Enriques surfaces and root lattices

— Enriques surfaces of type E_7 —

Shigeru Mukai

Oct. 29, 2010 at Kinosaki Onsen

Enriques surface $S = X/\varepsilon = (K3 \text{ surface})/(\text{free involution})$ $\mathbf{Z}^{\omega} := (\mathbf{Z} \times X)/(-1, \varepsilon) \to S$ nontrivial local system on S $H := H_S := H^2(S, \mathbf{Z}^{\omega}) \simeq \mathbf{Z}^{12}$: Hodge structure of weight 2, that is, $H_S \otimes_{\mathbf{Z}} \mathbf{C} = H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$. Hodge # = (1, 10, 1)

H carries an integral symmetric bilinear form induced by $\mathbf{Z}^{\omega} \times \mathbf{Z}^{\omega} \to \mathbf{Z}$. As a lattice, $H \simeq I_{2,10}$, odd unimodular lattice with signature (2, 10). H_S is a polarized Hodge structure.

Twisted Picard group $\operatorname{Pic}^{\omega} S := H^2(S, \mathbf{Z}^{\omega}) \cap H^{1,1}$

is a negative definite lattice which does not contain (-1) elements.

Relation with traditional formulation

$$H^{2}(S, \mathbf{Z}^{\omega}) = \operatorname{Ker}[H^{2}(X, \mathbf{Z}) \longrightarrow H^{2}(S, \mathbf{Z})(\simeq \mathbf{Z}^{12} \oplus \mathbf{Z}/2)]$$

 $\operatorname{Pic}^{\omega} S = \operatorname{Ker}[\operatorname{Pic} X \longrightarrow \operatorname{Pic} S](1/2), \text{ twisted Picard } \# = \rho(X) - 10.$

Torelli type theorem (in new formulation)

S, S': two Enriques surfaces.

 $H^2(S, \mathbf{Z}^{\omega}) \simeq H^2(S', \mathbf{Z}^{\omega})$ as polarized Hodge structures $\Rightarrow S \simeq S'$. In other words,

{Enriques surface} / isom. $\longrightarrow D^{10}/O(I_{2,10}), \quad S \mapsto H_S,$ is injective (and almost surjective).

Inverse Problem: (Re)construct S from its period H_S , or KS(H_S), the Kuga-Satake abelian variety of dimension 2^{10} .

Two parts: a) Construct the K3-cover $X = \tilde{S}$.

b) Construct the free involution ε .

Today I answer in the case of type E_7 . In this case $KS(H_S)$ is isogeneous to the self product A^{2^8} for an abelian surface A. Still both a) and b) are non-trivial. **Definition** Let L be a negative definite lattice which does not contain a (-1) element. An Enriques surface S is of (lattice) type L if there exists a primitive embedding $L \longrightarrow \operatorname{Pic}^{\omega} S$.

Assume

(*) the primitive embeddings of L into $I_{2,10}$ is unique

and let $M := L^{\perp}$ be the orthogonal complement.

By Torelli, the period map

{Enriques surface of type L}/L-isom. $\longrightarrow D^{m-2}/O(M)'$,

 $S \mapsto \text{Hodge structure on } M$,

is injective, where m is the rank of M,

 $D^{m-2} = \{ z \in M \otimes \mathbf{C} \mid (z, z) = 0, \ (z, \overline{z}) > 0 \}$

is the (m-2)-dimensional bounded symmetric domain of type IV, on which the orthogonal group O(M) acts, and O(M)' is the image of $O(I_{2,10}, L) \to O(M)$. I consider the case where $L = E_7$. E_7 satisfies (*) and the orthogonal complement is < 1, 1, -1, -1, -2 >, that is, \mathbb{Z}^5 with inner product diag[1, 1, -1, -1, -2]. Moreover, $O(I_{2,10}, E_7) \longrightarrow O(< 1, 1, -1, -1, -2 >)$ is surjective. Hence the period map

{Enriques of type E_7 }/isom. $\longrightarrow D^3/O(<1, 1, -1, -1, -2>)$ is injective.

Lemma (1) D^3 is the Siegel upper half space H_2 of degree 2, and $D^3/O(<1, 1, -1, -1, -2>)$ is the quotient of $H_2/\Gamma_0(2)$ by the Fricke (or Atkin-Lehner) involution.

(2) $H_2/\Gamma_0(2)$ is the moduli space of pairs (A, G) of a principally polarized abelian surface A and a Göpel subgroup $G \subset A_{(2)}$.

(3) The Fricke involution maps (A, G) to $(A', G') := (A/G, A_{(2)}/G)$.

Inverse Problem for E_7

Construct an Enriques surface S of type E_7 from (A, G) corresponding to the period of S.

Enriques surfaces of type E_7, E_8 and $(E_7 + A_1)^+$

Consider the quartic surfaces in $\mathbf{P}^3_{x:y:z:t}$

$$\{a(xt + yz) + b(yt + xz) + c(zt + xy)\}^2 - xyzt = 0.$$

for nonzero constants $a, b, c \in \mathbb{C}$. This is a K3 surface with 4 rational double points of type D_4 . Let X be the minimal resolution. Standard Cremona transformation

$$(x:y:z:t)\mapsto (\frac{1}{x}:\frac{1}{y}:\frac{1}{z}:\frac{1}{t})$$

induces an involution ε of X, which is free if $\pm a \pm b \pm c \neq 1/2$.

Projecting from (0001), we get a double plane expression

$$X:\tau^{2} = p(\frac{x}{z} + \frac{z}{x}) + q(\frac{y}{z} + \frac{z}{y}) + r(\frac{x}{y} + \frac{y}{x}) + s$$

for constants $p, q, r, s \in \mathbf{C}$ with $pqr \neq 0$.

Theorem (1) The quotient of a quartic $\{a(xt+yz)+b(yt+xz)+c(zt+xy)\}^2 - xyzt = 0$ by Cremona is an Enriques of type E_7 (if $\pm a \pm b \pm c \neq 1/2$).

(2) Every Enriques S of type E_7 is obtained in this way.

(3) The coefficient (p:q:r:s) is explicitly determined from the period H_S explicitly.

Remark on $\{a(xt + yz) + b(yt + xz) + c(zt + xy)\}^2 - xyzt = 0$

(1) In characteristic 2, this is the equation of the Jacobian Kummer surface Km(Jac(C)) (Laszlo-Pauly).

(2) This K3 is not a Jacobian Kummer but *isogeneous* to it.

(3) This deforms to the double covering of the quadric Q: a(xt + yz) + b(yt + xz) + c(zt + xy) = 0 with branch $Q \cap \{xyzt = 0\}$. This is a product Kummer surface Km $(E_1 \times E_2)$ and its quotient by Cremona is an Enriques surface of type $(E_7 + A_1)^+$.

(4) An Enriques surfrace becomes of type E_8 if one of p, q, rbecomes 0 in the double plane expression

$$\tau^{2} = p(\frac{x}{z} + \frac{z}{x}) + q(\frac{y}{z} + \frac{z}{y}) + r(\frac{x}{y} + \frac{y}{x}) + s.$$

How to recover S from H_S

(A,G) the pair corresponding to H_S

A is a p.p.a.s. and $G = \{0, a, b, c\} \subset A_{(2)}$ is a Göpel.

I consider the case where A is the Jacobian of a curve C of genus 2. (When A is product, then S is E_8 -type.)

C is a double cover of \mathbf{P}^1 with 6 points P_1, \ldots, P_6 . A 2-torsion point $a \neq 0 \in A_{(2)}$ is $\tilde{P}_{i(a)} + \tilde{P}_{j(a)} - K_C$ for different i(a), j(a). Regard \mathbf{P}^1 as a conic *Q* in $\mathbf{P}^2_{u:v:w}$. Let $l_{i(a)} + l_{j(a)} : q_a(u, v, w) = 0$ be the sum of two tangent lines of *Q* at $P_{i(a)}, P_{j(a)}$.

Then \tilde{S} is the double plane

$$\tau^2 = \det(xq_a + yq_b + zq_c)/xyz$$

and S is its quotient by $(x, y, \tau) \mapsto (1/x, 1/y, -\tau)$.

Remark (1) G is Göpel $\Leftrightarrow \{i(a), j(a), \dots, j(c)\} = \{1, \dots, 6\}.$

Proof of Theorem

 $\operatorname{Km}(A/G)$ is the double $\mathbf{P}_{u:v:w}^2$ with equation $\tau^2 = q_a q_b q_c$.

Km(A) is the (2, 2, 2)-covering of $\mathbf{P}_{u:v:w}^2$ with equation $\tau_1^2 = q_a, \ \tau_2^2 = q_b, \ \tau_3^2 = q_c$. This is a complete intersection of three quadrics in \mathbf{P}^5 .

Double plane

$$\tau^2 = \det(xq_a + yq_b + zq_c)/xyz$$

is the moduli space of 2-bundles on $\operatorname{Km}(A)$ with Mukai vector (2, h, 2). Its period is $v^{\perp}/\mathbb{Z} \cdot v$. By computation this is the same as the period of \tilde{S} . By Torelli, the double plane is isomorphic to \tilde{S} .

Remark Fixed point condition $\pm a \pm b \pm c \neq 1/2 \Leftrightarrow A$ has a real $\sqrt{2}$ -multiplication $\varphi \in \text{Aut } A, \varphi^2 = 2$, and $G = \text{Ker } \varphi$.

Enriques surfaces of type $(D_6 + A_1)^+$

 $D_6 + A_1$ has two type of primitive embeddings into $I_{2,10}$. One has odd orthogonal complement and the other even one. The latter embedding is denoted by $(D_6 + A_1)^+$.

Let q(u, v, w) = 0 be a smooth plane conic and consider the quartic surface q(xt + yz, yt + xz, zt + xy) + xyzt = 0.

This is Kummer's quartic surface Km (Jac C) with 16 nodes. 4 nodes at the coordinate points form a Göpel subgroup G of the Jacobian. Standard Cremona transformation induces a free involution and we obtain an Enriques surface (Km Jac C)/ ε .

Theorem (1) (Km Jac C)/ ε is an Enriques surface of type $(D_6 + A_1)^+$.

(2) Every Enriques surface S of type $(D_6 + A_1)^+$ is obtained in this way or of type $(E_7 + A_1)^+$ or $(D_8)^+$. (In the latter two cases, the K3-cover \tilde{S} is Km $(E_1 \times E_2)$.)