C\right)_{(2)}$,
which is invariant under standard Cremona transformation of \mathbb{P}^{3}.

$$
(x: y, z: t) \longleftrightarrow\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{2}: \frac{1}{x}\right)
$$

More precisely, we have
7) (C, σ) bielliptic \&s $G=\left\{a \in(J a c C)_{(2,} \mid \sigma(a)=a\right\}$
$\Rightarrow\langle G\rangle=$ plane $\subseteq p^{3}$ (degenerate case)
Otherwise standard Cremona transformation induces an involution

$$
\varepsilon_{G} \in A_{n t}\left(K_{m} \subset\right)
$$

Quotient $\mathrm{Km} C / \varepsilon_{G}$ is called Enriques of HG type if ε_{G} is free.
$\begin{aligned} & \text { Enriques } \\ & \text { surface }\end{aligned} \quad S=X / \varepsilon \quad$ K3 surf./free inv.
(1) [period of $S] \in \mathcal{D}^{10}$ bod symmetric domain of type IV
well-defined modulo $\bigcirc_{\mathbb{Z}}(2,10)$,
the orthogonal group of $\operatorname{diag}[1,1, \underbrace{1, \ldots,-1}_{10}]$
$<$ Corelli type hm> $S \cong S^{\prime} \Longleftrightarrow$ periods are the same (modulo $\left.\mathrm{O}_{\mathbb{Z}}(2,10)\right)$ <surf. the> $\{$ periods of $S\} \underset{\text { open }}{\longrightarrow} \mathcal{A}^{10} / O_{\mathbb{Z}}(2,10)$ is the complement of a divisor
$R_{m k}$ (1) e is the zero locus of
Borcherds' Φ. (\Rightarrow quasi-projectivity of moduli)
(2) \sum parametrizes Coble surfaces X / ε, 1.t. Fix $\varepsilon=\{m$ nodes $\}, 1 \leqslant m \leqslant 10, X / \varepsilon$ has m singular points of type $(1,1) / 4$.
(2) \sin (3) I natural embeddings

which is geometrically interpreted as follows:
Theorem
(2) $\overline{x_{1}(2)} \cap C$ is the union of 2 Steiner surfaces H_{4} \& H_{8}. The complement of $\mathrm{H}_{4} \cup \mathrm{H}_{8}$ is moduli of Enriques surfaces of HG-type. (Root type $D_{6}+A_{1}$)
(3) $\left(c, G_{9}\right) \in H_{4} \Rightarrow \exists$ bielliptic involution σ st.

$$
G \subset \overline{K_{m}(C)} \subset \mathbb{B}^{3},\langle G\rangle \cong \mathbb{B}^{2},\langle G\rangle_{0} \overline{K_{m}(C)}
$$

is the union of 2 conics.
Their strict transforms R_{1} and R_{2} are disjoint on $\mathrm{Km}(\mathrm{C})$.

Contract R's to 2 nodes and take quotient by σ. Then one obtains a Coble surface with two
 $(1,1) / 4$ singular points $(m=2)$.

(3) (contd) $\quad(C, G) \in H_{g} \Leftrightarrow J_{c c} C$ hoo

 real multiplication by $\sqrt{2}, i, c$., End ()$\supset \mathbb{Z}[\sqrt{2}]$.

References

1. Dolgachev, l.: Rummer surfaces: 200 years of study, Notices AMS, 2022, pp. 1527-1533.
2. Geer, van der G.: On the geometry of Siegel modular threefold, Math. Ann. 260(1982), 317-350.
3. Hirzeburch, F.: The ring of Hilbert modular forms for real quadratic fields of small discriminant, Lect. Notes in Math., 6(1976), 288-323.
4. Igusa, J.: On the Siegel modular forms of genus 2, Amer. J. Math., 1964.
5. Mukai, S.: Lecture notes on K3 and Enriques surfaces in "Contribution to algebraic geometry", EMS Publ., 2011, pp. 389-405. 6. ---: Igusa quartics and Steiner surfaces, Contemp. Math. 584(2012). 7. --- and Ohashi, H.: Enriques surfaces of Hutchinson-Gopel type and Mathieu automorphisms, Fields Inst. Commun. 67(2013), 429-454.
(The next page was used at the beginning of my 3rd talk on $5(\mathrm{~W})$ to explain type II \& III boundaries.)

These are interior divisor when regarded as moduli
of pyAS's of covering K3's

$$
\begin{aligned}
& \text { True bury }=\bigcup \text { log } \quad \text { True bury }=\bigcup 6 \text { lines } \\
& \begin{array}{l}
\text { Cayley- } \\
\text { Richmond }
\end{array} \quad \begin{array}{l}
1 \leqslant i<j \leqslant 4
\end{array} \quad=\quad \text { Remark Remaining } 9 \text { lines } \\
& \text { parametrize Enrique's } \\
& \text { surfaces with extra } \\
& \text { automorphism. } \\
& \left\{\begin{array}{l}
\text { type IL } \\
\text { type ID }
\end{array}\right. \\
& \begin{array}{ccc}
& N & N^{2} \\
\text { Hr II } & \neq 0 & 0 \\
\text { Ill } & & \neq 0
\end{array} \quad \begin{array}{l}
\text { quasi-unipotent } \\
\end{array}
\end{aligned}
$$

