Birational Geometry of Algebraic Varieties

Open Problems

THE XXIIIRD INTERNATIONAL SYMPOSIUM

DIVISION OF MATHEMATICS

THE TANIGUCHI FOUNDATION

August 22 - August 27, 1988

Katata

Problems on characterization of the complex projective space

by

Shigeru Mukai

A compact complex manifold X is a Fano manifold if its 1st Chern class $c_1(X) \in H^1(X,\mathbb{Z})$ is positive, or equivalently, the anticanonical class $-K_X$ is ample. The projective space \mathbb{P}^n is the most typical example. In this note, I pose some problems on characterization of \mathbb{P}^n which was conceived during my study on Fano manifolds of coindex 3 [Mu].

1. Characterization by index

For a Fano manifold X, the largest integer r which divides $c_1(X)$ in $\operatorname{H}^2(X,\mathbb{Z})$ is called the *index* of X. The index of \mathbb{P}^n is equal to n+1.

Theorem 1. ([K-0]). Let X be a Fano manifold. Then index X \leq dim X + 1. Moreover, the equality holds if and only if X \simeq \mathbb{P}^{n} .

If X is a Fano manifold of index r, then the vector bundle $\theta_X(-K_X/r)^{\oplus r}$ is ample and its first Chern class is equal to $c_1(X)$. So we consider ample vector bundles E on X with $c_1(E) = c_1(X)$. How big can the rank r(E) of E be? By [Mo], there exists a rational curve C on X with $(C \cdot c_1(X)) \le \dim X + 1$. Since every vector bundle on \mathbb{P}^1 is a direct sum of line bundles, we have $r(E) = r(E|_C) \le \dim X + 1$.

Conjecture 1. Let X be a compact complex manifold and E an ample vector bundle on it with $c_1(E) = c_1(X)$. If $r(E) = \dim X + 1$, then $(X,E) \simeq (\mathbb{P}^n, \mathfrak{O}(1)^{\oplus (n+1)})$.

2. Characterization by the tangent bundle

The following was conjectured by [Ha].

Theorem 2. ([Mo]). A compact complex manifold X with ample tangent bundle T_Y is isomorphic to \mathbb{P}^n .

The tangent bundle T_X is a vector bundle on X with $r(T_X) = \dim X$ and $c_1(T_X) = c_1(X)$. The vector bundles $\theta(1)^{\bigoplus (n-1)} \oplus \theta(2)$ over \mathbb{P}^n and $\theta(1)^{\bigoplus n}$ over a hyperquadric $\mathbb{Q}^n \subset \mathbb{P}^{n+1}$ also satisfy these conditions.

Conjecture 2. Let E be an ample vector bundle on X with $\text{rk E} = \dim X \text{ and } c_1(E) = c_1(X). \text{ Then the pair } (X, E) \text{ is } \\ \text{isomorphic to } (\mathbb{P}^n, T_{\mathbb{P}}), (\mathbb{P}^n, \mathfrak{d}(1)^{\bigoplus (n-1)} \oplus \mathfrak{d}(2)) \text{ or } (\mathbb{Q}^n, \mathfrak{d}(1)^{\bigoplus n}).$

3. The logarithmic version of Hartshorne conjecture

The "log analogue" of the tangent bundle T_X is the sheaf of vector fields with logarithmic zeroes along D, which is denoted by $T_X(-\log D)$. $T_X(-\log D)$ is characterized by the natural exact sequence

$$0 \rightarrow T_{X}(-\log D) \rightarrow T_{X} \rightarrow N_{D/X} \rightarrow 0,$$

where $N_{D/X}$ is the normal bundle $\mathfrak{O}_D(D)$ of D and we regard it as a sheaf on X with support on D. If $X = \mathbb{P}^n$ and D is a hyperplane, then $T_X(-\log D)$ is isomorphic to $\mathfrak{O}_{\mathbb{P}}(1)^{\oplus n}$.

Conjecture 3.(*) Let X be a compact complex manifold and D a nonzero reduced effective divisor on it. If the logarithmic tangent bundle $T_X(-\log D)$ is ample, then $(X,D)\simeq (\mathbb{P}^n,\text{hyperplane})$.

⁽ $^{\bullet}$) In the problem session, Mori said that this would be proved by essentially the same argument as in [Mo].

The tangent bundle $T_{\widetilde{X}}$ is ample if the bisectional curvature is positive.

Problem. Find a sufficient condition on the curvature for $T_X(-\log D)$ to be ample, that is, formulate a logarithmic version of the Frankel conjecture which characterizes \mathbb{C}^n .

4. Relation with the classification of Fano manifolds

Let E be a rank r vector bundle on X with $c_1(E) = c_1(X)$ and put Y = P(E). Then $c_1(Y)$ is r times the tautological line bundle $\mathcal{O}_Y(1)$. Hence if E is ample then Y is a Fano manifold of index r. If r = n+1, $n = \dim X$, then Y is a Fano 2n-fold of index n+1. We note $\rho(Y) = \rho(X)+1 \geq 2$, where ρ denotes the Picard number. The following is a refinement of Theorem 1.

Conjecture 4. If Y is a Fano manifold with Picard number ρ , then index Y \leq dim Y/ ρ + 1. Moreover, the equality holds iff Y \simeq $(\mathbb{P}^{\text{index Y-1}})^{\rho}$.

For a Fano manifold Y, we define the coindex by dim Y - index Y + 1, which is nonnegative by Theorem 1. Conjecture 4 implies

Conjecture 4'. If Y is a Fano manifold with Picard number \geq 2, then dim Y \leq 2·coindex Y. Moreover, the equality holds if P Y \simeq P coindex Y \times P coindex Y.

This conjecture implies Conjecture 1. In the case coindex Y ≤ 3, Conjecture 4' is easily obtained from the following;

Proposition. Let Y be a Fano manifold of coindex $c \le 3$ and R an extremal ray of Y. Let $f: Y \to Z$ be the contraction morphism of R. Then we have either dim Z = dim Y or dim Z $\le c$.

In the former case, f is birational and contracts a divisor to a point or to a curve.

(This proposition is also observed in [Fuj].)

Proof of Conjecture 4' in the case coindex 3:

In the case $\dim Y \ge 4$, Y has a nef extremal ray R_1 . Since $\rho(Y) \ge 2$, Y has another extremal ray R_2 . Let F_2 be a fiber of maximal dimension of $\operatorname{cont}_{R_2}$. By the proposition, $\dim F_2 \ge \dim Y - 3$. Since the restriction of $\operatorname{cont}_{R_1}$ to F_1 is finite, we have $\dim Y - 3 \le 3$. Moreover, if the equality holds, then both $\operatorname{cont}_{R_1}$ and $\operatorname{cont}_{R_2}$ are \mathbb{P}^3 -bundles over 3-folds. Hence we have $Y \cong \mathbb{P}^3 \times \mathbb{P}^3$.

References

- [Fuj]Fujita,T.: On polarized manifolds whose adjoint bundles are not semipositive, Adv. Stud. Pure Math. 10 (1987) 137-178.
- [Ha] Hartshorne, R.: Ample subvarieties, L.N., Springer.
- [K-O]Kobayashi, S. and Ochiai, T.: Characterization of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973) 31-47.
- [Mo] Mori, S.: Projective manifolds with ample tangent bundle, Annals of Math. 110 (1979) 593-606.
- [Mu] Mukai, S.: New classification of Fano 3-folds and Fano manifolds of coindex 3, preprint.