Enriques surfaces and root lattices

- Enriques surfaces of type E_{7} -

Shigeru Mukai

Oct. 29, 2010 at Kinosaki Onsen

Enriques surface $S=X / \varepsilon=$ (K3 surface)/(free involution)
$\mathbf{Z}^{\omega}:=(\mathbf{Z} \times X) /(-1, \varepsilon) \rightarrow S$ nontrivial local system on S
$H:=H_{S}:=H^{2}\left(S, \mathbf{Z}^{\omega}\right) \simeq \mathbf{Z}^{12}$: Hodge structure of weight 2, that is,
$H_{S} \otimes_{\mathbf{z}} \mathbf{C}=H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$. Hodge $\#=(1,10,1)$
H carries an integral symmetric bilinear form induced by
$\mathbf{Z}^{\omega} \times \mathbf{Z}^{\omega} \rightarrow \mathbf{Z}$. As a lattice, $H \simeq I_{2,10}$, odd unimodular lattice with signature $(2,10) . H_{S}$ is a polarized Hodge structure.

Twisted Picard group $\operatorname{Pic}^{\omega} S:=H^{2}\left(S, \mathbf{Z}^{\omega}\right) \cap H^{1,1}$
is a negative definite lattice which does not contain (-1) elements.
Relation with traditional formulation
$H^{2}\left(S, \mathbf{Z}^{\omega}\right)=\operatorname{Ker}\left[H^{2}(X, \mathbf{Z}) \longrightarrow H^{2}(S, \mathbf{Z})\left(\simeq \mathbf{Z}^{12} \oplus \mathbf{Z} / 2\right)\right]$
$\operatorname{Pic}^{\omega} S=\operatorname{Ker}[\operatorname{Pic} X \longrightarrow \operatorname{Pic} S](1 / 2)$, twisted Picard $\#=\rho(X)-10$.

Torelli type theorem (in new formulation)
S, S^{\prime} : two Enriques surfaces.
$H^{2}\left(S, \mathbf{Z}^{\omega}\right) \simeq H^{2}\left(S^{\prime}, \mathbf{Z}^{\omega}\right)$ as polarized Hodge structures $\Rightarrow S \simeq S^{\prime}$.
In other words,
$\{$ Enriques surface $\} /$ isom. $\longrightarrow D^{10} / O\left(I_{2,10}\right), \quad S \mapsto H_{S}$,
is injective (and almost surjective).
Inverse Problem: (Re)construct S from its period H_{S}, or $\mathrm{KS}\left(H_{S}\right)$, the Kuga-Satake abelian variety of dimension 2^{10}.

Two parts: a) Construct the K3-cover $X=\tilde{S}$.
b) Construct the free involution ε.

Today I answer in the case of type E_{7}. In this case $\operatorname{KS}\left(H_{S}\right)$ is isogeneous to the self product $A^{2^{8}}$ for an abelian surface A. Still both a) and b) are non-trivial.

Definition Let L be a negative definite lattice which does not contain a (-1) element. An Enriques surface S is of (lattice) type L if there exists a primitive embedding $L \longrightarrow \mathrm{Pic}^{\omega} S$.

Assume
$\left(^{*}\right)$ the primitive embeddings of L into $I_{2,10}$ is unique
and let $M:=L^{\perp}$ be the orthogonal complement.
By Torelli, the period map
$\{$ Enriques surface of type $L\} / L$-isom. $\longrightarrow D^{m-2} / O(M)^{\prime}$,
$S \mapsto$ Hodge structure on M,
is injective, where m is the rank of M,
$D^{m-2}=\{z \in M \otimes \mathbf{C} \mid(z, z)=0,(z, \bar{z})>0\}$
is the $(m-2)$-dimensional bounded symmetric domain of type IV, on which the orthogonal group $O(M)$ acts, and $O(M)^{\prime}$ is the image of $O\left(I_{2,10}, L\right) \rightarrow O(M)$.

I consider the case where $L=E_{7} . E_{7}$ satisfies $\left(^{*}\right)$ and the orthogonal complement is $\langle 1,1,-1,-1,-2\rangle$, that is, \mathbf{Z}^{5} with inner product diag $[1,1,-1,-1,-2]$. Moreover, $O\left(I_{2,10}, E_{7}\right) \longrightarrow O(<1,1,-1,-1,-2>)$ is surjective. Hence the period map
$\left\{\right.$ Enriques of type $\left.E_{7}\right\} /$ isom. $\longrightarrow D^{3} / O(<1,1,-1,-1,-2>)$
is injective.
Lemma (1) D^{3} is the Siegel upper half space H_{2} of degree 2, and $D^{3} / O(<1,1,-1,-1,-2>)$ is the quotient of $H_{2} / \Gamma_{0}(2)$ by the Fricke (or Atkin-Lehner) involution.
(2) $H_{2} / \Gamma_{0}(2)$ is the moduli space of pairs (A, G) of a principally polarized abelian surface A and a Göpel subgroup $G \subset A_{(2)}$.
(3) The Fricke involution maps (A, G) to $\left(A^{\prime}, G^{\prime}\right):=\left(A / G, A_{(2)} / G\right)$.

Inverse Problem for E_{7}

Construct an Enriques surface S of type E_{7} from (A, G) corresponding to the period of S.

Enriques surfaces of type E_{7}, E_{8} and $\left(E_{7}+A_{1}\right)^{+}$
Consider the quartic surfaces in $\mathbf{P}_{x: y: z: t}^{3}$

$$
\{a(x t+y z)+b(y t+x z)+c(z t+x y)\}^{2}-x y z t=0 .
$$

for nonzero constants $a, b, c \in \mathbf{C}$. This is a K3 surface with 4 rational double points of type D_{4}. Let X be the minimal resolution. Standard Cremona transformation

$$
(x: y: z: t) \mapsto\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}: \frac{1}{t}\right)
$$

induces an involution ε of X, which is free if $\pm a \pm b \pm c \neq 1 / 2$.

Projecting from (0001), we get a double plane expression

$$
X: \tau^{2}=p\left(\frac{x}{z}+\frac{z}{x}\right)+q\left(\frac{y}{z}+\frac{z}{y}\right)+r\left(\frac{x}{y}+\frac{y}{x}\right)+s
$$

for constants $p, q, r, s \in \mathbf{C}$ with $p q r \neq 0$.
Theorem (1) The quotient of a quartic
$\{a(x t+y z)+b(y t+x z)+c(z t+x y)\}^{2}-x y z t=0$ by Cremona is an Enriques of type E_{7} (if $\pm a \pm b \pm c \neq 1 / 2$).
(2) Every Enriques S of type E_{7} is obtained in this way.
(3) The coefficient ($p: q: r: s$) is explicitly determined from the period H_{S} explicitly.

Remark on $\{a(x t+y z)+b(y t+x z)+c(z t+x y)\}^{2}-x y z t=0$
(1) In characteristic 2, this is the equation of the Jacobian Kummer surface $\operatorname{Km}(\operatorname{Jac}(C))$ (Laszlo-Pauly).
(2) This K3 is not a Jacobian Kummer but isogeneous to it.
(3) This deforms to the double covering of the quadric
$Q: a(x t+y z)+b(y t+x z)+c(z t+x y)=0$ with branch
$Q \cap\{x y z t=0\}$. This is a product Kummer surface $\operatorname{Km}\left(E_{1} \times E_{2}\right)$ and its quotient by Cremona is an Enriques surface of type $\left(E_{7}+A_{1}\right)^{+}$.
(4) An Enriques surfrace becomes of type E_{8} if one of p, q, r becomes 0 in the double plane expression

$$
\tau^{2}=p\left(\frac{x}{z}+\frac{z}{x}\right)+q\left(\frac{y}{z}+\frac{z}{y}\right)+r\left(\frac{x}{y}+\frac{y}{x}\right)+s .
$$

How to recover S from H_{S}
(A, G) the pair corresponding to H_{S}
A is a p.p.a.s. and $G=\{0, a, b, c\} \subset A_{(2)}$ is a Göpel.
I consider the case where A is the Jacobian of a curve C of genus 2 . (When A is product, then S is E_{8}-type.)
C is a double cover of \mathbf{P}^{1} with 6 points P_{1}, \ldots, P_{6}. A 2 -torsion point $a \neq 0 \in A_{(2)}$ is $\tilde{P}_{i(a)}+\tilde{P}_{j(a)}-K_{C}$ for different $i(a), j(a)$. Regard \mathbf{P}^{1} as a conic Q in $\mathbf{P}_{u: v: w}^{2}$. Let $l_{i(a)}+l_{j(a)}: q_{a}(u, v, w)=0$ be the sum of two tangent lines of Q at $P_{i(a)}, P_{j(a)}$.

Then \tilde{S} is the double plane

$$
\tau^{2}=\operatorname{det}\left(x q_{a}+y q_{b}+z q_{c}\right) / x y z
$$

and S is its quotient by $(x, y, \tau) \mapsto(1 / x, 1 / y,-\tau)$.
$\operatorname{Remark}(1) G$ is Göpel $\Leftrightarrow\{i(a), j(a), \ldots, j(c)\}=\{1, \ldots, 6\}$.

Remark $(2)(A, G)$ and $\left(A / G, A_{(2)} / G\right)$ give the same S by Richelot's theorem. 6 points Q_{1}, \ldots, Q_{6} corresponding to $\left(A / G, A_{(2)} / G\right)$ is given by the ${ }^{`}$ diagram.

Proof of Theorem

$\operatorname{Km}(A / G)$ is the double $\mathbf{P}_{u: v: w}^{2}$ with equation $\tau^{2}=q_{a} q_{b} q_{c}$.
$\mathrm{Km}(A)$ is the $(2,2,2)$-covering of $\mathbf{P}_{u: v: w}^{2}$ with equation
$\tau_{1}^{2}=q_{a}, \tau_{2}^{2}=q_{b}, \tau_{3}^{2}=q_{c}$. This is a complete intersection of three quadrics in \mathbf{P}^{5}.

Double plane

$$
\tau^{2}=\operatorname{det}\left(x q_{a}+y q_{b}+z q_{c}\right) / x y z
$$

is the moduli space of 2-bundles on $\operatorname{Km}(A)$ with Mukai vector $(2, h, 2)$. Its period is $v^{\perp} / \mathbf{Z} \cdot v$. By computation this is the same as the period of \tilde{S}. By Torelli, the double plane is isomorphic to \tilde{S}.

Remark Fixed point condition $\pm a \pm b \pm c \neq 1 / 2 \Leftrightarrow A$ has a real $\sqrt{2}$-multiplication $\varphi \in$ Aut $A, \varphi^{2}=2$, and $G=\operatorname{Ker} \varphi$.

Enriques surfaces of type $\left(D_{6}+A_{1}\right)^{+}$
$D_{6}+A_{1}$ has two type of primitive embeddings into $I_{2,10}$. One has odd orthogonal complement and the other even one. The latter embedding is denoted by $\left(D_{6}+A_{1}\right)^{+}$.

Let $q(u, v, w)=0$ be a smooth plane conic and consider the quartic surface $q(x t+y z, y t+x z, z t+x y)+x y z t=0$.
This is Kummer's quartic surface Km (Jac C) with 16 nodes. 4 nodes at the coordinate points form a Göpel subgroup G of the Jacobian. Standard Cremona transformation induces a free involution and we obtain an Enriques surface $(\mathrm{Km} \operatorname{Jac} C) / \varepsilon$.
Theorem (1) (Km Jac $C) / \varepsilon$ is an Enriques surface of type $\left(D_{6}+A_{1}\right)^{+}$.
(2) Every Enriques surface S of type $\left(D_{6}+A_{1}\right)^{+}$is obtained in this way or of type $\left(E_{7}+A_{1}\right)^{+}$or $\left(D_{8}\right)^{+}$. (In the latter two cases, the K3-cover \tilde{S} is $\mathrm{Km}\left(E_{1} \times E_{2}\right)$.)

