THE UBIQUITOUS HYPERFINITE I_{1} FACTOR lectures 1-5

Kyoto U. \& RIMS, April 2019
Sorin Popa

Generalities on von Neumann algebras

A von Neumann ($\mathbf{v N}$) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1=i d_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:
$1 M$ is closed in the weak operator (wo) topology.
$2 M$ is closed in the strong operator (so) topology.

Generalities on von Neumann algebras

A von Neumann ($\mathbf{v N}$) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1=i d_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:
$1 M$ is closed in the weak operator (wo) topology.
$2 M$ is closed in the strong operator (so) topology.
Examples.(a) If $S=S^{*} \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H}), S^{\prime}:=\{y \in \mathcal{B}(\mathcal{H}) \mid y x=x y, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(M)$, then $p M p \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

Generalities on von Neumann algebras

A von Neumann ($\mathbf{v N}$) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1=i d_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:
$1 M$ is closed in the weak operator (wo) topology.
$2 M$ is closed in the strong operator (so) topology.
Examples.(a) If $S=S^{*} \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H}), S^{\prime}:=\{y \in \mathcal{B}(\mathcal{H}) \mid y x=x y, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(M)$, then $p M p \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

- von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff $M=\left(M^{\prime}\right)^{\prime}=M^{\prime \prime}$.

Generalities on von Neumann algebras

A von Neumann ($\mathbf{v N}$) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1=i d_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:
$1 M$ is closed in the weak operator (wo) topology.
$2 M$ is closed in the strong operator (so) topology.
Examples.(a) If $S=S^{*} \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H}), S^{\prime}:=\{y \in \mathcal{B}(\mathcal{H}) \mid y x=x y, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(M)$, then $p M p \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

- von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff $M=\left(M^{\prime}\right)^{\prime}=M^{\prime \prime}$.
- Kaplansky Density Theorem shows that if $M \subset \mathcal{B}(\mathcal{H})$ is a vN algebra and $M_{0} \subset M$ is a ${ }^{*}$-sublgebra that's wo-dense in M, then ${\overline{\left(M_{0}\right)_{1}}}^{\text {so }}=(M)_{1}$.

Generalities on von Neumann algebras

A von Neumann ($\mathbf{v N}$) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1=i d_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:
$1 M$ is closed in the weak operator (wo) topology.
$2 M$ is closed in the strong operator (so) topology.
Examples.(a) If $S=S^{*} \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H}), S^{\prime}:=\{y \in \mathcal{B}(\mathcal{H}) \mid y x=x y, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(M)$, then $p M p \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

- von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff $M=\left(M^{\prime}\right)^{\prime}=M^{\prime \prime}$.
- Kaplansky Density Theorem shows that if $M \subset \mathcal{B}(\mathcal{H})$ is a $v N$ algebra and $M_{0} \subset M$ is a ${ }^{*}$-sublgebra that's wo-dense in M, then $\left(M_{0}\right)_{1}^{s o}=(M)_{1}$.
- A vN algebra M is closed to polar decomposition and Borel functional calculus. Also, if $\left\{x_{i}\right\}_{i} \subset\left(M_{+}\right)_{1}$ is an increasing net, then $\sup _{i} x_{i} \in M$, and if $\left\{p_{j}\right\}_{j} \subset M$ are mutually orthogonal projections, then $\sum_{j} p_{j} \in M$.

Examples

- $\mathcal{B}(\mathcal{H})$ itself is a vN algebra.
- Let (X, μ) be a standard Borel probability measure space (pmp). Then the function algebra $L^{\infty} X=L^{\infty}(X, \mu)$ with its essential sup-norm $\left\|\|_{\infty}\right.$, can be represented as a *-algebra of operators on the Hilbert space $L^{2} X=L^{2}(X, \mu)$, as follows: for each $x \in L^{\infty} X$, let $\lambda(x) \in \mathcal{B}\left(L^{2} X\right)$ denote the operator of (left) multiplication by x on $L^{2} X$, i.e., $\lambda(x)(\xi)=x \xi$, $\forall \xi \in L^{2} X$. Then $x \mapsto \lambda(x)$ is clearly a *-algebra morphism with $\|\lambda(x)\|_{\mathcal{B}\left(L^{2} X\right)}=\|x\|_{\infty}, \forall x$. Its image $A \subset \mathcal{B}\left(L^{2} X\right)$ satisfies $A^{\prime}=A$, in other words A is a maximal abelian ${ }^{*}$-subalgebra (MASA) in $\mathcal{B}\left(L^{2} X\right)$. Indeed, if $T \in A^{\prime}$ then let $\xi=T(1) \in L^{2} X$. Denote by $\lambda(\xi): L^{2} X \rightarrow L^{1} X$ the operator of (left) multiplication by ξ, which by Cauchy-Schwartz is bounded by $\|\xi\|_{2}$. But $T: L^{2} X \rightarrow L^{2} X \subset L^{1} X$ is also bounded as an operator into $L^{1} X$, and $\lambda(\xi), T$ coincide on the $\left\|\|_{2}\right.$-dense subspace $L^{\infty} X \subset L^{2} X$ (Exercise!) Thus, $\lambda(\xi)=T$ on all L^{2}, forcing $\xi \in L^{\infty} X$ (Exercise!).
This shows that A is a vN algebra (by $\mathrm{vN's}$ bicommutant thm).

A key example: the hyperfinite I_{1} factor

A $v N$ algebra M is called a factor if its center, $\mathcal{Z}(M):=M^{\prime} \cap M$, is trivial, $\mathcal{Z}(M)=\mathbb{C} 1$.

- Let R_{0} be the algebraic infinite tensor product $\mathbb{M}_{2}(\mathbb{C})^{\otimes \infty}$, viewed as inductive limit of the increasing sequence of algebras $\mathbb{M}_{2^{n}}(\mathbb{C})=\mathbb{M}_{2}(\mathbb{C})^{\otimes n}$, via the embeddings $x \mapsto x \otimes 1_{\mathbb{M}_{2}}$. Endow R_{0} with the norm $\|x\|=\|x\|_{\mathbb{M}_{2^{n}}}$, if $x \in \mathbb{M}_{2^{n}} \subset R_{0}$, which is clearly a well defined operator norm, i.e., satisfies $\left\|x^{*} x\right\|=\|x\|_{2}$. One also endows R_{0} with the functional $\tau(x)=\operatorname{Tr}(x) / 2^{n}$, for $x \in \mathbb{M}_{2^{n}}$, which is well defined, positive $\left(\tau\left(x^{*} x\right) \geq 0, \forall x\right)$ and satisfies $\tau(x y)=\tau(y x), \forall x, y \in R_{0}, \tau(1)=1$, i.e., it is a trace state. Define the Hilbert space $L^{2}\left(R_{0}\right)$ as the completion of R_{0} with respect to the Hilbert-norm $\|y\|_{2}=\tau\left(y^{*} y\right)^{1 / 2}, y \in R_{0}$, and denote \hat{R}_{0} the copy of R_{0} as a subspace of $L^{2}\left(R_{0}\right)$.
For each $x \in R_{0}$ define the operator $\lambda(x)$ on $L^{2}\left(R_{0}\right)$ by $\lambda(x)(\hat{y})=\hat{x y}$, $\forall y \in R_{0}$. Note that $R_{0} \ni x \mapsto \lambda(x) \in \mathcal{B}\left(L^{2}\right)$ is a *-algebra morphism with $\|\lambda(x)\|=\|x\|, \forall x$. Moreover, $\langle\lambda(x)(\hat{1}), \hat{1}\rangle_{L^{2}}=\tau(x)$.

One similarly defines $\rho(x)$ to be the operator of right multiplication by x on $L^{2}\left(R_{0}\right)$, for which we have $[\lambda(y), \rho(x)]=0, \forall x, y \in R_{0}$.

One similarly defines $\rho(x)$ to be the operator of right multiplication by x on $L^{2}\left(R_{0}\right)$, for which we have $[\lambda(y), \rho(x)]=0, \forall x, y \in R_{0}$. One can easily see that the vN algebra $R:={\overline{\lambda\left(R_{0}\right)}}^{s o}={\overline{\lambda\left(R_{0}\right)}}^{\text {wo }}$ is a factor (Exercise!). It can alternatively be defined by $R=\rho\left(R_{0}\right)^{\prime}$ (Exercise!). This is the hyperfinite $\mathbf{I I}_{1}$ factor.

One similarly defines $\rho(x)$ to be the operator of right multiplication by x on $L^{2}\left(R_{0}\right)$, for which we have $[\lambda(y), \rho(x)]=0, \forall x, y \in R_{0}$.
One can easily see that the vN algebra $R:={\overline{\lambda\left(R_{0}\right)}}^{s o}={\overline{\lambda\left(R_{0}\right)}}^{\text {wo }}$ is a factor (Exercise!). It can alternatively be defined by $R=\rho\left(R_{0}\right)^{\prime}$ (Exercise!). This is the hyperfinite \mathbf{I}_{1} factor.
Yet another way to define R is as the completion of R_{0} in the topology of convergence in the norm $\|x\|_{2}=\tau\left(x^{*} x\right)^{1 / 2}$ of sequences that are bounded in the operator norm (Exercise!). Notice that, in both definitions, τ extends to a trace state on R. Note also that if one denotes by $D_{0} \subset R_{0}$ the natural "diagonal subalgebra" (\ldots), then $\left(D_{0}, \tau_{\mid D_{0}}\right)$ coincides with the algebra of dyadic step functions on $[0,1]$ with the Lebesgue integral. So its closure in R in the above topology, $\left(D, \tau_{\mid D}\right)$, is just $\left(L^{\infty}([0,1]), \int \mathrm{d} \mu\right)$.

One similarly defines $\rho(x)$ to be the operator of right multiplication by x on $L^{2}\left(R_{0}\right)$, for which we have $[\lambda(y), \rho(x)]=0, \forall x, y \in R_{0}$.
One can easily see that the vN algebra $R:={\overline{\lambda\left(R_{0}\right)}}^{s o}={\overline{\lambda\left(R_{0}\right)}}^{\text {wo }}$ is a factor (Exercise!). It can alternatively be defined by $R=\rho\left(R_{0}\right)^{\prime}$ (Exercise!). This is the hyperfinite $\mathbf{I I}_{1}$ factor.

Yet another way to define R is as the completion of R_{0} in the topology of convergence in the norm $\|x\|_{2}=\tau\left(x^{*} x\right)^{1 / 2}$ of sequences that are bounded in the operator norm (Exercise!). Notice that, in both definitions, τ extends to a trace state on R. Note also that if one denotes by $D_{0} \subset R_{0}$ the natural "diagonal subalgebra" (\ldots), then ($D_{0}, \tau_{\mid D_{0}}$) coincides with the algebra of dyadic step functions on $[0,1]$ with the Lebesgue integral. So its closure in R in the above topology, $\left(D, \tau_{\mid D}\right)$, is just $\left(L^{\infty}([0,1]), \int \mathrm{d} \mu\right)$. Note that $\left(R_{0}, \tau\right)$ (and thus R) is completely determined by the sequence of partial isometries $v_{1}=e_{12}^{1}, v_{n}=\left(\prod_{i=1}^{n-1} e_{22}^{i}\right) e_{12}^{n}, n \geq 2$, with $p_{n}=v_{n} v_{n}^{*}$ satisfying $\tau\left(p_{n}\right)=2^{-n}$ and $p_{n} \sim 1-\sum_{i=1}^{n} p_{i}$ (Exercise!)

Finite factors: some equivalent characterizations

Theorem A

Let M be a $v N$ factor. The following are equivalent:
$1^{\circ} M$ is a finite $v N$ algebra, i.e., if $p \in \mathcal{P}(M)$ satisfies $p \sim 1=1_{M}$, then $p=1$ (any isometry in M is necessarily a unitary element).
$2^{\circ} M$ has a trace state τ (i.e., a functional $\tau: M \rightarrow \mathbb{C}$ that's positive, $\tau\left(x^{*} x\right) \geq 0$, with $\tau(1)=1$, and is tracial, $\left.\tau(x y)=\tau(y x), \forall x, y \in M\right)$.
$3^{\circ} M$ has a trace state τ that's completely additive, i.e., $\tau\left(\Sigma_{i} p_{i}\right)=\Sigma_{i} \tau\left(p_{i}\right), \forall\left\{p_{i}\right\}_{i} \subset \mathcal{P}(M)$ mutually orthogonal projections.
$4^{\circ} M$ has a trace state τ that's normal, i.e., $\tau\left(\sup _{i} x_{i}\right)=\sup _{i} \tau\left(x_{i}\right)$,
$\forall\left\{x_{i}\right\}_{i} \subset\left(M_{+}\right)_{1}$ increasing net.
Thus, a vN factor is finite iff it is tracial. Moreover, such a factor has a unique trace state τ, which is automatically normal and faithful, and satisfies $\overline{\operatorname{co}}\left\{u x u^{*} \mid u \in \mathcal{U}(M)\right\} \cap \mathbb{C} 1=\{\tau(x) 1\}, \forall x \in M$.

Some preliminary lemmas

Lemma 1

If a $v N$ factor M has a minimal projections, then $M=\mathcal{B}\left(\ell^{2} I\right)$, for some I. Moreover, if $M=\mathcal{B}\left(\ell^{2} I\right)$, then the following are eq.:
$1^{\circ} M$ has a trace.
$2^{\circ}|I|<\infty$.
$3^{\circ} M$ is finite, i.e. $u \in M, u^{*} u=1 \Rightarrow u u^{*}=1$
Proof: Exercise.

Some preliminary lemmas

Lemma 1

If a $v N$ factor M has a minimal projections, then $M=\mathcal{B}\left(\ell^{2} I\right)$, for some I. Moreover, if $M=\mathcal{B}\left(\ell^{2} I\right)$, then the following are eq.:
$1^{\circ} M$ has a trace.
$2^{\circ}|I|<\infty$.
$3^{\circ} M$ is finite, i.e. $u \in M, u^{*} u=1 \Rightarrow u u^{*}=1$
Proof: Exercise.

Lemma 2

If M is finite then:
(a) $p, q \in \mathcal{P}(M), p \sim q \Rightarrow 1-p \sim 1-q$.
(b) $p M p$ is finite $\forall p \in \mathcal{P}(M)$, i.e., $q \in \mathcal{P}(M), q \leq p, q \sim p$, then $q=p$.

Proof: Use the comparison theorem (Exercise).

Lemma 3

If $M \mathrm{vN}$ factor with no atoms and $p \in \mathcal{P}(M)$ is so that $\operatorname{dim}(p M p)=\infty$, then $\exists P_{0}, P_{1} \in \mathcal{P}(M), P_{0} \sim P_{1}, P_{0}+P_{1}=p$.

Proof: Consider the family $\mathcal{F}=\left\{\left(p_{i}^{0}, p_{i}^{1}\right)_{i} \mid\right.$ with p_{i}^{0}, p_{j}^{1} all mutually orthogonal $\leq p$ such that $\left.p_{i}^{0} \sim p_{i}^{1}, \forall i\right\}$, with its natural order. Clearly inductively ordered. If $\left(p_{i}^{0}, p_{i}^{1}\right)_{i \in I}$ is a maximal element, then $P_{0}=\sum_{i} p_{i}^{0}, P_{1}=\sum_{i} p_{i}^{1}$ will do (for if not, then the comparison Thm. gives a contradiction).

Lemma 3

If $M \mathrm{vN}$ factor with no atoms and $p \in \mathcal{P}(M)$ is so that $\operatorname{dim}(p M p)=\infty$, then $\exists P_{0}, P_{1} \in \mathcal{P}(M), P_{0} \sim P_{1}, P_{0}+P_{1}=p$.

Proof: Consider the family $\mathcal{F}=\left\{\left(p_{i}^{0}, p_{i}^{1}\right)_{i} \mid\right.$ with p_{i}^{0}, p_{j}^{1} all mutually orthogonal $\leq p$ such that $\left.p_{i}^{0} \sim p_{i}^{1}, \forall i\right\}$, with its natural order. Clearly inductively ordered. If $\left(p_{i}^{0}, p_{i}^{1}\right)_{i \in I}$ is a maximal element, then $P_{0}=\sum_{i} p_{i}^{0}, P_{1}=\sum_{i} p_{i}^{1}$ will do (for if not, then the comparison Thm. gives a contradiction).

Lemma 4

If M is a factor with no minimal projections, then $\exists\left\{p_{n}\right\}_{n} \subset \mathcal{P}(M)$ mutually orthogonal such that $p_{n} \sim 1-\sum_{i=1}^{n} p_{i}, \forall n$.

Proof: Apply L3 recursively.

Lemma 5

If M is a finite factor and $\left\{p_{n}\right\}_{n} \subset \mathcal{P}(M)$ are as in L4, then:
(a) If $p \prec p_{n}, \forall n$, then $p=0$. Equivalently, if $p \neq 0$, then $\exists n$ such that $p_{n} \prec p$. Moreover, if n is the first integer such that $p_{n} \prec p$ and $p_{n}^{\prime} \leq p$, $p_{n}^{\prime} \sim p_{n}$, then $p-p_{n}^{\prime} \prec p_{n}$.
(b) If $\left\{q_{n}\right\}_{n} \subset \mathcal{P}(M)$ increasing and $q_{n} \leq q \in \mathcal{P}(M)$ and $q-q_{n} \prec p_{n}, \forall n$, then $q_{n} \nearrow q$ (with so-convergence).
(c) $\sum_{n} p_{n}=1$.

Proof: If $p \simeq p_{n}^{\prime} \leq p_{n}, \forall n$, then $P=\sum_{n} p_{n}^{\prime}$ and $P_{0}=\sum_{k} p_{2 k+1}^{\prime}$ satisfy $P_{0}<P$ and $P_{0} \sim P$, contradicting the finiteness of M. Rest is Exercise!

Lemma 5

If M is a finite factor and $\left\{p_{n}\right\}_{n} \subset \mathcal{P}(M)$ are as in L4, then:
(a) If $p \prec p_{n}, \forall n$, then $p=0$. Equivalently, if $p \neq 0$, then $\exists n$ such that $p_{n} \prec p$. Moreover, if n is the first integer such that $p_{n} \prec p$ and $p_{n}^{\prime} \leq p$, $p_{n}^{\prime} \sim p_{n}$, then $p-p_{n}^{\prime} \prec p_{n}$.
(b) If $\left\{q_{n}\right\}_{n} \subset \mathcal{P}(M)$ increasing and $q_{n} \leq q \in \mathcal{P}(M)$ and $q-q_{n} \prec p_{n}, \forall n$, then $q_{n} \nearrow q$ (with so-convergence).
(c) $\sum_{n} p_{n}=1$.

Proof: If $p \simeq p_{n}^{\prime} \leq p_{n}, \forall n$, then $P=\sum_{n} p_{n}^{\prime}$ and $P_{0}=\sum_{k} p_{2 k+1}^{\prime}$ satisfy $P_{0}<P$ and $P_{0} \sim P$, contradicting the finiteness of M. Rest is Exercise!

Lemma 6

Let M be a finite factor without atoms. If $p \in \mathcal{P}(M), \neq 0$, then \exists a unique infinite sequence $1 \leq n_{1}<n_{2}<\ldots$ such that p decomposes as $p=\sum_{k \geq 1} p_{n_{k}}^{\prime}$, for some $\left\{p_{n_{k}}^{\prime}\right\}_{k} \subset \mathcal{P}(M)$ with $p_{n_{k}}^{\prime} \sim p_{n_{k}}, \forall k$.

Proof: Apply Part (a) of L5 recursively (Exercise!).

If M is a finite factor without atoms, then we let $\operatorname{dim}: \mathcal{P}(M) \rightarrow[0,1]$ be defined by $\operatorname{dim}(p)=0$ if $p=0$ and $\operatorname{dim}(p)=\sum_{k=1}^{\infty} 2^{-n_{k}}$, if $p \neq 0$, where $n_{1}<n_{2}<\ldots$, are given by L4.

If M is a finite factor without atoms, then we let $\operatorname{dim}: \mathcal{P}(M) \rightarrow[0,1]$ be defined by $\operatorname{dim}(p)=0$ if $p=0$ and $\operatorname{dim}(p)=\sum_{k=1}^{\infty} 2^{-n_{k}}$, if $p \neq 0$, where $n_{1}<n_{2}<\ldots$, are given by L4.

Lemma 7

dim satisfies the conditions:
(a) $\operatorname{dim}\left(p_{n}\right)=2^{-n}$
(b) If $p, q \in \mathcal{P}(M)$ then $p \sim q$ iff $\operatorname{dim}(p) \leq \operatorname{text} \operatorname{dim}(q)$
(c) dim is completely additive: if $q_{i} \in \mathcal{P}(M)$ are mutually orthogonal, then $\operatorname{dim}\left(\Sigma_{i} q_{i}\right)=\Sigma_{i} \operatorname{dim}\left(q_{i}\right)$.

Proof: Exercise!.

If M is a finite factor without atoms, then we let $\operatorname{dim}: \mathcal{P}(M) \rightarrow[0,1]$ be defined by $\operatorname{dim}(p)=0$ if $p=0$ and $\operatorname{dim}(p)=\sum_{k=1}^{\infty} 2^{-n_{k}}$, if $p \neq 0$, where $n_{1}<n_{2}<\ldots$, are given by L4.

Lemma 7

dim satisfies the conditions:
(a) $\operatorname{dim}\left(p_{n}\right)=2^{-n}$
(b) If $p, q \in \mathcal{P}(M)$ then $p \sim q$ iff $\operatorname{dim}(p) \leq \operatorname{text} \operatorname{dim}(q)$
(c) dim is completely additive: if $q_{i} \in \mathcal{P}(M)$ are mutually orthogonal, then $\operatorname{dim}\left(\Sigma_{i} q_{i}\right)=\Sigma_{i} \operatorname{dim}\left(q_{i}\right)$.

Proof: Exercise!.

Lemma 8 (Radon-Nykodim trick)

Let $\varphi, \psi: \mathcal{P}(M) \rightarrow[0,1]$ be completely additive functions, $\varphi \neq 0$, and $\varepsilon>0$. There exists $p \in \mathcal{P}(M)$ with $\operatorname{dim}(p)=2^{-n}$ for some $n \geq 1$, and $\theta \geq 0$, such that $\theta \varphi(q) \leq \psi(q) \leq(1+\varepsilon) \theta \varphi(q), \forall q \in \mathcal{P}(p M p)$.

Proof: Denote $\mathcal{F}=\left\{p \mid \exists n\right.$ with $\left.p \sim p_{n}\right\}$. Note first we may assume φ faithful: take a maximal family of mutually orthogonal non-zero projections $\left\{e_{i}\right\}_{i}$ with $\varphi\left(e_{i}\right)=0, \forall i$, then let $f=1-\sum_{i} e_{i} \neq 0$ (because $\varphi(1) \neq 0)$; it follows that φ is faithful on $f M f$, and by replacing with some $f_{0} \leq f$ in \mathcal{F}, we may also assume $f \in \mathcal{F}$. Thus, proving the lemma for M is equivalent to proving it for $f M f$, which amounts to assuming φ faithful. If $\psi=0$, then take $\theta=0$. If $\psi \neq 0$, then by replacing φ by $\varphi(1)^{-1} \varphi$ and ψ by $\psi(1)^{-1} \psi$, we may assume $\varphi(1)=\psi(1)=1$. Let us show this implies: (1) $\exists g \in \mathcal{F}$, s.t. $\forall g_{0} \in \mathcal{F}, g_{0} \leq g$, we have $\varphi\left(g_{0}\right) \leq \psi\left(g_{0}\right)$. For if not then (2) $\forall g \in \mathcal{F}, \exists g_{0} \in \mathcal{F}, g_{0} \leq g$ s.t. $\varphi\left(g_{0}\right)>\psi\left(g_{0}\right)$.

Take a maximal family of mut. orth. projections $\left\{g_{i}\right\}_{i} \subset \mathcal{F}$, with $\varphi\left(g_{i}\right)>\psi\left(g_{i}\right)$, $\forall i$. If $1-\sum_{i} g_{i} \neq 0$, then take $g \in \mathcal{F}, g \leq 1-\sum_{i} g_{i}$ (cf. L5) and apply (2) to get $g_{0} \leq g, g_{0} \in \mathcal{F}$ with $\varphi\left(g_{0}\right)>\psi\left(g_{0}\right)$, contradicting the maximality. Thus,

$$
1=\varphi\left(\sum_{i} g_{i}\right)=\sum_{i} \varphi\left(g_{i}\right)>\sum_{i} \psi\left(g_{i}\right)=\psi\left(\sum_{i} g_{i}\right)=\psi(1)=1
$$

a contradiction. Thus, (1) holds true.

Define $\theta=\sup \left\{\theta^{\prime} \mid \theta^{\prime} \varphi\left(g_{0}\right) \leq \psi\left(g_{0}\right), \forall g_{0} \leq g, g_{0} \in \mathcal{F}\right\}$.
Clearly $1 \leq \theta<\infty$ and $\theta \varphi\left(g_{0}\right) \leq \psi\left(g_{0}\right), \forall g_{0} \leq g, g_{0} \in \mathcal{F}$. Moreover, by def. of θ, there exists $g_{0} \in \mathcal{F}, g_{0} \leq g$, s.t., $\theta \varphi\left(g_{0}\right)>(1+\varepsilon)^{-1} \psi\left(g_{0}\right)$.
We now repeat the argument for ψ and $\theta(1+\varepsilon) \varphi$ on $g_{0} M g_{0}$, to prove that
(3) $\exists g^{\prime} \in \mathcal{F}, g^{\prime} \leq g_{0}$, such that for all $g_{0}^{\prime} \in \mathcal{F}, g_{0}^{\prime} \leq g_{0}$, we have $\psi\left(g_{0}^{\prime}\right) \leq \theta(1+\varepsilon) \varphi\left(g_{0}^{\prime}\right)$.
Indeed, for if not, then
(4) $\forall g^{\prime} \in \mathcal{F}, g^{\prime} \leq g_{0}, \exists g_{0}^{\prime} \leq g^{\prime}$ in \mathcal{F} s.t. $\psi\left(g_{0}^{\prime}\right)>\theta(1+\varepsilon) \varphi\left(g_{0}^{\prime}\right)$.

But then we take a maximal family of mutually orthogonal $g_{i}^{\prime} \leq g_{0}$ in \mathcal{F}, s.t. $\psi\left(g_{i}^{\prime}\right) \geq \theta(1+\varepsilon) \varphi\left(g_{i}^{\prime}\right)$, and using L5 and (4) above we get $\sum_{i} g_{i}^{\prime}=g_{0}$. This implies that $\psi\left(g_{0}\right) \geq \theta(1+\varepsilon) \varphi\left(g_{0}\right)>\psi\left(g_{0}\right)$, a contradiction. Thus, (3) above holds true for some $g^{\prime} \leq g_{0}$ in \mathcal{F}. Taking $p=g^{\prime}$, we get that any $q \in \mathcal{F}$ under p satisfies both $\theta \varphi(q) \leq \psi(q)$ and $\psi(q) \leq \theta(1+\varepsilon) \varphi(q)$. By complete additivity of φ, ψ and L6, we are done.

We now apply L8 to $\psi=\operatorname{dim}$ and φ a vector state on $M \subset \mathcal{B}(\mathcal{H})$, to get:

Lemma 9

$\forall \varepsilon>0, \exists p \in \mathcal{P}(M)$ with $\operatorname{dim}(p)=2^{-n}$ for some $n \geq 1$, and a vector (thus normal) state φ_{0} on $p M p$ such that, $\forall q \in \mathcal{P}(p M p)$, we have $(1+\varepsilon)^{-1} \varphi_{0}(q) \leq \operatorname{dim}(q) \leq(1+\varepsilon) \varphi_{0}(q)$.

Proof: trivial by L8

We now apply L8 to $\psi=\operatorname{dim}$ and φ a vector state on $M \subset \mathcal{B}(\mathcal{H})$, to get:

Lemma 9

$\forall \varepsilon>0, \exists p \in \mathcal{P}(M)$ with $\operatorname{dim}(p)=2^{-n}$ for some $n \geq 1$, and a vector (thus normal) state φ_{0} on $p M p$ such that, $\forall q \in \mathcal{P}(p M p)$, we have $(1+\varepsilon)^{-1} \varphi_{0}(q) \leq \operatorname{dim}(q) \leq(1+\varepsilon) \varphi_{0}(q)$.

Proof: trivial by L8

Lemma 10

With p, φ_{0} as in L9, let $v_{1}=p, v_{2}, \ldots, v_{2^{n}} \in M$ such that $v_{i} v_{i}^{*}=p$, $\sum_{i} v_{i}^{*} v_{i}=1$. Let $\varphi(x):=\sum_{i=1}^{2^{n}} \varphi_{0}\left(v_{i} x v_{i}^{*}\right), x \in M$. Then φ is a normal state on M satisfying $\varphi\left(x^{*} x\right) \leq(1+\varepsilon) \varphi\left(x x^{*}\right), \forall x \in M$.

Proof: Note first that $\varphi_{0}\left(x^{*} x\right) \leq(1+\varepsilon) \varphi_{0}\left(x x^{*}\right), \forall x \in p M p$ (Hint: do it first for x partial isometry, then for x with $x^{*} x$ having finite spectrum). To deduce the inequality for φ itself, note that $\sum_{j} v_{i}^{*} v_{i}=1$ implies that for any $x \in M$ we have

$$
\varphi\left(x^{*} x\right)=\sum_{i} \varphi_{0}\left(v_{i} x^{*}\left(\sum_{j} v_{j}^{*} v_{j}\right) x v_{i}^{*}\right)=\sum_{i, j} \varphi_{0}\left(\left(v_{i} x^{*} v_{j}^{*}\right)\left(v_{j} x v_{i}\right)\right)
$$

$$
\leq(1+\varepsilon) \sum_{i, j} \varphi_{0}\left(\left(v_{j} x v_{i}\right)\left(v_{i} x^{*} v_{j}^{*}\right)\right)=\ldots=(1+\varepsilon) \varphi\left(x x^{*}\right) .
$$

$$
\leq(1+\varepsilon) \sum_{i, j} \varphi_{0}\left(\left(v_{j} x v_{i}\right)\left(v_{i} x^{*} v_{j}^{*}\right)\right)=\ldots=(1+\varepsilon) \varphi\left(x x^{*}\right) .
$$

Lemma 11

If φ is a state on M that satisfies $\varphi\left(x^{*} x\right) \leq(1+\varepsilon) \varphi\left(x x^{*}\right), \forall x \in M$, then $(1+\varepsilon)^{-1} \varphi(p) \leq \operatorname{dim}(p) \leq(1+\varepsilon) \varphi(p), \forall p \in \mathcal{P}(M)$.

Proof: By complete additivity, it is sufficient to prove it for $p \in \mathcal{F}$, for which we have for $v_{1}, \ldots, v_{2^{n}}$ as in $\mathbf{L 1 0} \varphi(p)=\varphi\left(v_{j}^{*} v_{j}\right) \leq(1+\varepsilon) \varphi\left(v_{j} v_{j}^{*}\right)$, $\forall j$, so that

$$
2^{n} \varphi(p) \leq(1+\varepsilon) \sum_{j} \varphi\left(v_{j} v_{j}^{*}\right)=(1+\varepsilon) 2^{n} \operatorname{dim}(p)
$$

and similarly $2^{n} \operatorname{dim}(p)=1 \leq(1+\varepsilon) 2^{n} \varphi(p)$.

Proof of Thm A

Define $\tau: M \rightarrow \mathbb{C}$ as follows. First, if $x \in\left(M_{+}\right)_{1}$ then we let $\tau(x)=\tau\left(\Sigma_{n} 2^{-n} e_{n}\right)=\Sigma_{n} 2^{-n} \operatorname{dim}\left(e_{n}\right)$, where $x=\Sigma_{n} 2^{-n} e_{n}$ is the (unique) dyadic decomposition of $0 \leq x \leq 1$. Extend τ to M_{+}by homothety, then further extend to M_{h} by $\tau(x)=\tau\left(x_{+}\right)-\tau\left(x_{-}\right)$, where for $x=x^{*} \in M_{h}$, $x=x_{+}-x_{-}$is the dec. of x into its positive and negative parts.
Finally, extend τ to all M by $\tau(x)=\tau(\operatorname{Re} x)+i \tau(\operatorname{Im} x)$.

Proof of Thm A

Define $\tau: M \rightarrow \mathbb{C}$ as follows. First, if $x \in\left(M_{+}\right)_{1}$ then we let $\tau(x)=\tau\left(\Sigma_{n} 2^{-n} e_{n}\right)=\Sigma_{n} 2^{-n} \operatorname{dim}\left(e_{n}\right)$, where $x=\Sigma_{n} 2^{-n} e_{n}$ is the (unique) dyadic decomposition of $0 \leq x \leq 1$. Extend τ to M_{+}by homothety, then further extend to M_{h} by $\tau(x)=\tau\left(x_{+}\right)-\tau\left(x_{-}\right)$, where for $x=x^{*} \in M_{h}$, $x=x_{+}-x_{-}$is the dec. of x into its positive and negative parts.
Finally, extend τ to all M by $\tau(x)=\tau(\operatorname{Rex})+i \tau(\operatorname{Im} x)$.
By L11, $\forall \varepsilon>0, \exists \varphi$ normal state on M such that $|\tau(p)-\varphi(p)| \leq \varepsilon$, $\forall p \in \mathcal{P}(M)$. By the way τ was defined and the linearity of φ, this implies $|\tau(x)-\varphi(x)| \leq \varepsilon, \forall x \in\left(M_{+}\right)_{1}$, and thus $|\tau(x)-\varphi(x)| \leq 4 \varepsilon, \forall x \in(M)_{1}$. This implies $|\tau(x+y)-\tau(x)-\tau(y)| \leq 8 \varepsilon, \forall x, y \in(M)_{1}$. Since $\varepsilon>0$ was arbitrary, this shows that τ is a linear state on M.
By definition of τ, we also have $\tau\left(u x u^{*}\right)=\tau(x), \forall x \in M, u \in \mathcal{U}(M)$, so τ is a trace state. From the above argument, it also follows that τ is a norm limit of normal states, which implies τ is normal as well.

Finite vN algebras

Theorem \mathbf{A}^{\prime}

Let M be a $v N$ algebra that's countably decomposable (i.e., any family of mutually orthogonal projections is countable). The following are equivalent:
$1^{\circ} M$ is a finite $v N$ algebra, i.e., if $p \in \mathcal{P}(M)$ satisfies $p \sim 1=1_{M}$, then $p=1$ (any isometry in M is necessarily a unitary element).
$2^{\circ} M$ has a faithful normal (equivalently completely additive) trace state τ. Moreover, if M is finite, then there exists a unique normal faithful central trace, i.e., a linear positive map $c t r: M \rightarrow \mathcal{Z}(M)$ that satisfies $\operatorname{ctr}(1)=1, \operatorname{ctr}\left(z_{1} x z_{2}\right)=z_{1} \operatorname{ctr}(x) z_{2}, \operatorname{ctr}(x y)=\operatorname{ctr}(y x), x, y \in M, z_{i} \in \mathcal{Z}$. Any trace τ on M is of the form $\tau=\varphi_{0} \circ c t r$, for some state φ_{0} on \mathcal{Z}. Also, $\overline{\operatorname{co}}\left\{u x u^{*} \mid u \in \mathcal{U}(M)\right\} \cap \mathcal{Z}=\{\operatorname{ctr}(x)\}, \forall x \in M$.

Proof of $2^{\circ} \Rightarrow 1^{\circ}$: If τ is a faithful trace on M and $u^{*} u=1$ for some $u \in M$, then $\tau\left(1-u u^{*}\right)=1-\tau\left(u u^{*}\right)=1-\tau\left(u^{*} u\right)=0$, thus $u u^{*}=1$.

L^{P}-spaces from tracial algebras

- A *-operator algebra $M_{0} \subset \mathcal{B}(\mathcal{H})$ that's closed in operator norm is called a C*-algebra. Can be described abstractly as a Banach algebra M_{0} with a *-operation and the norm satisfying the axiom $\left\|x^{*} x\right\|=\|x\|^{2}, \forall x \in M_{0}$.
- If M_{0} is a unital C^{*}-algebra and τ is a faithful trace state on M_{0}, then for each $p \geq 1,\|x\|_{p}=\tau\left(|x|^{p}\right)^{1 / p}, x \in M_{0}$, is a norm on M_{0}. We denote $L^{p} M_{0}$ the completion of $\left(M_{0},\| \|_{p}\right)$. One has $\|x\|_{p} \leq\|x\|_{q}$, $\forall 1 \leq p \leq q \leq \infty$, thus $L^{p} M_{0} \supset L^{q} M_{0}$.
Note that $L^{2} M_{0}$ is a Hilbert space with scalar product $\langle x, y\rangle_{\tau}=\tau\left(y^{*} x\right)$. The map $M_{0} \ni x \mapsto \lambda(x) \in \mathcal{B}\left(L^{2}\right)$ defined by $\lambda(x)(\hat{y})=x \hat{x y}$ is a ${ }^{*}$-algebra isometric representation of M_{0} into $\mathcal{B}\left(L^{2}\right)$ with $\tau(x)=\langle\lambda(x) \hat{1}, \hat{1}\rangle_{\varphi}$. Similarly, $\rho(x)(\hat{y})=\hat{y x}$ defines an isometric representation of $\left(M_{0}\right)^{o p}$ on $L^{2} M_{0}$. One has $\left[\lambda\left(x_{1}\right), \rho\left(x_{2}\right)\right]=0, \forall x_{i} \in M_{0}$.
More generally, $\|x\|=\sup \left\{\|x y\|_{p} \mid\|y\|_{p} \leq 1\right\}$. Also, $\|y\|_{1}=\sup \left\{|\tau(x y)| \mid x \in(M)_{1}\right\}$. In particular, τ extends to $L^{1} M_{0}$.

Abstract characterizations of finite vN algebras

Theorem B

Let (M, τ) be a unital C^{*}-algebra with a faithful trace state. The following are equivalent:
1° The image of $\lambda: M \rightarrow \mathcal{B}\left(L^{2}(M, \tau)\right)$ is a $v N$ algebra (i.e., is wo-closed).
$2^{\circ} \lambda(M)=\rho(M)^{\prime}$ (equivalently, $\left.\rho(M)=\lambda(M)^{\prime}\right)$.
$3^{\circ}(M)_{1}$ is complete in the norm $\|x\|_{2, \tau}$.
4° As Banach spaces, we have $M=\left(L^{1}(M, \tau)\right)^{*}$, where the duality is given by $\left(M, L^{1} M\right) \ni(x, Y) \mapsto \tau(x Y)$.

Proof: One uses similar arguments as when we represented $L^{\infty}([0,1])$ as a vN algebra and as in the construction of R (Exercise!).

II_{1} factors: definition and basic properties

Definition

An ∞-dim finite factor $M\left(\right.$ so $\left.M \neq \mathbb{M}_{n}(\mathbb{C}), \forall n\right)$ is called a \mathbb{I}_{1} factor.

- R is a factor, has a trace, and is ∞-dimensional, so it is a II_{1} factor.
- The construction of the trace on a non-atomic factor satisfying the finiteness axiom in Thm A is based on splitting recursively 1 dyadically into equivalent projections, with the underlying partial isometries generating the hyperfinite II_{1} factor R. Thus, R embeds into any II_{1} factor.
- If $A \subset M$ is a maximal abelian *-subalgebra (MASA) in a I_{1} factor M, then A is diffuse (i.e., it has no atoms).
- The (unique) trace τ on a I_{1} factor M is a dimension function on $\mathcal{P}(M)$, i.e., $\tau(p)=\tau(q)$ iff $p \sim q$, with $\tau(\mathcal{P}(M))=[0,1]$ (continuous dimension).
- If $B \subset M$ is $v N$ alg, the orth. projection $e_{B}: L^{2} M \rightarrow \overline{\hat{B}}^{\| \|_{2}}=L^{2} B$ is positive on $\hat{M}=M$, so it takes M onto B, implementing a cond. expect. $E_{B}: M \rightarrow B$ that satisfies $\tau \circ E_{B}=\tau$. It is unique with this property.

Finite amplifications of I_{1} factors

- If $n \geq 2$ then $\mathbb{M}_{n}(M)=\mathbb{M}_{n}(\mathbb{C}) \otimes M$ is a I_{1} factor with trace state $\tau\left(\left(x_{i j}\right)_{i, j}\right)=\sum_{i} \tau\left(x_{i i}\right) / n, \forall\left(x_{i j}\right)_{i, j} \in \mathbb{M}_{n}(M)$.
- If $0 \neq p \in \mathcal{P}(M)$, then $p M p$ is a I_{1} factor with trace state $\tau(p)^{-1} \tau$, whose isomorphism class only depends on $\tau(p)$.
- Given any $t>0$, let $n \geq t$ and $p \in \mathcal{P}\left(\mathbb{M}_{n}(M)\right)$ be so that $\tau(p)=t / n$. We denote the isomorphism class of $p \mathbb{M}_{n}(M) p$ by M^{t} and call it the amplification of M by t (Exercise: show that this doesn't depend on the choice of n and p.)
- We have $\left(M^{s}\right)^{t}=M^{s t}, \forall s, t>0$ (Exercise). One denotes $\mathcal{F}(M)=\left\{t>0 \mid M^{t} \simeq M\right\}$. Clearly a multiplicative subgroup of \mathbb{R}_{+}, called the fundamental group of M. It is an isom. invariant of M.

∞-amplifications, II_{∞} factors and semifinite $\mathbf{v N}$ alg

If $M_{i} \subset \mathcal{B}\left(\mathcal{H}_{i}\right), i=1,2$, are $v N$ algebras, then $M_{1} \bar{\otimes} M_{2} \subset \mathcal{B}\left(\mathcal{H}_{1} \bar{\otimes} \mathcal{H}_{2}\right)$ denotes the vN alg generated by alg tens product $M_{1} \otimes M_{2} \subset \mathcal{B}\left(\mathcal{H}_{1} \bar{\otimes} \mathcal{H}_{2}\right)$.

∞-amplifications, I_{∞} factors and semifinite $\mathbf{v N}$ alg

If $M_{i} \subset \mathcal{B}\left(\mathcal{H}_{i}\right), i=1,2$, are $v N$ algebras, then $M_{1} \bar{\otimes} M_{2} \subset \mathcal{B}\left(\mathcal{H}_{1} \bar{\otimes} \mathcal{H}_{2}\right)$ denotes the vN alg generated by alg tens product $M_{1} \otimes M_{2} \subset \mathcal{B}\left(\mathcal{H}_{1} \bar{\otimes} \mathcal{H}_{2}\right)$.

- If (M, τ) is tracial (finite) vN algebra, then
$\mathcal{M}=M \bar{\otimes} \mathcal{B}\left(\ell^{2} S\right) \subset \mathcal{B}\left(L^{2} M \bar{\otimes} \ell^{2} S\right)$ is a $v N$ algebra with the property $\exists p_{i} \nearrow 1$ projections such that $p_{i} \mathcal{M} p_{i}$ is finite, $\forall i$. Such a $v N$ algebra \mathcal{M} is called semifinite. It has a normal faithful semifinite trace $\tau \otimes \operatorname{Tr}$.
- If M is a type I_{1} factor and $|S|=\infty$, then $\mathcal{M}=M \bar{\otimes} \mathcal{B}\left(\ell^{2} S\right)$ is called a $\mathbf{I I}_{\infty}$ factor. It can be viewed as the $|S|$-amplification of M.

∞-amplifications, II_{∞} factors and semifinite vN alg

If $M_{i} \subset \mathcal{B}\left(\mathcal{H}_{i}\right), i=1,2$, are $v N$ algebras, then $M_{1} \bar{\otimes} M_{2} \subset \mathcal{B}\left(\mathcal{H}_{1} \bar{\otimes} \mathcal{H}_{2}\right)$ denotes the vN alg generated by alg tens product $M_{1} \otimes M_{2} \subset \mathcal{B}\left(\mathcal{H}_{1} \bar{\otimes} \mathcal{H}_{2}\right)$.

- If (M, τ) is tracial (finite) vN algebra, then
$\mathcal{M}=M \bar{\otimes} \mathcal{B}\left(\ell^{2} S\right) \subset \mathcal{B}\left(L^{2} M \bar{\otimes} \ell^{2} S\right)$ is a $v N$ algebra with the property $\exists p_{i} \nearrow 1$ projections such that $p_{i} \mathcal{M} p_{i}$ is finite, $\forall i$. Such a $v N$ algebra \mathcal{M} is called semifinite. It has a normal faithful semifinite trace $\tau \otimes \operatorname{Tr}$.
- If M is a type I_{1} factor and $|S|=\infty$, then $\mathcal{M}=M \bar{\otimes} \mathcal{B}\left(\ell^{2} S\right)$ is called a $\mathbf{I I}_{\infty}$ factor. It can be viewed as the $|S|$-amplification of M.
- An important example: If $B \subset M$ is a $v N$ subalgebra and $e_{B}: L^{2} M \rightarrow L^{2} B$ as before, then: $e_{B} x e_{B}=E_{B}(x) e_{B}, \forall x \in \lambda(M)=M$, the $v N$ algebra $\left\langle M, e_{B}\right\rangle$ generated by M and e_{B} in $\mathcal{B}\left(L^{2} M\right)$ is equal to the wo-closure of the ${ }^{*}$-algebra $\operatorname{sp}\left\{x e_{B} y \mid x, y \in M\right\}$, and also equal to $\rho(B)^{\prime} \cap \mathcal{B}\left(L^{2} M\right)$. It has a normal semifinite faithful trace uniquely determined by $\operatorname{Tr}\left(x e_{B} y\right)=\tau(x y) .\left(\left\langle M, e_{B}\right\rangle, \operatorname{Tr}\right)$ is called the basic construction algebra for $B \subset M$.

vN representations and Hilbert M-modules

- If M is a $v N$ algebra, then a ${ }^{*}$-rep $\pi: M \rightarrow \mathcal{B}(\mathcal{H})$ is a $v N$ rep (i.e., $\pi(M)$ wo-closed) iff π is completely additive. We'll call such representations normal representations and \mathcal{H} a (left) Hilbert M-module. Two Hilbert M-modules \mathcal{H}, \mathcal{K} are equivalent if there exists a unitary $U: \mathcal{H} \simeq \mathcal{K}$ that intertwines the two M-module structures (reps).

vN representations and Hilbert M-modules

- If M is a $v N$ algebra, then a ${ }^{*}$-rep $\pi: M \rightarrow \mathcal{B}(\mathcal{H})$ is a $v N$ rep (i.e., $\pi(M)$ wo-closed) iff π is completely additive. We'll call such representations normal representations and \mathcal{H} a (left) Hilbert M-module. Two Hilbert M-modules \mathcal{H}, \mathcal{K} are equivalent if there exists a unitary $U: \mathcal{H} \simeq \mathcal{K}$ that intertwines the two M-module structures (reps).
- If $M \subset \mathcal{B}(\mathcal{H})$ is a $v N$ algebra and $p^{\prime} \in M^{\prime}$, then $M \ni x \mapsto x p^{\prime} \in \mathcal{B}\left(p^{\prime}(\mathcal{H})\right)$ is a $v N$ representation of M. Also, if $\pi_{i}: M \rightarrow \mathcal{B}\left(\mathcal{H}_{i}\right)$ are vN representations of M, then $x \mapsto \oplus_{i} \pi_{i}(x) \in \mathcal{B}\left(\oplus_{i} \mathcal{H}_{i}\right)$ is a $v N$ rep. of M.

vN representations and Hilbert M-modules

- If M is a $v N$ algebra, then a ${ }^{*}$-rep $\pi: M \rightarrow \mathcal{B}(\mathcal{H})$ is a $v N$ rep (i.e., $\pi(M)$ wo-closed) iff π is completely additive. We'll call such representations normal representations and \mathcal{H} a (left) Hilbert M-module. Two Hilbert M-modules \mathcal{H}, \mathcal{K} are equivalent if there exists a unitary $U: \mathcal{H} \simeq \mathcal{K}$ that intertwines the two M-module structures (reps).
- If $M \subset \mathcal{B}(\mathcal{H})$ is a $v N$ algebra and $p^{\prime} \in M^{\prime}$, then $M \ni x \mapsto x p^{\prime} \in \mathcal{B}\left(p^{\prime}(\mathcal{H})\right)$ is a $v N$ representation of M. Also, if $\pi_{i}: M \rightarrow \mathcal{B}\left(\mathcal{H}_{i}\right)$ are vN representations of M, then $x \mapsto \oplus_{i} \pi_{i}(x) \in \mathcal{B}\left(\oplus_{i} \mathcal{H}_{i}\right)$ is a vN rep. of M.
- If (M, τ) is a tracial v N algebra, then a ${ }^{*}$-rep $\pi: M \rightarrow \mathcal{B}(\mathcal{H})$ is a vN rep iff π is continuous from $(M)_{1}$ with the $\left\|\|_{2}\right.$-topology to $\mathcal{B}(\mathcal{H})$ with the so-topology.

Classification of Hilbert modules of a II_{1} factor

- If M is tracial $v N$ algebra then any cyclic Hilbert M-module is of the form $\rho(p)\left(L^{2} M\right)=L^{2}(M p)$. Any Hilbert M-module \mathcal{H} is of the form $\oplus_{i} L^{2}\left(M p_{i}\right)$, for some projections $\left\{p_{i}\right\}_{i} \subset M$.

Classification of Hilbert modules of a II_{1} factor

- If M is tracial $v N$ algebra then any cyclic Hilbert M-module is of the form $\rho(p)\left(L^{2} M\right)=L^{2}(M p)$. Any Hilbert M-module \mathcal{H} is of the form $\oplus_{i} L^{2}\left(M p_{i}\right)$, for some projections $\left\{p_{i}\right\}_{i} \subset M$.
- If M is a $I I_{1}$ factor and $\mathcal{K}=\oplus_{j} L^{2}\left(M q_{j}\right)$ is another Hilbert M-module for some $\left\{q_{j}\right\}_{j} \subset \mathcal{P}(M)$, then $M \mathcal{H} \simeq_{M} \mathcal{K}$ iff $\sum_{i} \tau\left(p_{i}\right)=\sum_{j} \tau\left(q_{j}\right)$. One denotes $\operatorname{dim}(M \mathcal{H})=\sum_{i} \tau\left(p_{i}\right)$, called the dimension of the Hilbert M-module \mathcal{H}. Thus, Hilbert M-modules $M \mathcal{H}$ are completely classified (up to equivalence) by their dimension $\operatorname{dim}(M \mathcal{H})$, which takes all values $[0, \infty) \cup\{$ infinite cardinals $\}$.

Classification of Hilbert modules of a II_{1} factor

- If M is tracial $v N$ algebra then any cyclic Hilbert M-module is of the form $\rho(p)\left(L^{2} M\right)=L^{2}(M p)$. Any Hilbert M-module \mathcal{H} is of the form $\oplus_{i} L^{2}\left(M p_{i}\right)$, for some projections $\left\{p_{i}\right\}_{i} \subset M$.
- If M is a $I I_{1}$ factor and $\mathcal{K}=\oplus_{j} L^{2}\left(M q_{j}\right)$ is another Hilbert M-module for some $\left\{q_{j}\right\}_{j} \subset \mathcal{P}(M)$, then $M \mathcal{H} \simeq_{M} \mathcal{K}$ iff $\sum_{i} \tau\left(p_{i}\right)=\sum_{j} \tau\left(q_{j}\right)$. One denotes $\operatorname{dim}(M \mathcal{H})=\sum_{i} \tau\left(p_{i}\right)$, called the dimension of the Hilbert M-module \mathcal{H}. Thus, Hilbert M-modules $M \mathcal{H}$ are completely classified (up to equivalence) by their dimension $\operatorname{dim}(M \mathcal{H})$, which takes all values $[0, \infty) \cup\{$ infinite cardinals $\}$.
- If $t=\operatorname{dim}(M \mathcal{H}) \geq 1$ and $p \in M^{t}$ has trace $1 / t$ then $M_{\mathcal{H}} \simeq_{M} L^{2}\left(p M^{t}\right)$.
- If $t=\operatorname{dim}\left(M_{\mathcal{H}}\right)<\infty$ then $\operatorname{dim}\left(M^{\prime} \mathcal{H}\right)=1 / t$. Also, M^{\prime} is naturally isomorphic to $\left(M^{t}\right)^{o p}$, equivalently \mathcal{H} has a natural Hilbert right M^{t}-module structure.

II_{1} factors from groups and group actions

- Let Γ be a discrete group, $\mathbb{C} \Gamma$ its (complex) group algebra and $\mathbb{C} \Gamma \ni x \mapsto \lambda(x) \in \mathcal{B}\left(\ell^{2} \Gamma\right)$ the left regular representation. The wo-closure of $\lambda(\mathbb{C} \Gamma)$ in $\mathcal{B}(\mathcal{H})$ is called the group von Neumann algebra of Γ, denoted $L(\Gamma)$, or just $L \Gamma$. Denoting $u_{g}=\lambda(g)$ (the canonical unitaries), the algebra $L \Gamma$ can be identified with the set of ℓ^{2}-summable formal series $x=\sum_{g} c_{g} u_{g}$ with the property that $x \cdot \xi \in \ell^{2}, \forall \xi \in \ell^{2} \Gamma$. It has a normal faithful trace given by $\tau\left(\sum_{g} c_{g} u_{g}\right)=c_{e}$, implemented by the vector ξ_{e}, and is thus tracial (finite).

I_{1} factors from groups and group actions

- Let Γ be a discrete group, $\mathbb{C} \Gamma$ its (complex) group algebra and $\mathbb{C} \Gamma \ni x \mapsto \lambda(x) \in \mathcal{B}\left(\ell^{2} \Gamma\right)$ the left regular representation. The wo-closure of $\lambda(\mathbb{C} \Gamma)$ in $\mathcal{B}(\mathcal{H})$ is called the group von Neumann algebra of Γ, denoted $L(\Gamma)$, or just $L \Gamma$. Denoting $u_{g}=\lambda(g)$ (the canonical unitaries), the algebra $L \Gamma$ can be identified with the set of ℓ^{2}-summable formal series $x=\sum_{g} c_{g} u_{g}$ with the property that $x \cdot \xi \in \ell^{2}, \forall \xi \in \ell^{2} \Gamma$. It has a normal faithful trace given by $\tau\left(\sum_{g} c_{g} u_{g}\right)=c_{e}$, implemented by the vector ξ_{e}, and is thus tracial (finite).
- $L \Gamma$ is a I_{1} factor iff Γ is infinite conjugacy class (ICC).

I_{1} factors from groups and group actions

- Let Γ be a discrete group, $\mathbb{C} \Gamma$ its (complex) group algebra and $\mathbb{C} \Gamma \ni x \mapsto \lambda(x) \in \mathcal{B}\left(\ell^{2} \Gamma\right)$ the left regular representation. The wo-closure of $\lambda(\mathbb{C} \Gamma)$ in $\mathcal{B}(\mathcal{H})$ is called the group von Neumann algebra of Γ, denoted $L(\Gamma)$, or just $L \Gamma$. Denoting $u_{g}=\lambda(g)$ (the canonical unitaries), the algebra $L \Gamma$ can be identified with the set of ℓ^{2}-summable formal series $x=\sum_{g} c_{g} u_{g}$ with the property that $x \cdot \xi \in \ell^{2}, \forall \xi \in \ell^{2} \Gamma$. It has a normal faithful trace given by $\tau\left(\sum_{g} c_{g} u_{g}\right)=c_{e}$, implemented by the vector ξ_{e}, and is thus tracial (finite).
- $L \Gamma$ is a I_{1} factor iff Γ is infinite conjugacy class (ICC).
- Similarly, if $\Gamma \curvearrowright^{\sigma} X$ is a pmp action, one associates to it the group measure space $v N$ algebra $L^{\infty}(X) \rtimes \Gamma \subset \mathcal{B}\left(L^{2}(X) \otimes \ell^{2} \Gamma\right)$, as weak closure of the algebraic crossed product of $L^{\infty}(X)$ by Γ. Can be identified with the algebra of ℓ^{2}-summable formal series $\sum_{g} a_{g} u_{g}$, with $a_{g} \in L^{\infty}(X)$, with multiplication rule $a_{g} u_{g} a_{h} u_{h}=a_{g} \sigma_{g}\left(a_{h}\right) u_{g h}$. It is a I_{1} factor if $\Gamma \curvearrowright X$ is free ergodic, in which case $A=L^{\infty}(X)$ is maximal abelian in $L^{\infty}(X) \rtimes \Gamma$ and its normalizer generates $L^{\infty}(X) \rtimes \Gamma$, i.e. A is a Cartan subalgebra.

More II_{1} factors from operations

Using the above vN algebras as "building blocks", one can obtain more II_{1} factors by using operations. Besides amplifications, we have:

More II_{1} factors from operations

Using the above vN algebras as "building blocks", one can obtain more II_{1} factors by using operations. Besides amplifications, we have:

- Tensor product: $\left(M_{i}\right)_{i \in I} \longmapsto \bar{\otimes}_{i} M_{i}$. It is I_{1} factor iff all M_{i} are finite factors $\neq \mathbb{C}$ and $|I|=\infty$, or $|I|<\infty$ and at least one M_{i} is I_{1}.

More II_{1} factors from operations

Using the above vN algebras as "building blocks", one can obtain more II_{1} factors by using operations. Besides amplifications, we have:

- Tensor product: $\left(M_{i}\right)_{i \in I} \longmapsto \bar{\otimes}_{i} M_{i}$. It is II_{1} factor iff all M_{i} are finite factors $\neq \mathbb{C}$ and $|I|=\infty$, or $|I|<\infty$ and at least one M_{i} is I_{1}.
- Free product: $\left(M_{1}, M_{2}\right) \longmapsto M_{1} * M_{2}$. Also, if $B \subset M_{i}$ common $v N$ subalgebra, then $M_{1} *_{B} M_{2}$ is the Free product with amalgamation over B. In general it is II_{1} factor....

More II_{1} factors from operations

Using the above vN algebras as "building blocks", one can obtain more II_{1} factors by using operations. Besides amplifications, we have:

- Tensor product: $\left(M_{i}\right)_{i \in I} \longmapsto \bar{\otimes}_{i} M_{i}$. It is II_{1} factor iff all M_{i} are finite factors $\neq \mathbb{C}$ and $|I|=\infty$, or $|I|<\infty$ and at least one M_{i} is I_{1}.
- Free product: $\left(M_{1}, M_{2}\right) \longmapsto M_{1} * M_{2}$. Also, if $B \subset M_{i}$ common vN subalgebra, then $M_{1} *_{B} M_{2}$ is the Free product with amalgamation over B. In general it is II_{1} factor....
- Crossed product: $(B, \tau) \mathrm{vN}$ algebra with a trace (e.g. $B=L^{\infty}(X)$ or $B=R), \Gamma \curvearrowright B$ a trace preserving action $\longmapsto B \rtimes \Gamma$.

More II_{1} factors from operations

Using the above vN algebras as "building blocks", one can obtain more II_{1} factors by using operations. Besides amplifications, we have:

- Tensor product: $\left(M_{i}\right)_{i \in I} \longmapsto \bar{\otimes}_{i} M_{i}$. It is II_{1} factor iff all M_{i} are finite factors $\neq \mathbb{C}$ and $|I|=\infty$, or $|I|<\infty$ and at least one M_{i} is I_{1}.
- Free product: $\left(M_{1}, M_{2}\right) \longmapsto M_{1} * M_{2}$. Also, if $B \subset M_{i}$ common vN subalgebra, then $M_{1} *_{B} M_{2}$ is the Free product with amalgamation over B. In general it is II_{1} factor....
- Crossed product: $(B, \tau) \mathrm{vN}$ algebra with a trace (e.g. $B=L^{\infty}(X)$ or $B=R), \Gamma \curvearrowright B$ a trace preserving action $\longmapsto B \rtimes \Gamma$.
- Ultraproduct of finite factors $\Pi_{\omega} M_{n}$, notably the case $\Pi_{\omega} \mathbb{M}_{n \times n}(\mathbb{C})$ and the ultrapower R^{ω} of R (i.e., the case $M_{n}=R, \forall n$)

R is the unique AFD I_{1} factor

- Exercise: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ, then $(A, \tau) \simeq\left(L^{\infty}([0,1], \mu), \int \mathrm{d} \mu\right)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

R is the unique AFD I_{1} factor

- Exercise: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ, then $(A, \tau) \simeq\left(L^{\infty}([0,1], \mu), \int \mathrm{d} \mu\right)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD) if $\forall F \subset M$ finite, $\forall \varepsilon>0, \exists B \subset M$ fin dim s.t. $\left\|x-E_{B}(x)\right\|_{2} \leq \varepsilon, \forall x \in F$.

R is the unique AFD I_{1} factor

- Exercise: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ, then $(A, \tau) \simeq\left(L^{\infty}([0,1], \mu), \int \mathrm{d} \mu\right)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD) if $\forall F \subset M$ finite, $\forall \varepsilon>0, \exists B \subset M$ fin dim s.t. $\left\|x-E_{B}(x)\right\|_{2} \leq \varepsilon, \forall x \in F$.

Theorem: Murray-von Neumann 1943

If M is an AFD $\|_{1}$ factor that's countably generated ($\Leftrightarrow\left\|\|_{2}\right.$-separable) then $M \simeq R$.

R is the unique AFD $\|_{1}$ factor

- Exercise: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ, then $(A, \tau) \simeq\left(L^{\infty}([0,1], \mu), \int \mathrm{d} \mu\right)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD) if $\forall F \subset M$ finite, $\forall \varepsilon>0, \exists B \subset M$ fin dim s.t. $\left\|x-E_{B}(x)\right\|_{2} \leq \varepsilon, \forall x \in F$.

Theorem: Murray-von Neumann 1943

If M is an AFD $\|_{1}$ factor that's countably generated ($\Leftrightarrow\left\|\|_{2}\right.$-separable) then $M \simeq R$.

Proof: Exercise (Like in the abelian case above, construct increasing "non-commutative dyadic" approximations $\left.\mathbb{M}_{2^{k_{n}}}(\mathbb{C}) \nearrow M\right)$.

R is the unique AFD I_{1} factor

- Exercise: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ, then $(A, \tau) \simeq\left(L^{\infty}([0,1], \mu), \int \mathrm{d} \mu\right)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD) if $\forall F \subset M$ finite, $\forall \varepsilon>0, \exists B \subset M$ fin dim s.t. $\left\|x-E_{B}(x)\right\|_{2} \leq \varepsilon, \forall x \in F$.

Theorem: Murray-von Neumann 1943

If M is an AFD $\|_{1}$ factor that's countably generated $\left(\Leftrightarrow\left\|\|_{2}\right.\right.$-separable) then $M \simeq R$.

Proof: Exercise (Like in the abelian case above, construct increasing "non-commutative dyadic" approximations $\left.\mathbb{M}_{2^{k_{n}}}(\mathbb{C}) \nearrow M\right)$.

Corollary

$R^{t} \simeq R, \forall t>0$, i.e., $\mathcal{F}(R)=\mathbb{R}_{+}$.

Amenability for groups and vN algebras

Definitions

- A group Γ is amenable if it has an invariant mean, i.e., a state φ on $\ell^{\infty}(\Gamma)$ such that $\varphi\left({ }_{g} f\right)=\varphi(f), \forall f \in \ell^{\infty} \Gamma, g \in \Gamma$, where ${ }_{g} f(h)=f\left(g^{-1} h\right), \forall h$.

Amenability for groups and vN algebras

Definitions

- A group Γ is amenable if it has an invariant mean, i.e., a state φ on $\ell^{\infty}(\Gamma)$ such that $\varphi\left({ }_{g} f\right)=\varphi(f), \forall f \in \ell^{\infty} \Gamma, g \in \Gamma$, where ${ }_{g} f(h)=f\left(g^{-1} h\right), \forall h$.
- A tracial $v \mathrm{~N}$ algebra (M, τ) is amenable if it has a hypertrace (invariant mean), i.e., a state φ on $\mathcal{B}\left(L^{2} M\right)$ such that $\varphi(x T)=\varphi(T x)$, $\forall x \in M, T \in \mathcal{B}$, and $\varphi_{\mid M}=\tau$ (Note: the 2nd condition is redundant if M is a II_{1} factor).

Amenability for groups and vN algebras

Definitions

- A group Γ is amenable if it has an invariant mean, i.e., a state φ on $\ell^{\infty}(\Gamma)$ such that $\varphi\left({ }_{g} f\right)=\varphi(f), \forall f \in \ell^{\infty} \Gamma, g \in \Gamma$, where ${ }_{g} f(h)=f\left(g^{-1} h\right), \forall h$.
- A tracial $v \mathrm{~N}$ algebra (M, τ) is amenable if it has a hypertrace (invariant mean), i.e., a state φ on $\mathcal{B}\left(L^{2} M\right)$ such that $\varphi(x T)=\varphi(T x)$, $\forall x \in M, T \in \mathcal{B}$, and $\varphi_{\mid M}=\tau$ (Note: the 2nd condition is redundant if M is a II_{1} factor).
- $L \Gamma$ is amenable iff Γ is amenable

Proof. If φ is a state on $\mathcal{B}\left(\ell^{2} \Gamma\right.$) with $L \Gamma$ in its centralizer (a hypertrace on $L \Gamma)$, then and $\mathcal{D}=\ell^{\infty} \Gamma$ is represented in $\mathcal{B}\left(\ell^{2} \Gamma\right)$ as diagonal operators, then $\varphi_{\mid D}$ is a state on \mathcal{D} that satisfies $\varphi\left(u_{g} f u_{g}^{*}\right)=\varphi(f), \forall f \in \mathcal{D}=\ell^{\infty} \Gamma$, where $u_{g}=\lambda(g)$. But $u_{g} f u_{g}^{*}={ }_{g} f$ (Exercise), so $\varphi_{\mid \mathcal{D}}$ is an invariant mean.

Conversely, if Γ is amenable and $\varphi \in\left(\ell^{\infty} \Gamma\right)^{*}$ is an invariant mean, then $\psi=\int \tau\left(u_{g} \cdot u_{g}^{*}\right) \mathrm{d} \varphi \in \mathcal{B}^{*}$ is a state on \mathcal{B} which has $\left\{u_{h}\right\}_{h}$ in its centralizer and equals τ when restricted to $L \Gamma$. For any $x \in(L \Gamma)_{1}$ and $\varepsilon>0$, let $x_{0} \in \mathbb{C} \Gamma$ be so that $\left\|x-x_{0}\right\|_{2} \leq \varepsilon,\left\|x_{0}\right\| \leq 1$ (Kaplansky). By
Cauchy-Schwartz, if $T \in(\mathcal{B})_{1}$, then we have: $\left|\psi\left(\left(x-x_{0}\right) T\right)\right| \leq \varepsilon$, $\left|\psi\left(T\left(x-x_{0}\right)\right)\right| \leq \varepsilon$. Since $\psi\left(x_{0} T\right)=\psi\left(T x_{0}\right)$ and ε arbitrary, this shows that $\psi(T x)=\psi(x T)$.

Conversely, if Γ is amenable and $\varphi \in\left(\ell^{\infty} \Gamma\right)^{*}$ is an invariant mean, then $\psi=\int \tau\left(u_{g} \cdot u_{g}^{*}\right) \mathrm{d} \varphi \in \mathcal{B}^{*}$ is a state on \mathcal{B} which has $\left\{u_{h}\right\}_{h}$ in its centralizer and equals τ when restricted to $L \Gamma$. For any $x \in(L \Gamma)_{1}$ and $\varepsilon>0$, let $x_{0} \in \mathbb{C} \Gamma$ be so that $\left\|x-x_{0}\right\|_{2} \leq \varepsilon,\left\|x_{0}\right\| \leq 1$ (Kaplansky). By
Cauchy-Schwartz, if $T \in(\mathcal{B})_{1}$, then we have: $\left|\psi\left(\left(x-x_{0}\right) T\right)\right| \leq \varepsilon$, $\left|\psi\left(T\left(x-x_{0}\right)\right)\right| \leq \varepsilon$. Since $\psi\left(x_{0} T\right)=\psi\left(T x_{0}\right)$ and ε arbitrary, this shows that $\psi(T x)=\psi(x T)$.

- Let (M, τ) be tracial vN algebra. The following are equiv: $1^{\circ} M$ is amenable.
$2^{\circ} M \subset \mathcal{B}(\mathcal{H})$ has a hypertrace for any normal rep. of M.
3° There exists a normal rep $M \subset \mathcal{B}(\mathcal{H})$ with a hypertrace.

Corollary

$1^{\circ}(M, \tau)$ amenable and $B \subset M$ a vN subablegbra, then (B, τ) amenable. 2° Assume (M, τ) is tracial vN algebra, $B \subset M$ amenable vN subalgebra and $\pi: \Gamma \rightarrow \mathcal{U}(M)$ a representation of an amenable group Γ such that $\pi(g)(B)=B, \forall g$, and $B \vee \pi(\Gamma)=M$. Then (M, τ) is amenable.

Concrete examples of amenable II_{1} factors

- We have already shown that if Γ amenable then $L \Gamma$ amenable. Some concrete examples of amenable group are: finite groups; more generally locally finite groups (e.g., S_{∞}); $\mathbb{Z}^{n}, n \geq 1$, in fact all abelian groups; $H 2 \Gamma_{0}$ with H, Γ_{0} amenable; more generally if $1 \rightarrow H \rightarrow \Gamma \rightarrow \Gamma_{0} \rightarrow 1$ is exact, then Γ amenable iff H, Γ_{0} are amenable.
- If in addition Γ is ICC, then $L \Gamma$ is an amenable I_{1} factor. Of the above amenable groups, S_{∞} is ICC Also, $H_{2} \Gamma_{0}$ are ICC whenever $|H| \geq 2$ and $\left|\Gamma_{0}\right|=\infty$, so groups like $(\mathbb{Z} / m \mathbb{Z}) \imath \mathbb{Z}^{n}$ with $m \geq 2, n \geq 1$ are all ICC amenable.

Concrete examples of amenable \mathbf{I}_{1} factors (continuation)

- Let $\mathcal{U}_{0} \subset \mathcal{U}(R)$ be the subgroup of all unitaries in $R_{0}=\mathbb{M}_{2}(\mathbb{C})^{\otimes \infty}$ that have only ± 1 and 0 as entries. Then \mathcal{U}_{0} is locally finite so it is amenable and it clearly generates R.
Thus R is an amenable I_{1} factor, and any vN subalgebra $B \subset M$ is amenable, in particular any II_{1} subfactor of R is an amenable II_{1} factor.
- By last Corollary, any abelian vN algebra is amenable (because it is generated by an abelian group of unitaries). Also, any group measure space vN algebra $L^{\infty} X \rtimes \Gamma$ with Γ an amenable group (e.g., like in the above examples), is an amenable vN algebra. Thus, if $\Gamma \curvearrowright X$ is free ergodic with Γ amenable then $L^{\infty} X \rtimes \Gamma$ is an amenable I_{1} factor.

FøIner condition for groups

Føloner's 1955 characterization of amenability for groups

A group Γ is amenable iff it satisfies the condition: $\forall F \subset \Gamma$ finite, $\varepsilon>0$, $\exists K \subset \Gamma$ finite such that $|F K \backslash K|<\varepsilon|K|$.

FøIner condition for groups

Føloner's 1955 characterization of amenability for groups

A group Γ is amenable iff it satisfies the condition: $\forall F \subset \Gamma$ finite, $\varepsilon>0$, $\exists K \subset \Gamma$ finite such that $|F K \backslash K|<\varepsilon|K|$.

Proof: \Leftarrow If $F_{i} \nearrow \Gamma, K_{i} \subset \Gamma$ are finite s.t. $\left|F_{i} K_{i} \backslash K_{i}\right| \leq\left|F_{i}\right|^{-1}$ then $f \mapsto \operatorname{Lim}_{i}\left|K_{i}\right|^{-1} \sum_{g \in K_{i}} f(g)$ is clearly an invariant mean for Γ (Exercise!).

Følner condition for groups

Føloner's 1955 characterization of amenability for groups

A group Γ is amenable iff it satisfies the condition: $\forall F \subset \Gamma$ finite, $\varepsilon>0$, $\exists K \subset \Gamma$ finite such that $|F K \backslash K|<\varepsilon|K|$.

Proof: \Leftarrow If $F_{i} \nearrow \Gamma, K_{i} \subset \Gamma$ are finite s.t. $\left|F_{i} K_{i} \backslash K_{i}\right| \leq\left|F_{i}\right|^{-1}$ then $f \mapsto \operatorname{Lim}_{i}\left|K_{i}\right|^{-1} \sum_{g \in K_{i}} f(g)$ is clearly an invariant mean for Γ (Exercise!).
\Rightarrow Step 1: Day's trick. $\exists \psi \in\left(\ell^{1} \Gamma_{+}\right)_{1}$ s.t. $\left\|\psi-{ }_{g} \psi\right\|_{1} \leq \varepsilon /|F|, \forall g \in F$.
Consider the Banach space $\left(\ell^{1} \Gamma\right)^{|F|}$ and its convex subspace $\mathcal{C}=\left\{\left(\psi-{ }_{g} \psi\right)_{g \in F} \mid \psi \in\left(\ell_{+}^{1}\right)_{1}\right\}$. It is sufficient to show that 0 is in norm closure of \mathcal{C}. If $0 \notin \overline{\mathcal{C}}$, then $\exists f^{g} \in \ell^{\infty} \Gamma$ such that

$$
\operatorname{Re} \sum_{g \in F}\left\langle\psi-g \psi, f^{g}\right\rangle \geq c>0, \forall \psi \in\left(\ell_{+}^{1}\right)_{1}
$$

But the set of ψ as above is $\sigma\left(\left(\ell^{\infty}\right)^{*}, \ell^{\infty}\right)$ dense in the state space of ℓ^{∞}, so the above holds true for all states on ℓ^{∞}, in particular for the invariant mean φ, which gives $0>c$, a contradiction.

Step 2: Namioka's trick. If $\left.b \in\left(\ell^{1} \Gamma\right)_{+}\right)_{1}$ satisfies $\sum_{g \in \Gamma}\left\|_{g} b-b\right\|_{1}<\varepsilon$, then $\exists t>0$ such that $e=e_{t}(b)$ (spectral projection of b, or "level set", corresponding to $[t, \infty))$ satisfies $\sum_{g \in \Gamma}\left\|_{g} e-e\right\|_{1}<\varepsilon\|e\|_{1}$.
Note first that $\forall y_{1}, y_{2} \in \mathbb{R}_{+}$we have $\int_{0}^{\infty}\left|e_{t}\left(y_{1}\right)-e_{t}\left(y_{2}\right)\right| \mathrm{d} t=\left|y_{1}-y_{2}\right|$. Thus, if $b_{1}, b_{2} \in \ell^{1} \Gamma_{+}$, then $\int_{0}^{\infty}\left|e_{t}\left(b_{1}\right)-e_{t}\left(b_{2}\right)\right| \mathrm{d} t=\left|b_{1}-b_{2}\right|$ (pointwise, as functions). Hence, $\int_{0}^{\infty}\left\|e_{t}\left(b_{1}\right)-e_{t}\left(b_{2}\right)\right\|_{1} \mathrm{~d} t=\left\|b_{1}-b_{2}\right\|_{1}$. Applying this to $b_{1}=g b, b_{2}=b$, we get:
$\sum_{g \in F} \int_{0}^{\infty}\left\|{ }_{g} e_{t}(b)-e_{t}(b)\right\|_{1} \mathrm{~d} t=\sum_{g \in F}\|g b-b\|_{1}<\varepsilon\|b\|_{1}=\varepsilon \int_{0}^{\infty}\left\|e_{t}(b)\right\|_{1} \mathrm{~d} t$
Thus, there must exist $t>0$ such that $e=e_{t}(b)$ satisfies
$\sum_{g \in F}\left\|_{g} e-e\right\|_{1}<\varepsilon\|e\|_{1}$.

Step 2: Namioka's trick. If $\left.b \in\left(\ell^{1} \Gamma\right)_{+}\right)_{1}$ satisfies $\sum_{g \in \Gamma}\left\|_{g} b-b\right\|_{1}<\varepsilon$, then $\exists t>0$ such that $e=e_{t}(b)$ (spectral projection of b, or "level set", corresponding to $[t, \infty)$) satisfies $\sum_{g \in \Gamma}\left\|_{g} e-e\right\|_{1}<\varepsilon\|e\|_{1}$.
Note first that $\forall y_{1}, y_{2} \in \mathbb{R}_{+}$we have $\int_{0}^{\infty}\left|e_{t}\left(y_{1}\right)-e_{t}\left(y_{2}\right)\right| \mathrm{d} t=\left|y_{1}-y_{2}\right|$. Thus, if $b_{1}, b_{2} \in \ell^{1} \Gamma_{+}$, then $\int_{0}^{\infty}\left|e_{t}\left(b_{1}\right)-e_{t}\left(b_{2}\right)\right| \mathrm{d} t=\left|b_{1}-b_{2}\right|$ (pointwise, as functions). Hence, $\int_{0}^{\infty}\left\|e_{t}\left(b_{1}\right)-e_{t}\left(b_{2}\right)\right\|_{1} \mathrm{~d} t=\left\|b_{1}-b_{2}\right\|_{1}$. Applying this to $b_{1}={ }_{g} b, b_{2}=b$, we get:

$$
\sum_{g \in F} \int_{0}^{\infty}\left\|g e_{t}(b)-e_{t}(b)\right\|_{1} \mathrm{~d} t=\sum_{g \in F}\|g b-b\|_{1}<\varepsilon\|b\|_{1}=\varepsilon \int_{0}^{\infty}\left\|e_{t}(b)\right\|_{1} \mathrm{~d} t
$$

Thus, there must exist $t>0$ such that $e=e_{t}(b)$ satisfies $\sum_{g \in F}\left\|_{g} e-e\right\|_{1}<\varepsilon\|e\|_{1}$.
Step 3: End of proof of Følner's Thm. But then the set $K \subset \Gamma$ with $\chi_{K}=e$ is finite and satisfies $|F K \backslash K| \leq \sum_{g \in F}|g K \backslash K|<\varepsilon|K|$.

Følner condition for II_{1} factors

Connes' 1976 FøIner-type characterization of amenable II_{1} factors
Let $M \subset \mathcal{B}\left(L^{2} M\right)$ be a I_{1} factor. Then M is amenable iff for any $F \subset \mathcal{U}(M)$ finite and $\varepsilon>0$, there exists a finite rank projection $e \in \mathcal{B}\left(L^{2} M\right)$ such that $\left\|u e u^{*}-e\right\|_{2, T_{r}}<\varepsilon\|e\|_{2, T_{r}}, \forall u \in F$, where $\|X\|_{2, \operatorname{Tr}}=\operatorname{Tr}\left(X^{*} X\right)^{1 / 2}$ is the Hilbert-Schmidt norm on $\mathcal{B}\left(L^{2} M\right)$.

FøIner condition for I_{1} factors

Connes' 1976 FøIner-type characterization of amenable $\mathbf{I I}_{1}$ factors

Let $M \subset \mathcal{B}\left(L^{2} M\right)$ be a I_{1} factor. Then M is amenable iff for any $F \subset \mathcal{U}(M)$ finite and $\varepsilon>0$, there exists a finite rank projection $e \in \mathcal{B}\left(L^{2} M\right)$ such that $\left\|u e u^{*}-e\right\|_{2, T_{r}}<\varepsilon\|e\|_{2, T_{r}}, \forall u \in F$, where $\|X\|_{2, \operatorname{Tr}}=\operatorname{Tr}\left(X^{*} X\right)^{1 / 2}$ is the Hilbert-Schmidt norm on $\mathcal{B}\left(L^{2} M\right)$.
\Rightarrow Step 1: Day-type trick. $\exists b \in\left(L^{1}(\mathcal{B})_{+}\right)_{1}$ such that $\left\|u b u^{*}-b\right\|_{1, T_{r}} \leq \varepsilon$, $\forall u \in F$, where $\mathcal{B}=\mathcal{B}\left(L^{2} M\right),\|X\|_{1, \operatorname{Tr}_{r}}=\operatorname{Tr}(|X|)$.
Proof of this part is same as proof of Step 1 of Følner's condition for amenable groups, using the fact that $L^{1}(\mathcal{B}, \operatorname{Tr})^{*}=\mathcal{B}\left(L^{2} M\right)=\mathcal{B}$.

Følner condition for II_{1} factors

Connes' 1976 FøIner-type characterization of amenable II_{1} factors

Let $M \subset \mathcal{B}\left(L^{2} M\right)$ be a I_{1} factor. Then M is amenable iff for any $F \subset \mathcal{U}(M)$ finite and $\varepsilon>0$, there exists a finite rank projection $e \in \mathcal{B}\left(L^{2} M\right)$ such that $\left\|u e u^{*}-e\right\|_{2, T_{r}}<\varepsilon\|e\|_{2, T_{r}}, \forall u \in F$, where $\|X\|_{2, \operatorname{Tr}}=\operatorname{Tr}\left(X^{*} X\right)^{1 / 2}$ is the Hilbert-Schmidt norm on $\mathcal{B}\left(L^{2} M\right)$.
\Rightarrow Step 1: Day-type trick. $\exists b \in\left(L^{1}(\mathcal{B})_{+}\right)_{1}$ such that $\left\|u b u^{*}-b\right\|_{1, T_{r}} \leq \varepsilon$, $\forall u \in F$, where $\mathcal{B}=\mathcal{B}\left(L^{2} M\right),\|X\|_{1, \operatorname{Tr}}=\operatorname{Tr}(|X|)$.
Proof of this part is same as proof of Step 1 of Følner's condition for amenable groups, using the fact that $L^{1}(\mathcal{B}, \operatorname{Tr})^{*}=\mathcal{B}\left(L^{2} M\right)=\mathcal{B}$.
Switching to $\left\|\|_{2, T_{r} \text {-estimate. With } b \text { as above, one has }}\right.$ $\left\|u b^{1 / 2} u^{*}-b^{1 / 2}\right\|_{2, \operatorname{Tr}} \leq 2 \varepsilon^{1 / 2}=2 \varepsilon^{1 / 2}\left\|b^{1 / 2}\right\|_{2, \operatorname{Tr}}, \forall u \in F$. This is due to the Powers-Stømer inequality, showing that if $b_{1}, b_{2} \in L^{1}(\mathcal{B}, \operatorname{Tr})_{+}$then

$$
\left\|b_{1}^{1 / 2}-b_{2}^{1 / 2}\right\|_{2, \operatorname{Tr}}^{2} \leq\left\|b_{1}-b_{2}\right\|_{1, \operatorname{Tr}} \leq\left\|b_{1}^{1 / 2}-b_{2}^{1 / 2}\right\|_{2, \operatorname{Tr}}\left\|b_{1}^{1 / 2}+b_{2}^{1 / 2}\right\|_{2, \operatorname{Tr}}
$$

Step 2: "Connes' joint distribution trick" and "Namioka-type trick". If $a \in L^{2}(\mathcal{B}, \operatorname{Tr})_{+}$satisfies $\operatorname{Tr}\left(a^{2}\right)=1$ and $\sum_{g \in F}\left\|u a u^{*}-a\right\|_{2, T_{r}}^{2}<\varepsilon^{\prime 2}$ then $\exists t>0$ such that $\sum_{g \in F}\left\|u e_{t}(a) u^{*}-e_{t}(a)\right\|_{2, \operatorname{Tr}}^{2}<\varepsilon^{\prime 2}\left\|e_{t}(a)\right\|_{2, T r}^{2}$.
This is because if $a_{1}, a_{2} \in \mathcal{B}\left(L^{2} M\right)_{+}$are finite rank positive operators then there exists a (discrete) measure m on $X=\mathbb{R}_{+} \times \mathbb{R}_{+}$such that for any Borel functs f_{1}, f_{2} on \mathbb{R}_{+}one has $\int_{X} f_{1}(t) f_{2}(s) \mathrm{d} m(t, s)=\operatorname{Tr}\left(f_{1}\left(a_{1}\right) f_{2}\left(a_{2}\right)\right)$. (this is Applying this to $a_{1}=a, a_{2}=u a u^{*}$, one then gets:

$$
\begin{gathered}
\sum_{g \in F} \int_{0}^{\infty}\left\|u e_{t}(a) u^{*}-e_{t}(a)\right\|_{2, T r}^{2} \mathrm{~d} t \\
=\sum_{g \in F}\left\|u a u^{*}-a\right\|_{2, T r}^{2}<\varepsilon^{\prime 2}\|a\|_{2, T r}^{2}=\varepsilon^{\prime 2} \int_{0}^{\infty}\left\|e_{t}(a)\right\|_{2, T r}^{2} \mathrm{~d} t
\end{gathered}
$$

But then there must exist $t>0$ such that $e=e_{t}(a)$ satisfies
$\sum_{g \in F}\left\|u e u^{*}-e\right\|_{2, T r}^{2}<\varepsilon^{\prime 2}\|e\|_{2, T r}^{2}$
\Leftarrow Exercise!

Connes Thm: R is the unique amenable II_{1} factor

C's 1976 Fundamental Thm: Any separable amenable II_{1} factor is AFD and is thus isomorphic to the hyperfinite factor R.

From C's Følner-type condition to local AFD. Let $1 \in F \subset \mathcal{U}(M)$ finite and $\varepsilon>0$. By the C's Følner condition, $\exists p=p_{\mathcal{H}_{0}}$ for some finite dim $\mathcal{H}_{0} \subset L^{2} M$ s.t. $\left\|u p u^{*}-p\right\|_{2, T_{r}}<\varepsilon\|p\|_{2, T_{r}}, \forall u \in F$. By density of M in $L^{2} M$, may assume $\mathcal{H}_{0} \subset M$. Let $\left\{\eta_{j}\right\}_{j}$ be an orthonormal basis of \mathcal{H}_{0}, i.e., $\tau\left(\eta_{i}^{*} \eta_{j}\right)=\delta_{i j}, \sum_{j} \mathbb{C} \eta_{j}=\mathcal{H}_{0}$.

Connes Thm: R is the unique amenable II_{1} factor

C's 1976 Fundamental Thm: Any separable amenable II_{1} factor is AFD and is thus isomorphic to the hyperfinite factor R.

From C's Følner-type condition to local $A F D$. Let $1 \in F \subset \mathcal{U}(M)$ finite and $\varepsilon>0$. By the C's Følner condition, $\exists p=p_{\mathcal{H}_{0}}$ for some finite dim $\mathcal{H}_{0} \subset L^{2} M$ s.t. $\left\|u p u^{*}-p\right\|_{2, T_{r}}<\varepsilon\|p\|_{2, T_{r}}, \forall u \in F$. By density of M in $L^{2} M$, may assume $\mathcal{H}_{0} \subset M$. Let $\left\{\eta_{j}\right\}_{j}$ be an orthonormal basis of \mathcal{H}_{0}, i.e., $\tau\left(\eta_{i}^{*} \eta_{j}\right)=\delta_{i j}, \sum_{j} \mathbb{C} \eta_{j}=\mathcal{H}_{0}$.

Local quantization (LQ) lemma

$\forall F^{\prime} \subset M$ finite, $\delta>0, \exists q \in \mathcal{P}(M)$ s.t. $\|q x q-\tau(x) q\|_{2}<\delta\|q\|_{2}, \forall x \in F^{\prime}$.
We apply the LQ lemma to $F^{\prime}:=\left\{\eta_{i}^{*} u \eta_{j} \mid u \in F, i, j\right\}$. Note that, as $\delta \rightarrow 0$, the elements $\eta_{i} q \eta_{j}^{*}$ behave like matrix units $e_{i j}$, i.e., $e_{i j} e_{k l} \approx \delta_{j k} e_{i l}$. Thus, the space $\mathcal{H} q \mathcal{H}^{*}=\Sigma_{i, j} \mathbb{C} \eta_{i} q \eta_{j}^{*}$ behaves as the algebra $B_{0}=\Sigma_{i, j} \mathbb{C} e_{i j}$, with $1_{B_{0}}=\Sigma_{j} e_{j j} \approx \Sigma_{j} \eta_{j} q \eta_{j}^{*}$ satisfying $\left\|u s u^{*}-s\right\|_{2}<\varepsilon\|s\|_{2}$ and $\|$ sus $-E_{B_{0}}($ sus $)\left\|_{2}<\varepsilon\right\| s \|_{2}, \forall u \in F$.

Since any $y \in M$ is a combination of 4 unitaries in M, we have shown that the amenable I_{1} factor M satisfies the following local AFD property:
$\forall F \subset M$ finite, $\varepsilon>0, \exists B_{0} \subset M$ non-zero fin dim *-subalgebra such that if $s=1_{B_{0}}$ then $\left\|E_{B_{0}}(s y s)-s y s\right\|_{2} \leq \varepsilon\|s\|_{2},\|[s, y]\|_{2} \leq \varepsilon\|s\|_{2}, \forall y \in F$.

Since any $y \in M$ is a combination of 4 unitaries in M, we have shown that the amenable I_{1} factor M satisfies the following local AFD property:
$\forall F \subset M$ finite, $\varepsilon>0, \exists B_{0} \subset M$ non-zero fin dim *-subalgebra such that if $s=1_{B_{0}}$ then $\left\|E_{B_{0}}(s y s)-s y s\right\|_{2} \leq \varepsilon\|s\|_{2},\|[s, y]\|_{2} \leq \varepsilon\|s\|_{2}, \forall y \in F$.

From local AFD to global AFD. One uses a maximality argument to get from this local AFD, a "global AFD". Let \mathcal{F} be the set of families of subalgebras $\left(B_{i}\right)_{i}$ of M, with B_{i} finite dimensional, $s_{i}=1_{B_{i}}$ mutually orthogonal, such that if $B=\oplus_{i} B_{i} \subset M, s=1_{B}$, then $\|[s, y]\|_{2} \leq \varepsilon\|s\|_{2}$, $\| E_{B}($ sys $)-$ sys $\left\|_{2} \leq \varepsilon\right\| s \|_{2}, \forall y \in F$. Clearly \mathcal{F} with its natural order given by inclusion is inductively ordered. Let $\left(B_{i}\right)_{i}$ be a maximal family. Denote $p=1-1_{B}$ and assume $p \neq 0$. Clearly $p M p$ is amenable, so by local AFD $\exists B_{0} \subset p M p$ fin dim ${ }^{*}$-subalgebra s.t. $s_{0}=1_{B_{0}}$ satisfies $\left\|\left[s_{0}, x\right]\right\|_{2} \leq \varepsilon\left\|s_{0}\right\|_{2}$, $\left\|E_{B_{0}}\left(s_{0} x s_{0}\right)-s_{0} x s_{0}\right\|_{2} \leq \varepsilon\left\|s_{0}\right\|_{2}, \forall x \in p F p$. By Pythagora, one gets that if $B_{1}=B \oplus B_{0}, s_{1}=1_{B_{1}}$ then $\left\|E_{B_{1}}\left(s_{1} y s_{1}\right)-s_{1} y s_{1}\right\|_{2} \leq \varepsilon\left\|s_{1}\right\|_{2}$, $\left\|\left[s_{1}, y\right]\right\|_{2} \leq \varepsilon\left\|s_{1}\right\|_{2}, \forall y \in F$. So $\left(B_{i}\right)_{i} \cup\left\{B_{1}\right\}$ contradicts the maximality of $\left(B_{i}\right)_{i}$. Thus, $\sum_{i} s_{i}=1$. But then for a large finite subfamily $\left(B_{i}\right)_{i \in I_{0}}$, we have that $B=\sum_{i \in l_{0}} B_{i} \oplus \mathbb{C}\left(1-\Sigma s_{i}\right)$ is fin. dim. and satisfies $\left\|E_{B}(y)-y\right\|_{2} \leq \varepsilon, \forall y \in F$. Thus, M follows AFD.

Some comments

- Connes' proof of " M amenable $\Longrightarrow M \simeq R$ " in Annals of Math 1976, which is different from the above, first shows that any amenable M embeds into R^{ω} and "splits off R ". That original proof became a major source of inspiration in the effort to classify nuclear C^{*}-algebras (Elliott, Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).

Some comments

- Connes' proof of " M amenable $\Longrightarrow M \simeq R$ " in Annals of Math 1976, which is different from the above, first shows that any amenable M embeds into R^{ω} and "splits off R ". That original proof became a major source of inspiration in the effort to classify nuclear C^{*}-algebras (Elliott, Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).
- Connes approximate embedding (CAE) conjecture, stated in his Ann Math 1976 paper, predicts that in fact any (separable) I_{1} factor M embeds into R^{ω}, equivalently into $\Pi_{\omega} \mathbb{M}_{n \times n}(\mathbb{C})$. For group algebras $M=L(\Gamma)$ this amounts to "simulating" Γ by unitary groups $U(n)$: $\forall F \subset \Gamma, m \geq 1, \varepsilon>0, \exists n$ and $\left\{v_{g}\right\}_{g \in F} \subset U(n)$ such that for any word w of length $\leq m$ in the free group with generators in F, one has $\mid \operatorname{tr}\left(w\left(\left\{v_{g}\right\}_{g}\right)-1 \mid \leq \varepsilon\right.$ if $w(F)=e$ and $\left|\operatorname{tr}\left(w\left(\left\{v_{g}\right\}_{g}\right)\right)\right| \leq \varepsilon$ if $w(F) \neq e$.

Some comments

- Connes' proof of " M amenable $\Longrightarrow M \simeq R$ " in Annals of Math 1976, which is different from the above, first shows that any amenable M embeds into R^{ω} and "splits off R ". That original proof became a major source of inspiration in the effort to classify nuclear C^{*}-algebras (Elliott, Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).
- Connes approximate embedding (CAE) conjecture, stated in his Ann Math 1976 paper, predicts that in fact any (separable) I_{1} factor M embeds into R^{ω}, equivalently into $\Pi_{\omega} \mathbb{M}_{n \times n}(\mathbb{C})$. For group algebras $M=L(\Gamma)$ this amounts to "simulating" Γ by unitary groups $U(n)$: $\forall F \subset \Gamma, m \geq 1, \varepsilon>0, \exists n$ and $\left\{v_{g}\right\}_{g \in F} \subset U(n)$ such that for any word w of length $\leq m$ in the free group with generators in F, one has $\mid \operatorname{tr}\left(w\left(\left\{v_{g}\right\}_{g}\right)-1 \mid \leq \varepsilon\right.$ if $w(F)=e$ and $\left|\operatorname{tr}\left(w\left(\left\{v_{g}\right\}_{g}\right)\right)\right| \leq \varepsilon$ if $w(F) \neq e$.
- An alternative characterization of R by K. Jung from 2007 shows that all embeddings of M in R^{ω} are unitary conjugate iff $M \simeq R$. A related open problem asks whether $\left(M^{\prime} \cap M^{\omega}\right)^{\prime} \cap M^{\omega}=M$ implies $M \simeq R$.

Some consequences to C's Fund Thm

- Connes theorem implies that for any countable ICC amenable group 「 we have $L \Gamma \simeq R$. Also, any group measure space I_{1} factor $L^{\infty} X \rtimes \Gamma$ arising from a pmp action of countable amenable group Γ, is isomorphic to R.

Some consequences to C's Fund Thm

- Connes theorem implies that for any countable ICC amenable group 「 we have $L \Gamma \simeq R$. Also, any group measure space I_{1} factor $L^{\infty} X \rtimes \Gamma$ arising from a pmp action of countable amenable group Γ, is isomorphic to R.
- More generally, if a II_{1} factor M arises as a crossed product $B \rtimes \Gamma$ of a separable amenable tracial vN algebra (B, τ) by a countable amenable group Γ, then $M \simeq R$. In particular, if $\Gamma \curvearrowright R$, with Γ amenable and the action outer, then $R \rtimes \Gamma \simeq R$.

Some consequences to C's Fund Thm

- Connes theorem implies that for any countable ICC amenable group 「 we have $L \Gamma \simeq R$. Also, any group measure space I_{1} factor $L^{\infty} X \rtimes \Gamma$ arising from a pmp action of countable amenable group Γ, is isomorphic to R.
- More generally, if a II_{1} factor M arises as a crossed product $B \rtimes \Gamma$ of a separable amenable tracial vN algebra (B, τ) by a countable amenable group Γ, then $M \simeq R$. In particular, if $\Gamma \curvearrowright R$, with Γ amenable and the action outer, then $R \rtimes \Gamma \simeq R$.
- Since any vN subalgebra of R is amenable, it follows that any II_{1} subfactor of R is isomorphic to R. In fact, one can easily deduce:

Classification of all $\mathbf{v N}$ subalgebras of R

If $B \subset R$ is a $v N$ subalgebra, then $B \simeq \oplus_{n \geq 1} \mathbb{M}_{n}\left(A_{n}\right) \oplus R \bar{\otimes} A_{0}$, where $A_{m}, m \geq 0$ are abelian $\vee \mathrm{N}$ algebras.

Uniqueness of Cartan subalgebras of R

Regular and Cartan subalgebras: definition and examples

- (Dixmier 1954) If M is a I_{1} factor and $B \subset M$ is a $v N$ subalgebra, then $\mathcal{N}_{M}(B)=\left\{u \in \mathcal{U}(M) \mid u B u^{*}=B\right\}$ is the normalizer of B in M. B is regular (resp. singular) in M if $\mathcal{N}_{M}(B)^{\prime \prime}=M$ (resp. $\left.\mathcal{N}_{M}(B)=\mathcal{U}(B)\right)$. A regular MASA $A \subset M$ called a Cartan subalgebra of M (Vershik, Feldman-Moore 1970s).

Uniqueness of Cartan subalgebras of R

Regular and Cartan subalgebras: definition and examples

- (Dixmier 1954) If M is a I_{1} factor and $B \subset M$ is a $v N$ subalgebra, then $\mathcal{N}_{M}(B)=\left\{u \in \mathcal{U}(M) \mid u B u^{*}=B\right\}$ is the normalizer of B in M. B is regular (resp. singular) in M if $\mathcal{N}_{M}(B)^{\prime \prime}=M\left(\right.$ resp. $\left.\mathcal{N}_{M}(B)=\mathcal{U}(B)\right)$. A regular MASA $A \subset M$ called a Cartan subalgebra of M (Vershik, Feldman-Moore 1970s).
- It is immediate to see that $D \subset R$ is a Cartan subalgebra. Also, if $\Gamma \curvearrowright X$ is a free ergodic pmp action, then $A=L^{\infty} X \subset L^{\infty} X \rtimes \Gamma=M$ is clearly a Cartan subalgebra. For instance, if Γ arbitrary countable group and $\Gamma \curvearrowright(X, \mu)=\left(X_{0}, \mu_{0}\right) \Gamma$ is the Bernoulli action.

Uniqueness of Cartan subalgebras of R

Regular and Cartan subalgebras: definition and examples

- (Dixmier 1954) If M is a I_{1} factor and $B \subset M$ is a $v N$ subalgebra, then $\mathcal{N}_{M}(B)=\left\{u \in \mathcal{U}(M) \mid u B u^{*}=B\right\}$ is the normalizer of B in M. B is regular (resp. singular) in M if $\mathcal{N}_{M}(B)^{\prime \prime}=M\left(\right.$ resp. $\left.\mathcal{N}_{M}(B)=\mathcal{U}(B)\right)$. A regular MASA $A \subset M$ called a Cartan subalgebra of M (Vershik, Feldman-Moore 1970s).
- It is immediate to see that $D \subset R$ is a Cartan subalgebra. Also, if $\Gamma \curvearrowright X$ is a free ergodic pmp action, then $A=L^{\infty} X \subset L^{\infty} X \rtimes \Gamma=M$ is clearly a Cartan subalgebra. For instance, if Γ arbitrary countable group and $\Gamma \curvearrowright(X, \mu)=\left(X_{0}, \mu_{0}\right)^{\Gamma}$ is the Bernoulli action.
- If $B \subset M$ is a regular $v N$ subalgebra and $M \subset^{e_{B}}\left\langle M, e_{B}\right\rangle$ its basic construction, then its canonical normal faithful semifinite trace Tr (defined by $\left.\operatorname{Tr}\left(x e_{B} y\right)=\tau(x y), \forall x, y \in M\right)$ is semifinite on $B^{\prime} \cap\left\langle M, e_{B}\right\rangle$.

Connes-Feldman-Weiss and Ornstein-Weiss Theorems 1980-1981

 If M is a separable amenable I_{1} factor and $A \subset M$ is Cartan, then $(A \subset M) \simeq(D \subset R)$. In particular, any two free ergodic pmp actions of countable amenable groups $\Gamma \curvearrowright X, \wedge \curvearrowright Y$ are orbit equivalent.Proof. Note first that given any regular inclusion $B \subset M$, the trace Tr is semifinite on $\mathcal{M}:=B^{\prime} \cap\left\langle M, e_{B}\right\rangle$ (Exercise!). Also, if $u \in \mathcal{N}_{M}(B)$ then $\operatorname{Ad}(u)(\mathcal{M})=\mathcal{M}, \operatorname{Tr} \circ \operatorname{Ad}(u)=\operatorname{Tr}$.

Connes-Feldman-Weiss and Ornstein-Weiss Theorems 1980-1981

If M is a separable amenable I_{1} factor and $A \subset M$ is Cartan, then $(A \subset M) \simeq(D \subset R)$. In particular, any two free ergodic pmp actions of countable amenable groups $\Gamma \curvearrowright X, \wedge \curvearrowright Y$ are orbit equivalent.

Proof. Note first that given any regular inclusion $B \subset M$, the trace Tr is semifinite on $\mathcal{M}:=B^{\prime} \cap\left\langle M, e_{B}\right\rangle$ (Exercise!). Also, if $u \in \mathcal{N}_{M}(B)$ then $\operatorname{Ad}(u)(\mathcal{M})=\mathcal{M}, \operatorname{Tr} \circ \operatorname{Ad}(u)=\operatorname{Tr}$.
Følner-type condition. If M is amenable and $B \subset M$ is regular, then $\forall F \subset \mathcal{N}_{M}(B)$ finite, $\varepsilon>0, \exists p \in \mathcal{P}(\mathcal{M})$ with $\operatorname{Tr}(p)<\infty$ such that $\left\|u p u^{*}-p\right\|_{2, T_{r}}<\varepsilon\|p\|_{2, T_{r}}, \forall u \in F$.
Note first that the hypertrace for $M \subset \mathcal{B}\left(L^{2} M\right)$ restricted to \mathcal{M} gives a state φ on \mathcal{M} such that $\varphi\left(u x u^{*}\right)=\varphi(x), \forall u \in \mathcal{N}_{M}(B)$ and $x \in \mathcal{M}$. By using exactly as before Day's trick, one gets $b \in L^{1}(\mathcal{M}, \operatorname{Tr})_{+}, \operatorname{Tr}(b)=1$ such that $\left\|u b u^{*}-b\right\|_{1, \operatorname{Tr}}<\varepsilon, \forall u \in F$. Using C's Joint Distribution trick and Namioka-type trick, one gets the desired p as $\mathrm{e}_{[t, \infty)}(b)$ for some $t>0$.

From the Følner-type condition to local AFD for $A \subset M$ Cartan. Any "finite" $p \in \mathcal{M}$ is of the form $\sum_{j} v_{j} e_{A} v_{j}^{*}$ for some finite set v_{j} of partial isometries normalizing A (Exercise!). By "local quantization" $\exists q \in \mathcal{P}(A)$ such that one approximately have $q v_{i}^{*} u v_{j} q \in \mathbb{C} q, \forall i, j, \forall u \in F$. This means $B_{0}=\sum_{i, j} \mathbb{C} v_{i} q v_{j}$ is fin. dim. with diagonal $D_{0}=\mathbb{C} v_{i} q v_{i}^{*} \subset A$ s.t. $s_{0}=1_{B_{0}}$ satisfies $\|[s, u]\|_{2} \leq \varepsilon\|s\|_{2}, \| E_{B_{0}}($ sus $)-s u s\left\|_{2} \leq \varepsilon\right\| s \|_{2}, \forall u \in F$. From local $A F D$ to global $A F D$. Using a maximality argument, one shows that the local AFD implies: $\forall F \subset M$ finite, $\varepsilon>0, \exists B_{1} \subset M$ fin $\operatorname{dim} \mathrm{vN}$ subalgebra, generated by matrix units $\left\{e_{i j}^{k}\right\}_{i, j, k}$ such that $e_{i j}^{k} \in A$ and $e_{i j}^{k}$ normalize A. This shows that $A \subset M$ is AFD, which immediately implies $(A \subset M) \simeq(D \subset R)($ Exercise! $)$

To see the last part of the CFW-OW theorems, about orbit equivalence of amenable group actions, we need some remarks/definitions.

Two remarks, by I.M. Singer 1955, Feldman-Moore 1977

(1) Let $\Gamma \curvearrowright X, \wedge \curvearrowright Y$ be free ergodic pmp actions of countable groups. Then $\left(L^{\infty} X \subset L^{\infty} X \rtimes \Gamma\right) \simeq\left(L^{\infty} Y \rtimes L^{\infty} Y \rtimes \Lambda\right)$ iff $\Gamma \curvearrowright X, \Lambda \curvearrowright Y$ are orbit equivalent (OE), i.e., $\exists \Delta: X \simeq Y$ such that $\Delta(\Gamma t)=\Lambda(\Delta(t))$, $\forall a e t \in X$.

Thus, since any two free ergodic pmp actions $\Gamma \curvearrowright X, \wedge \curvearrowright Y$ of countable amenable groups give rise to Cartan inclusions into R, the uniqueness of the Cartan in R shows that these two actions are OE. This is Ornstein-Weiss 1980 Thm.
(2) Let $\Gamma \curvearrowright(X, \mu)$ be an ergodic pmp action of a countable group and \mathcal{R} the corresponding orbit equivalence relation on $X: t \sim s$ if $\Gamma t=\Gamma s$.
One associates to it a $\|_{1}$ factor $L(\mathcal{R})$ with a Cartan subalgebra $A=L^{\infty} X$, by taking the algebra of formal finite sums $\Sigma_{\phi} a_{\phi} \lambda(\phi)$, where $a_{\phi} \in A, \phi$ are local isomorphisms of X with graph in \mathcal{R}, endowed with its structure of multiplicative pseudo-group, endowed with the trace $\tau\left(a v_{\phi}\right)=\int a i(\varphi) \mathrm{d} \mu$, where $i(\phi)$ is the characteristic function of the set $X_{0} \subset X$ on which ϕ is the identity.
(2) Let $\Gamma \curvearrowright(X, \mu)$ be an ergodic pmp action of a countable group and \mathcal{R} the corresponding orbit equivalence relation on $X: t \sim s$ if $\Gamma t=\Gamma s$.
One associates to it a $\|_{1}$ factor $L(\mathcal{R})$ with a Cartan subalgebra $A=L^{\infty} X$, by taking the algebra of formal finite sums $\Sigma_{\phi} a_{\phi} \lambda(\phi)$, where $a_{\phi} \in A, \phi$ are local isomorphisms of X with graph in \mathcal{R}, endowed with its structure of multiplicative pseudo-group, endowed with the trace $\tau\left(a v_{\phi}\right)=\int a i(\varphi) \mathrm{d} \mu$, where $i(\phi)$ is the characteristic function of the set $X_{0} \subset X$ on which ϕ is the identity.
Moreover, if $v: \mathcal{R} \times \mathcal{R} \rightarrow A$ is a 2-cocycle for \mathcal{R}, then one can form the v-twisted version $L(\mathcal{R}, v)$ of this algebra, where $\lambda(\phi) \lambda(\psi)=v_{\phi, \psi} \lambda(\phi \psi)$. Given any Cartan inclusion $A \subset M$, with M a countably generated I_{1} factor, there exists (\mathcal{R}, v) such that $(A \subset M) \simeq\left(L^{\infty} X \subset L(\mathcal{R}, v)\right)$. Also, for Cartan inclusions we have $\left(A_{1} \subset M_{1}\right) \simeq\left(A_{2} \subset M_{2}\right)$ iff $\left(\mathcal{R}_{1}, v_{1}\right) \simeq\left(\mathcal{R}_{2}, v_{2}\right)$
(2) Let $\Gamma \curvearrowright(X, \mu)$ be an ergodic pmp action of a countable group and \mathcal{R} the corresponding orbit equivalence relation on $X: t \sim s$ if $\Gamma t=\Gamma s$.
One associates to it a $\|_{1}$ factor $L(\mathcal{R})$ with a Cartan subalgebra $A=L^{\infty} X$, by taking the algebra of formal finite sums $\Sigma_{\phi} a_{\phi} \lambda(\phi)$, where $a_{\phi} \in A, \phi$ are local isomorphisms of X with graph in \mathcal{R}, endowed with its structure of multiplicative pseudo-group, endowed with the trace $\tau\left(a v_{\phi}\right)=\int a i(\varphi) \mathrm{d} \mu$, where $i(\phi)$ is the characteristic function of the set $X_{0} \subset X$ on which ϕ is the identity.
Moreover, if $v: \mathcal{R} \times \mathcal{R} \rightarrow A$ is a 2-cocycle for \mathcal{R}, then one can form the v-twisted version $L(\mathcal{R}, v)$ of this algebra, where $\lambda(\phi) \lambda(\psi)=v_{\phi, \psi} \lambda(\phi \psi)$. Given any Cartan inclusion $A \subset M$, with M a countably generated I_{1} factor, there exists (\mathcal{R}, v) such that $(A \subset M) \simeq\left(L^{\infty} X \subset L(\mathcal{R}, v)\right)$. Also, for Cartan inclusions we have $\left(A_{1} \subset M_{1}\right) \simeq\left(A_{2} \subset M_{2}\right)$ iff $\left(\mathcal{R}_{1}, v_{1}\right) \simeq\left(\mathcal{R}_{2}, v_{2}\right)$

- Thus, by the uniqueness of the Cartan in R, we have that any two ergodic pmp actions of any two amenable group on non-atomic prob spaces are OE , and that any 2 -cocycle v for such actions is co-boundary.

Next problem: classifying all regular inclusions $B \subset R$

- The CFW theorem shows that there exists just one Cartan subalgebra $A \subset R$, up to conjugacy by an automorphism of R. One would of course like to classify ALL regular inclusions $B \subset R$. A natural "homogeneity/irreducibility" condition to impose is that $B^{\prime} \cap R=\mathcal{Z}(B)$. Besides the case $B=A$ abelian, a first case of interest is when $B=N$ is a subfactor. By Connes Thm, such N is necessarily isomorphic to R and the irreducibility condition amounts to $N^{\prime} \cap R=\mathbb{C}$.
- It is an easy exercise to show that if $N \subset M$ is a regular irreducible inclusion of II_{1} factors, then $\Gamma_{N \subset M}=\mathcal{N}_{M}(N) / \mathcal{U}(N)$ is a discrete group, which is countable if M is separable and it is amenable if $M \simeq R$ (all this will follow in a short while, from a more ample discussion).

The case $N \subset R$ is a regular subfactor

Ocneanu's Theorem 1985

Irreducible regular inclusions $N \subset R$ are completely classified (up to conjugacy by an automorphism of R) by the normalizing group, $\Gamma_{N \subset R}:=\mathcal{N}_{R}(N) / \mathcal{U}(N)$.

More precisely, if $N_{0} \subset R$ is another irreducible regular subfactor then there exists an automorphism θ of R s.t. $\theta\left(N_{0}\right)=N$ iff $\Gamma_{N_{0} \subset R} \simeq \Gamma_{N \subset R}$.

Since any inclusion $N \subset M=N \rtimes \Gamma$ arising from a free action $\Gamma \curvearrowright N$ is irreducible and regular with $\Gamma_{N \subset M}=\Gamma$, the above is equivalent to saying that any irreducible regular inclusion of factors $(N \subset R)$ is isomorphic to $(N \subset N \rtimes \Gamma)$, where $\Gamma=\Gamma_{N \subset R}$ and $\Gamma \curvearrowright N=R=\mathbb{M}_{2}(\mathbb{C})^{\bar{\otimes} \Gamma}$ is the Bernoulli action.

Arbitrary cocycle actions

- A cocycle action of a group 「 on a tracial vN algebra (B, τ) is a map $\sigma: \Gamma \rightarrow \operatorname{Aut}(B, \tau)$ which is multiplicative modulo inner automorphisms of B,

$$
\sigma_{g} \sigma_{h}=\operatorname{Ad}\left(v_{g, h}\right) \sigma_{g h}, \forall g, h \in \Gamma
$$

with the unitary elements $v_{g, h} \in \mathcal{U}(B)$ satisfying the cocycle relation

$$
v_{g, h} v_{g h, k}=\sigma_{g}\left(v_{h, k}\right) v_{g, h k}, \forall g, h, k \in \Gamma .
$$

The cocycle action is free if σ_{g} properly outer $\forall g \neq e(\theta \in \operatorname{Aut}(B, \tau)$ is properly outer if $b \in B$ with $\theta(x) b=b x, \forall x \in B$, implies $b=0$; thus, if $B=N$ is a II_{1} factor then this amounts to θ being outer).

- (σ, v) is a "genuine" action, if $v \equiv 1$.

Some examples

- Connes-Jones cocycles (1984): Let $\Gamma=\langle S\rangle$ infinite group and $\pi: \mathbb{F}_{S} \rightarrow \Gamma \rightarrow 1$ with kernel $\operatorname{ker}(\pi) \simeq \mathbb{F}_{\infty}$. This gives rise to $N=L(\operatorname{ker}(\pi)) \subset L\left(\mathbb{F}_{S}\right)=M$ irreducible and regular, with $M=N \rtimes_{(\sigma, v)} \Gamma$ for some free cocycle action (σ, v) of Γ on $N=L\left(\mathbb{F}_{\infty}\right)$.

Some examples

- Connes-Jones cocycles (1984): Let $\Gamma=\langle S\rangle$ infinite group and $\pi: \mathbb{F}_{S} \rightarrow \Gamma \rightarrow 1$ with kernel $\operatorname{ker}(\pi) \simeq \mathbb{F}_{\infty}$. This gives rise to $N=L(\operatorname{ker}(\pi)) \subset L\left(\mathbb{F}_{S}\right)=M$ irreducible and regular, with $M=N \rtimes_{(\sigma, v)} \Gamma$ for some free cocycle action (σ, v) of Γ on $N=L\left(\mathbb{F}_{\infty}\right)$.
- Amplified cocycles: Given any action $\Gamma \curvearrowright^{\sigma} N$ and $p \in \mathcal{P}(N)$, one has $p \sim \sigma_{g}(p)$ via some partial isometry $w_{g} \in N$. Then $\operatorname{Ad}\left(w_{g}\right) \circ \sigma_{g_{\mid p N p}}$ is a cocyle action of Γ on $N^{t}=p N p$, where $t=\tau(p)$. Denoted $\left(\sigma^{t}, v^{t}\right)$, in which $v_{g, h}^{t}:=w_{g} \sigma_{g}\left(w_{h}\right) w_{g h}^{*}, \forall g, h$.

Crossed product vN algebras from cocycle actions

- Any cocycle action $\Gamma \curvearrowright^{(\sigma, v)}(B, \tau)$ gives rise to a crossed product inclusion $B \subset M=B \rtimes_{(\sigma, v)} \Gamma$, in a similar way we defined the usual crossed product for actions, where multiplication is given by $u_{g} u_{h}=v_{g, h} u_{g h}$ and $u_{g} b=\sigma_{g}(b) u_{g}$. Clearly B is regular in M.

Crossed product vN algebras from cocycle actions

- Any cocycle action $\Gamma \curvearrowright^{(\sigma, v)}(B, \tau)$ gives rise to a crossed product inclusion $B \subset M=B \rtimes_{(\sigma, v)} \Gamma$, in a similar way we defined the usual crossed product for actions, where multiplication is given by $u_{g} u_{h}=v_{g, h} u_{g h}$ and $u_{g} b=\sigma_{g}(b) u_{g}$. Clearly B is regular in M.
- One can easily show that the cocycle action is free iff $B^{\prime} \cap M=\mathcal{Z}(B)$. In particular, if $B=N$ is a I_{1} factor, then (σ, v) is free iff $N^{\prime} \cap M=\mathbb{C} 1$, i.e., N is irreducible in $M=N \rtimes \Gamma$.

Crossed product vN algebras from cocycle actions

- Any cocycle action $\Gamma \curvearrowright^{(\sigma, v)}(B, \tau)$ gives rise to a crossed product inclusion $B \subset M=B \rtimes_{(\sigma, v)} \Gamma$, in a similar way we defined the usual crossed product for actions, where multiplication is given by $u_{g} u_{h}=v_{g, h} u_{g h}$ and $u_{g} b=\sigma_{g}(b) u_{g}$. Clearly B is regular in M.
- One can easily show that the cocycle action is free iff $B^{\prime} \cap M=\mathcal{Z}(B)$. In particular, if $B=N$ is a I_{1} factor, then (σ, v) is free iff $N^{\prime} \cap M=\mathbb{C} 1$, i.e., N is irreducible in $M=N \rtimes \Gamma$.
- Conversely, if $N \subset M$ is irreducible and regular and one denotes $\Gamma=\mathcal{N}_{M}(N) / \mathcal{U}(N)$, then choosing $U_{g} \in \mathcal{N}$ for each $g \in \Gamma$ and letting

$$
\sigma_{g}=\operatorname{Ad}\left(U_{g}\right), \quad v_{g, h}=U_{g} U_{h} U_{g h}^{*}
$$

shows that $M=N \rtimes_{(\sigma, v)} \Gamma$ (this is a remark by Jones, Sutherland 1980).

Equivalence of cocyle actions

- Two cocycle actions $\left(\sigma_{i}, v_{i}\right)$ of Γ_{i} on $\left(B_{i}, \tau_{i}\right), i=1,2$, are cocycle conjugate if $\exists \theta:\left(B_{1}, \tau_{1}\right) \simeq\left(B_{2}, \tau_{2}\right), \gamma: \Gamma_{1} \simeq \Gamma_{2}$ and $w_{g} \in \mathcal{U}\left(B_{2}\right)$ such that:

$$
\begin{gathered}
\theta \sigma_{1}(g) \theta^{-1}=\operatorname{Ad} \circ \sigma_{2}(\gamma(g)), \forall g, \\
\theta\left(v_{1}(g, h)\right)=w_{g} \sigma_{2}(g)\left(w_{h}\right) v_{2}(\gamma(g), \gamma(h)) w_{g h}^{*}, \forall g, h .
\end{gathered}
$$

- Two free cocycle actions $\Gamma_{i} \curvearrowright\left(\sigma_{i}, v_{i}\right)$ on the I_{1} factors $N_{i}, i=1,2$, are cocycle conjugate iff their associated crossed product inclusions are isomorphic, $\left(N_{1} \subset N_{1} \rtimes \Gamma_{1}\right) \simeq\left(N_{2} \subset N_{2} \rtimes \Gamma_{2}\right)$.

Untwisting cocycle actions

- The cocycle action (σ, v) of Γ on $(B \tau)$ untwists (or is co-boundary) if $\exists w_{g} \in \mathcal{U}(B)$ s.t. $v_{g, h}=w_{g} \sigma_{g}\left(w_{h}\right) w_{g h}^{*}, \forall g, h$. Thus, (σ, v) untwists iff it is cocycle conjugate to a genuine action.
Note this is a bit stronger than $\sigma_{g}^{\prime}=\operatorname{Ad}\left(w_{g}\right) \circ \sigma_{g}$ being a "genuine" action. It is equivalent to: $\exists w_{g} \in \mathcal{U}(B)$ s.t. $U_{g}^{\prime}=w_{g} U_{g} \in B \rtimes_{(\sigma, v)} \Gamma$ satisfy $U_{g}^{\prime} U_{h}^{\prime}=U_{g h}^{\prime}, \forall g, h$.

Untwisting cocycle actions

- The cocycle action (σ, v) of Γ on $(B \tau)$ untwists (or is co-boundary) if $\exists w_{g} \in \mathcal{U}(B)$ s.t. $v_{g, h}=w_{g} \sigma_{g}\left(w_{h}\right) w_{g h}^{*}, \forall g, h$. Thus, (σ, v) untwists iff it is cocycle conjugate to a genuine action.
Note this is a bit stronger than $\sigma_{g}^{\prime}=\operatorname{Ad}\left(w_{g}\right) \circ \sigma_{g}$ being a "genuine" action. It is equivalent to: $\exists w_{g} \in \mathcal{U}(B)$ s.t. $U_{g}^{\prime}=w_{g} U_{g} \in B \rtimes_{(\sigma, v)} \Gamma$ satisfy $U_{g}^{\prime} U_{h}^{\prime}=U_{g h}^{\prime}, \forall g, h$.

Example

- Clearly any cocycle action of $\Gamma=\mathbb{F}_{n} \in$ untwists.

Original formulation of Ocneanu's theorem

- O's original Thm is that any two free cocycle actions of a countable amenable group Γ on R are cocycle conjugate.
This result was already known in the case $\Gamma=\mathbb{Z}, \mathbb{Z} / n \mathbb{Z}$ (Connes 1975) and in the case Γ finite (Jones 1980). In case Γ finite, Jones proved that any two free Γ-actions on R are in fact conjugate and that any 1-cocycle of a finite group action on any II_{1} factor is co-boundary.
From the above discussion, we see that O's result implies that any cocycle action of a countable amenable group untwists.
If Γ is amenable, the crossed product $R \rtimes_{(\sigma, v)} \Gamma$ is amenable, so by C's Thm it is isomorphic to R. Thus, by the above remarks, the uniqueness (up to cocycle conjugacy) of free cocycle Γ-actions on R translates into the uniqueness (up to conjugacy by automorphisms of R) of irreducible regular subfactors $N \subset R$ with $\Gamma_{N \subset R}=\Gamma$. In particular, O's result shows that any such irreducible regular inclusion $N \subset R$ is a "true" (untwisted) crossed product construction, coming from a "genuine" Γ-action. Sketch of proof of O's Thm (two approaches)....

Classifing regular inclusions $B \subset R$: remaining cases

- Let M be a I_{1} factor and $B \subset M$ regular with $B^{\prime} \cap M=\mathcal{Z}(B)=L^{\infty}(X, \mu)$. These assumptions imply B is "homogeneous", i.e., either $B=\mathbb{M}_{n}(\mathbb{C}) \bar{\otimes} L^{\infty} X$, for some $n \geq 1$, or $B=\int_{X} B_{t} \mathrm{~d} \mu(t)$, where B_{t} are I_{1} factors, $\forall_{a e} t \in X$. If in addition $M=R$, in this latter case we have $B_{t} \simeq R$ and $B \simeq R \bar{\otimes} L^{\infty} X$. The normalizer $\mathcal{N}_{M}(B)$ defines an amenable discrete measured groupoid $\mathcal{G}=\mathcal{G}_{B \subset M}$ together with a free cocycle action $(\alpha, v)=\left(\alpha_{B \subset M}, v_{B \subset M}\right)$ of \mathcal{G} on B. The iso class of the inclusion $B \subset M$ is completely encoded in the cocycle conjugacy class of $\mathcal{G} \curvearrowright(\alpha, v) B$.

Classifing regular inclusions $B \subset R$: remaining cases

- Let M be a I_{1} factor and $B \subset M$ regular with
$B^{\prime} \cap M=\mathcal{Z}(B)=L^{\infty}(X, \mu)$. These assumptions imply B is "homogeneous", i.e., either $B=\mathbb{M}_{n}(\mathbb{C}) \bar{\otimes} L^{\infty} X$, for some $n \geq 1$, or $B=\int_{X} B_{t} \mathrm{~d} \mu(t)$, where B_{t} are I_{1} factors, $\forall_{a e} t \in X$. If in addition $M=R$, in this latter case we have $B_{t} \simeq R$ and $B \simeq R \bar{\otimes} L^{\infty} X$. The normalizer $\mathcal{N}_{M}(B)$ defines an amenable discrete measured groupoid $\mathcal{G}=\mathcal{G}_{B \subset M}$ together with a free cocycle action $(\alpha, v)=\left(\alpha_{B \subset M}, v_{B \subset M}\right)$ of \mathcal{G} on B. The iso class of the inclusion $B \subset M$ is completely encoded in the cocycle conjugacy class of $\mathcal{G} \curvearrowright(\alpha, v) B$.
- In the case $B \subset M=R$, the discrete groupoid \mathcal{G} accounts for an amenable ergodic countable equivalence relation "along" the space $\mathcal{G}^{(0)}=X$ of units of \mathcal{G}, with amenable countable isotropy groups Γ_{t} at each $t \in X$ acting outerly on $B_{t} \simeq R$.
- When B is abelian, then $B \simeq L^{\infty} X$ and \mathcal{G} is just a countable amenable equiv rel \mathcal{R} on X, with α intrinsic to \mathcal{R}. The CFW Thm says that there is just one amenable countable equiv. rel. and it has vanishing coh v. This also implies that, for each $n \geq 1$, there is just one regular inclusion $B \subset R$ with $B^{\prime} \cap R=\mathcal{Z}(B)$ and B of type I_{n}.
- When B is abelian, then $B \simeq L^{\infty} X$ and \mathcal{G} is just a countable amenable equiv rel \mathcal{R} on X, with α intrinsic to \mathcal{R}. The CFW Thm says that there is just one amenable countable equiv. rel. and it has vanishing coh v. This also implies that, for each $n \geq 1$, there is just one regular inclusion $B \subset R$ with $B^{\prime} \cap R=\mathcal{Z}(B)$ and B of type I_{n}.
- If B is a factor, then $B \simeq R$ and the groupoid $\mathcal{G}_{B \subset R}$ is the group $\Gamma=\mathcal{N}_{R}(B) / \mathcal{U}(B)$, which follows countable amenable, and (α, v) is the free cocycle action of Γ on B implemented by $\mathcal{N}_{R}(B)$. O's Thm then shows that \mathcal{G} uniquely determines $B \subset R$. This clearly takes care of the case $\mathcal{Z}(B)$ atomic as well.

Solving the case $B \subset R$ with $B \simeq R \bar{\otimes} L^{\infty} X$

- So we are left with the case $B \subset R$ where $B=R \bar{\otimes} L^{\infty} X$, with X diffuse, i.e., to the problem of classifying $\mathcal{G} \curvearrowright{ }^{(\alpha, v)} B=R \bar{\otimes} L^{\infty} X$ up to cocycle conjugacy, for all amenable groupoids \mathcal{G} with $\mathcal{G}^{(0)}=X$. When $v \equiv 1$ (i.e., for "genuine" actions of \mathcal{G}) this was solved as follows:

Solving the case $B \subset R$ with $B \simeq R \bar{\otimes} L^{\infty} X$

- So we are left with the case $B \subset R$ where $B=R \bar{\otimes} L^{\infty} X$, with X diffuse, i.e., to the problem of classifying $\mathcal{G} \curvearrowright{ }^{(\alpha, v)} B=R \bar{\otimes} L^{\infty} X$ up to cocycle conjugacy, for all amenable groupoids \mathcal{G} with $\mathcal{G}^{(0)}=X$. When $v \equiv 1$ (i.e., for "genuine" actions of \mathcal{G}) this was solved as follows:

Sutherland-Takesaki Theorem 1985

Any two actions α_{1}, α_{2} of the same amenable groupoid \mathcal{G} on $R \bar{\otimes} L^{\infty} X$ are cocycle conjugate. Equivalently, any two regular inclusions of the form $B \subset R$ with $B^{\prime} \cap R=\mathcal{Z}(B)$, with same $\mathcal{G}_{B \subset R}$ and with $v_{B \subset R} \equiv 1$, are conjugate by an automorphism of R.

Solving the case $B \subset R$ with $B \simeq R \bar{\otimes} L^{\infty} X$

- So we are left with the case $B \subset R$ where $B=R \bar{\otimes} L^{\infty} X$, with X diffuse, i.e., to the problem of classifying $\mathcal{G} \curvearrowright^{(\alpha, v)} B=R \bar{\otimes} L^{\infty} X$ up to cocycle conjugacy, for all amenable groupoids \mathcal{G} with $\mathcal{G}^{(0)}=X$. When $v \equiv 1$ (i.e., for "genuine" actions of \mathcal{G}) this was solved as follows:

Sutherland-Takesaki Theorem 1985

Any two actions α_{1}, α_{2} of the same amenable groupoid \mathcal{G} on $R \bar{\otimes} L^{\infty} X$ are cocycle conjugate. Equivalently, any two regular inclusions of the form $B \subset R$ with $B^{\prime} \cap R=\mathcal{Z}(B)$, with same $\mathcal{G}_{B \subset R}$ and with $v_{B \subset R} \equiv 1$, are conjugate by an automorphism of R.

By the above result, it follows that we are left with proving that any 2-cocycle v for a cocycle action $\mathcal{G} \curvearrowright{ }^{(\alpha, v)} R \bar{\otimes} L^{\infty} X$ of an amenable groupoid \mathcal{G} is co-boundary. As it turns out, this is a rather difficult problem.

Untwisting cocycles on arbitrary II_{1} factors

Theorem (P 2018)

Given any countable amenable group Γ, any free cocycle Γ-action $\Gamma \curvearrowright(\alpha, v) N$ on an arbitrary II_{1} factor N untwisis.

Untwisting cocycles on arbitrary I_{1} factors

Theorem (P 2018)

Given any countable amenable group Γ, any free cocycle Γ-action $\Gamma \curvearrowright(\alpha, v) N$ on an arbitrary II_{1} factor N untwisis.

Same actually holds true for $\Gamma=\Gamma_{1} *_{K} \Gamma_{2} *_{K} \ldots . \in$, with Γ_{n} countable amenable and $K \subset \Gamma_{n}$ common finite subgroup, $\forall n$.

We prove this by building an embedding $R \hookrightarrow N$ that's $\alpha(\Gamma)$-equivariant, modulo an inner perturbation $\left(\alpha^{\prime}, v^{\prime}\right)$ of (α, v), and which is "large" in N, in the sense that $R^{\prime} \cap N \rtimes \Gamma=\mathbb{C}$. This last condition forces v^{\prime} to take values in R. By O's vanishing oh Thm, $\left(\alpha_{\mid R}^{\prime}, v^{\prime}\right.$ can be perturbed to an actual action $\alpha^{\prime \prime}$, with the untwisting of the cocycle v^{\prime} in R, $v_{g, h}^{\prime}=w_{g} \alpha_{g}^{\prime}\left(w_{h}\right) w_{g h}^{*}$. But this means we have untwisted (α, v) as a cocycle action on N as well.

An amenable/non-amenable dichotomy

While the "universal vanishing cohomology" property for a group Γ holds true for $\Gamma=\mathbb{F}_{n}$ and more generally free products of amenable groups, the existence of Γ-equivariant embeddings of the hyperfinite factor characterizes amenability of Γ :

Theorem (P 2018)

(1) Any cocycle action σ of a countable amenable group Γ on an arbitrary II_{1} factor N admits an inner perturbation σ^{\prime} that normalizes a hyperfinite subfactor $R \subset N$ satisfying $R^{\prime} \cap N \rtimes_{\sigma} \Gamma=\mathbb{C}$.

An amenable/non-amenable dichotomy

While the "universal vanishing cohomology" property for a group 「 holds true for $\Gamma=\mathbb{F}_{n}$ and more generally free products of amenable groups, the existence of Γ-equivariant embeddings of the hyperfinite factor characterizes amenability of Γ :

Theorem (P 2018)

(1) Any cocycle action σ of a countable amenable group Γ on an arbitrary II_{1} factor N admits an inner perturbation σ^{\prime} that normalizes a hyperfinite subfactor $R \subset N$ satisfying $R^{\prime} \cap N \rtimes_{\sigma} \Gamma=\mathbb{C}$.
(2) Conversely, if Γ is non-amenable, then there exist free actions
$\Gamma \curvearrowright N=L\left(\mathbb{F}_{\infty}\right)$ such that no inner perturbation of σ can normalize a diffuse amenable subalgebra $B \subset N$.

An amenable/non-amenable dichotomy

While the "universal vanishing cohomology" property for a group Γ holds true for $\Gamma=\mathbb{F}_{n}$ and more generally free products of amenable groups, the existence of Γ-equivariant embeddings of the hyperfinite factor characterizes amenability of Γ :

Theorem (P 2018)

(1) Any cocycle action σ of a countable amenable group Γ on an arbitrary II_{1} factor N admits an inner perturbation σ^{\prime} that normalizes a hyperfinite subfactor $R \subset N$ satisfying $R^{\prime} \cap N \rtimes_{\sigma} \Gamma=\mathbb{C}$.
(2) Conversely, if Γ is non-amenable, then there exist free actions
$\Gamma \curvearrowright N=L\left(\mathbb{F}_{\infty}\right)$ such that no inner perturbation of σ can normalize a diffuse amenable subalgebra $B \subset N$.

PROOF of (1) uses subfactor techniques, constructing R as an inductive limit of relative commutants of a sequence of subfactors of finite index, coming from a "generalized tunnel" associated with a "diagonal subfactor" ($N \subset M_{\sigma}$). Part (2) uses deformation-rigidity (Ozawa-Popa 2007).

Untwisting cocycle actions of amenable groupoids

Theorem: P-Shlyakhtenko-Vaes 2018

Let \mathcal{G} be a discrete measured groupoid with $X=\mathcal{G}^{(0)}$ and $\left(B_{t}\right)_{t \in X}$ a measurable field of I_{1} factors with separable predual. Assume that \mathcal{G} is amenable and that (α, v) is a free cocycle action of \mathcal{G} on $\left(B_{t}\right)_{t \in X}$. Then the cocycle v is a co-boundary: there exists a measurable field of unitaries $\mathcal{G} \ni g \mapsto w_{g} \in\left(B_{t}\right)_{t}$ s.t. $v(g, h)=\alpha_{g}\left(w_{h}^{*}\right) w_{g}^{*} w_{g h}, \forall(g, h) \in \mathcal{G}^{(2)}$.

Before discussing the proof, we mention that we have finally proved:
Complete classification of regular $B \subset R$ with $B^{\prime} \cap R=\mathcal{Z}(B)$
Two regular vN subalgebras $B \subset R$ satisfying $B^{\prime} \cap R=\mathcal{Z}(B)$ are conjugate by an automorphism of R iff they are of the same type and have isomorphic associated discrete measured groupoids $\mathcal{G}_{B \subset R}$.

Untwisting cocycle actions of amenable groupoids

Theorem: P-Shlyakhtenko-Vaes 2018

Let \mathcal{G} be a discrete measured groupoid with $X=\mathcal{G}^{(0)}$ and $\left(B_{t}\right)_{t \in X}$ a measurable field of I_{1} factors with separable predual. Assume that \mathcal{G} is amenable and that (α, v) is a free cocycle action of \mathcal{G} on $\left(B_{t}\right)_{t \in X}$. Then the cocycle v is a co-boundary: there exists a measurable field of unitaries $\mathcal{G} \ni g \mapsto w_{g} \in\left(B_{t}\right)_{t}$ s.t. $v(g, h)=\alpha_{g}\left(w_{h}^{*}\right) w_{g}^{*} w_{g h}, \forall(g, h) \in \mathcal{G}^{(2)}$.

Before discussing the proof, we mention that we have finally proved:

Complete classification of regular $B \subset R$ with $B^{\prime} \cap R=\mathcal{Z}(B)$

Two regular vN subalgebras $B \subset R$ satisfying $B^{\prime} \cap R=\mathcal{Z}(B)$ are conjugate by an automorphism of R iff they are of the same type and have isomorphic associated discrete measured groupoids $\mathcal{G}_{B \subset R}$.
Any such B contains a Cartan subalgebra of R and if $A_{1}, A_{2} \subset B$ are Cartan in R, there exists an automorphism θ of R satisfying $\theta(B)=B$ and $\theta\left(A_{1}\right)=A_{2}$.

About the proof

The proof of the vanishing 2-cohomology Thm uses the vanishing 2-coh for cocycle actions of amenable groups on II_{1} factors (P 2018), the CFW vanishing of the con along $\mathcal{G}^{(0)}=X$, which we apply to the isotropy groups $\Gamma_{t}, t \in X$ of the amenable groupoid \mathcal{G}. To extend to the entire \mathcal{G}, we have to make equivariant choices of 2-cocycle vanishing, for the Γ_{t}, where the equivariance is w.r.t. to the isomorphisms $\Gamma_{t} \rightarrow \Gamma_{s}$ given by conjugation with an element $g \in \mathcal{G}$ with $s(g)=s$ and $t(g)=t$ (source and target of g).

About the proof

The proof of the vanishing 2-cohomology Thm uses the vanishing 2-coh for cocycle actions of amenable groups on II_{1} factors (P 2018), the CFW vanishing of the con along $\mathcal{G}^{(0)}=X$, which we apply to the isotropy groups $\Gamma_{t}, t \in X$ of the amenable groupoid \mathcal{G}. To extend to the entire \mathcal{G}, we have to make equivariant choices of 2-cocycle vanishing, for the Γ_{t}, where the equivariance is w.r.t. to the isomorphisms $\Gamma_{t} \rightarrow \Gamma_{s}$ given by conjugation with an element $g \in \mathcal{G}$ with $s(g)=s$ and $t(g)=t$ (source and target of g).
The proof of this latter part depends on two key points. The first one is a technical result showing that such an equivariant choice exists, provided that the 2-cocycle vanishing for Γ_{t}, can be done in an "approximately unique way". The fact that a 2-cocycle untwists in an "approximately unique way" amounts to the fact that 1-cocycles for actions are "approximately co-boundary". The second key point is to prove such approximate vanishing of 1-cocycles for arbitrary amenable groups, a result we discuss next because of its independent interest.

Approximate vanishing 1-cohomology

- A 1-cocycle for an action $\Gamma \curvearrowright^{\sigma} N$ is a mapw : $\Gamma \rightarrow \mathcal{U}(N)$ s.t. $w_{g} \sigma_{g}\left(w_{h}\right)=w_{g h}, \forall g, h$. The cocycle w is co-boundary if $\exists u \in \mathcal{U}(N)$ such that $w_{g}=\sigma_{g}(u) u^{*}, \forall g$; it is approximate co-boundary if $\exists u_{n} \in \mathcal{U}(N)$ such that $\left\|w_{g}-\sigma_{g}\left(u_{n}\right) u_{n}^{*}\right\|_{2} \rightarrow 0, \forall g$, equivalently w is co-boundary as a 1-cocycle for $\Gamma \curvearrowright^{\sigma^{\omega}} N^{\omega}$.

Approximate vanishing 1-cohomology

- A 1-cocycle for an action $\Gamma \curvearrowright^{\sigma} N$ is a mapw : $\Gamma \rightarrow \mathcal{U}(N)$ s.t. $w_{g} \sigma_{g}\left(w_{h}\right)=w_{g h}, \forall g, h$. The cocycle w is co-boundary if $\exists u \in \mathcal{U}(N)$ such that $w_{g}=\sigma_{g}(u) u^{*}, \forall g$; it is approximate co-boundary if $\exists u_{n} \in \mathcal{U}(N)$ such that $\left\|w_{g}-\sigma_{g}\left(u_{n}\right) u_{n}^{*}\right\|_{2} \rightarrow 0, \forall g$, equivalently w is co-boundary as a 1-cocycle for $\Gamma \curvearrowright^{\sigma^{\omega}} N^{\omega}$.

Theorem (P-Shlyakhtenko-Vaes 2018)

Let Γ be a countable group. The following conditions are equivalent.
(i) Γ is amenable.
(ii) For any free action $\Gamma \curvearrowright^{\sigma} N$ the fixed point algebra of σ^{ω} on N^{ω} is a subfactor with trivial relative commutant in N^{ω}.
(iii) Any free action of Γ on any II_{1} factor is non strongly ergodic.
(iv) Any 1-cocycle w for any $\Gamma \curvearrowright^{\sigma} N$ is approximate co-boundary.

About the proof of approx vanishing 1 -coh

- Jones showed in 1980 that any 1-cocycle for a free action σ of a finite group Γ on a II_{1} factor is co-boundary. The proof only uses that the fixed point algebra of any such action is an irreducible subfactor: let $\tilde{\sigma}$ be the action of Γ on $\tilde{N}=\mathbb{M}_{2}(N)=N \otimes \mathbb{M}_{2}(\mathbb{C})$ given by $\tilde{\sigma}_{g}=\sigma_{g} \otimes i d$. If $\left\{e_{i j} \mid 1 \leq i, j \leq 2\right\} \subset \mathbb{M}_{2} \subset \tilde{N}$ is a matrix unit, then $\tilde{w}_{g}=e_{11}+w_{g} e_{22}$ is a 1 -cocycle for $\tilde{\sigma}$. If $Q \subset \tilde{N}$ denotes the fixed point algebra of the action $\tilde{\sigma}_{g}^{\prime}=\operatorname{Ad}\left(\tilde{w}_{g}\right) \tilde{\sigma}$, then $e_{11}, e_{22} \in Q$. The existence of a unitary element $u \in N$ satisfying $w_{g}=u \sigma_{g}\left(u^{*}\right), \forall g$, is equivalent to $e_{11} \sim e_{22}$ in Q. Since Q is a I_{1} factor and e_{11}, e_{22} have equal trace $1 / 2$ in Q so indeed $e_{11} \sim e_{22}$ in Q, thus w is co-boundary.

About the proof of approx vanishing 1 -coh

- Jones showed in 1980 that any 1-cocycle for a free action σ of a finite group Γ on a II_{1} factor is co-boundary. The proof only uses that the fixed point algebra of any such action is an irreducible subfactor: let $\tilde{\sigma}$ be the action of Γ on $\tilde{N}=\mathbb{M}_{2}(N)=N \otimes \mathbb{M}_{2}(\mathbb{C})$ given by $\tilde{\sigma}_{g}=\sigma_{g} \otimes i d$. If $\left\{e_{i j} \mid 1 \leq i, j \leq 2\right\} \subset \mathbb{M}_{2} \subset \tilde{N}$ is a matrix unit, then $\tilde{w}_{g}=e_{11}+w_{g} e_{22}$ is a 1-cocycle for $\tilde{\sigma}$. If $Q \subset \tilde{N}$ denotes the fixed point algebra of the action $\tilde{\sigma}_{g}^{\prime}=\operatorname{Ad}\left(\tilde{w}_{g}\right) \tilde{\sigma}$, then $e_{11}, e_{22} \in Q$. The existence of a unitary element $u \in N$ satisfying $w_{g}=u \sigma_{g}\left(u^{*}\right), \forall g$, is equivalent to $e_{11} \sim e_{22}$ in Q. Since Q is a I_{1} factor and e_{11}, e_{22} have equal trace $1 / 2$ in Q so indeed $e_{11} \sim e_{22}$ in Q, thus w is co-boundary.
- Note that the above proof only uses that the fixed point algebra is a I_{1} factor. This shows that $(i i) \Rightarrow(i v)$. To show that $(i) \Rightarrow(i i)$ we use the foll Lemma:

If $\Gamma \curvearrowright N$ is a free action of a countable group on a I_{1} factor and $\mathcal{X} \subset N^{\omega}$ separable, then $\exists u \in \mathcal{U}\left(N^{\omega}\right)$ s.t. $\mathcal{X},\left\{\sigma_{g}^{\omega}\left(u N u^{*}\right)\right\}_{g \in \Gamma}$ are all mutually free independent.

Sketch of proof of $(i) \Rightarrow(i i)$ in the Theorem

- With the notations in the previous lemma, let $Q=\vee_{g} \sigma_{g}\left(u N u^{*}\right) \simeq N^{* \Gamma}$. Note that Q is free independent to N and $\sigma^{\omega}(Q)=Q$, with $\rho=\sigma_{\mid Q}^{\omega}$ implementing on $Q \simeq N^{*} \Gamma$ the free Bernoulli Γ-action. Let $a=a^{*} \in N$ be a semi-circular element and denote by a_{g} its identical copies in the $(N)_{g} \simeq N$ components of $N^{* \Gamma}, g \in \Gamma$. Thus, ρ acts on the set $\left\{a_{g}\right\}_{g}$ by left translation, $\rho_{h}\left(a_{g}\right)=a_{h g}$. Let $K_{n} \subset \Gamma$ be a sequence of Folner sets and denote $b_{n}=\left|K_{n}\right|^{-1 / 2} \sum_{g \in K_{n}} a_{g}$. Then b_{n} is also a semicircular element and one has

$$
\left\|\rho_{h}\left(b_{n}\right)-b_{n}\right\|_{2}^{2}=\left|h F_{n} \Delta F_{n}\right| /\left|K_{n}\right| \rightarrow 0, \forall h \in \Gamma .
$$

Thus, the element $\tilde{b}=\left(b_{n}\right)_{n} \in\left(N^{*}\right)^{\omega}$ is semicircular with $\rho_{h}(\tilde{b})=\tilde{b}$, $\forall h \in \Gamma$, showing that ρ is not strongly ergodic.
This shows that there exist finite partitions $\left\{q_{i}\right\}_{i} \subset \mathcal{P}(Q)$ of arbitrary small mesh and which are almost σ^{ω}-invariant. So given any $x \in \mathcal{X}$, we have that $\left\|\sum_{i} q_{i} x q_{i}-\tau(x) 1\right\|_{2}$ small, because Q is free independent to $x \in \mathcal{X}$. This readily implies $\left(N^{\omega}\right)^{\sigma^{\omega /}} \cap N^{\omega}=\mathbb{C}$.

From $\Gamma \curvearrowright^{\sigma} R$ to $\Gamma \curvearrowright\left(\tilde{\sigma}_{\omega}, v_{\omega}^{\sigma}\right) R \vee R_{\omega}$

Proposition

$1^{\circ} R_{\omega}=R^{\prime} \cap R^{\omega}$ satisfies $R_{\omega}^{\prime} \cap R^{\omega}=R$.
$2^{\circ} \forall \theta \in \operatorname{Aut}(R), \exists U_{\theta} \in \mathcal{N}_{R^{\omega}}(R)$ such that $\operatorname{Ad}\left(U_{\theta}\right)_{\mid R}=\theta$. If $U_{\theta}^{\prime} \in \mathcal{N}_{R^{\omega}}(R)$ is another unitary satisfying $\operatorname{Ad}\left(U_{\theta}^{\prime}\right)_{\mid R}=\theta$, then $U_{\theta}^{\prime}=v U_{\theta}=U_{\theta} v^{\prime}$ for some $v, v^{\prime} \in \mathcal{U}\left(R_{\omega}\right)$.
3° If θ, U_{θ} as in 2°, then $\operatorname{Ad}\left(U_{\theta}\right)_{\mid R_{\omega}}$ implements $\theta_{\omega} \in \operatorname{Out}\left(R_{\omega}\right)$ and $\tilde{\theta}_{\omega}=\operatorname{Ad}\left(U_{\theta}\right)_{\mid R \vee R_{\omega}} \in \operatorname{Out}\left(R \vee R_{\omega}\right)$, with $\theta \in \operatorname{Aut}(R)$ outer iff θ_{ω} outer and iff $\tilde{\theta}_{\omega}$ outer.
4° Any free action $\Gamma \curvearrowright^{\sigma} R$ gives rise to a free cocycle action $\tilde{\sigma}_{\omega}$ of Γ on $R \vee R_{\omega}$, by $\tilde{\sigma}_{\omega}(g)=\operatorname{Ad}\left(U_{\sigma(g)}\right)_{\mid R \vee R_{\omega}}, g \in \Gamma$, with corresponding 2-cocycle $v_{\omega}^{\sigma}: \Gamma \times \Gamma \rightarrow \mathcal{U}\left(R_{\omega}\right)$.

Vanishing cohomology for $\tilde{\sigma}_{\omega}$ and the CE conjecture

Theorem

$\Gamma \curvearrowright^{\sigma} R$ free action of Γ on R. The II_{1} factor $M=R \rtimes_{\sigma} \Gamma$ has the CAE property (i.e., is embeddable into R^{ω}) iff the $\mathcal{U}\left(R_{\omega}\right)$-valued 2-cocycle v_{ω}^{σ} vanishes, i.e., iff there exist unitary elements $\left\{U_{g} \mid g \in \Gamma\right\} \subset \mathcal{N}_{R^{\omega}}(R)$ that implement σ on R and satisfy $U_{g} U_{h}=U_{g h}, \forall g, h \in \Gamma$.

A related problem

We have seen that one has a group isomorphism

$$
\operatorname{Out}(R) \ni \theta \mapsto \operatorname{Ad}\left(U_{\theta}\right) \in \operatorname{Out}\left(R \vee R_{\omega}\right)
$$

which is also onto if on the right side we restrict to autom that leave R invariant. Lifting this map to a grp morphism into to $\mathcal{N}_{R^{\omega}}(R)$ when restricted to a countable subgroup $\Gamma \subset \operatorname{Out}(R)$ implementing a genuine action, is equiv. to CE conjecture for $R \rtimes \Gamma$. But even if CE holds true for these factors, it seems quite clear that such lifting is not possible for the entire $\Gamma=\operatorname{Out}(R)$. However, we do not have a proof for this.

A closer look at the two technical lemmas

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

$\forall F^{\prime} \subset M$ finite, $\delta>0, \exists q \in \mathcal{P}(M)$ s.t. $\|q x q-\tau(x) q\|_{2}<\delta\|q\|_{2}, \forall x \in F^{\prime}$.

A closer look at the two technical lemmas

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

$\forall F^{\prime} \subset M$ finite, $\delta>0, \exists q \in \mathcal{P}(M)$ s.t. $\|q x q-\tau(x) q\|_{2}<\delta\|q\|_{2}, \forall x \in F^{\prime}$.
Also, in the proof of the approximate vanishing 1-cohomology, we used:

free independence lemma

If $\Gamma \curvearrowright N$ is a free action of a countable group on a separable II_{1} factor and $\mathcal{X} \subset N^{\omega}$ separable subspace, then $\exists u \in \mathcal{U}\left(N^{\omega}\right)$ s.t.
$\mathcal{X},\left\{\sigma_{g}^{\omega}\left(u N u^{*}\right)\right\}_{g \in \Gamma}$ are all mutually free independent.

A closer look at the two technical lemmas

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

$\forall F^{\prime} \subset M$ finite, $\delta>0, \exists q \in \mathcal{P}(M)$ s.t. $\|q x q-\tau(x) q\|_{2}<\delta\|q\|_{2}, \forall x \in F^{\prime}$.
Also, in the proof of the approximate vanishing 1-cohomology, we used:

free independence lemma

If $\Gamma \curvearrowright N$ is a free action of a countable group on a separable II_{1} factor and $\mathcal{X} \subset N^{\omega}$ separable subspace, then $\exists u \in \mathcal{U}\left(N^{\omega}\right)$ s.t. $\mathcal{X},\left\{\sigma_{g}^{\omega}\left(u N u^{*}\right)\right\}_{g \in \Gamma}$ are all mutually free independent.

This result is in fact a consequence of the following more general:

Theorem (free independence in irreducible subfactors)

If $N \subset M$ is an irreducible inclusion of II_{1} factors, then $\forall B \subset M^{\omega}$ separable vN algebra, $\exists A \subset N^{\omega}$ abelian diffuse such that $A \vee B \simeq A * B$.

A closer look at the two technical lemmas

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

$\forall F^{\prime} \subset M$ finite, $\delta>0, \exists q \in \mathcal{P}(M)$ s.t. $\|q x q-\tau(x) q\|_{2}<\delta\|q\|_{2}, \forall x \in F^{\prime}$.
Also, in the proof of the approximate vanishing 1-cohomology, we used:

free independence lemma

If $\Gamma \curvearrowright N$ is a free action of a countable group on a separable II_{1} factor and $\mathcal{X} \subset N^{\omega}$ separable subspace, then $\exists u \in \mathcal{U}\left(N^{\omega}\right)$ s.t.
$\mathcal{X},\left\{\sigma_{g}^{\omega}\left(u N u^{*}\right)\right\}_{g \in \Gamma}$ are all mutually free independent.
This result is in fact a consequence of the following more general:

Theorem (free independence in irreducible subfactors)

If $N \subset M$ is an irreducible inclusion of I_{1} factors, then $\forall B \subset M^{\omega}$ separable $v N$ algebra, $\exists A \subset N^{\omega}$ abelian diffuse such that $A \vee B \simeq A * B$. Indeed, taking $M=N \rtimes \Gamma$ we have $N^{\prime} \cap M=\mathbb{C}$. Then apply the Thm to get $A \subset N^{\omega}$ free independent to the $\mathrm{v} N$ algebra $B=(\mathcal{X} \cup M)^{\prime \prime}$.

Ergodic embeddings of $L^{\infty}([0,1])$ and R into factors

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0,1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:

Ergodic embeddings of $L^{\infty}([0,1])$ and R into factors

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0,1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:
(1) Constructing ergodic embeddings of R into I_{1} factors: $\forall M$ separable II 1 factor, $\exists R \subset M$ with $R^{\prime} \cap M=\mathbb{C} 1$. Proof: sketch on the blackboard.

Ergodic embeddings of $L^{\infty}([0,1])$ and R into factors

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0,1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:
(1) Constructing ergodic embeddings of R into I_{1} factors: $\forall M$ separable I_{1} factor, $\exists R \subset M$ with $R^{\prime} \cap M=\mathbb{C} 1$. Proof: sketch on the blackboard.
(2) "Ergodicity" (irreducibility) of an inclusion of separable II_{1} factors
$N \subset M$ entails existence of "ergodic $(D \subset R)$-direction" inside N :
$\exists R \subset N$ with $D^{\prime} \cap M=D$ and $R^{\prime} \cap M=\mathbb{C} 1$. Proof: sketch on blackboard

Ergodic embeddings of $L^{\infty}([0,1])$ and R into factors

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0,1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:
(1) Constructing ergodic embeddings of R into I_{1} factors: $\forall M$ separable I_{1} factor, $\exists R \subset M$ with $R^{\prime} \cap M=\mathbb{C} 1$. Proof: sketch on the blackboard.
(2) "Ergodicity" (irreducibility) of an inclusion of separable II_{1} factors
$N \subset M$ entails existence of "ergodic $(D \subset R)$-direction" inside N :
$\exists R \subset N$ with $D^{\prime} \cap M=D$ and $R^{\prime} \cap M=\mathbb{C} 1$. Proof: sketch on blackboard
(3) Strong form of LQ lemma: if $N \subset M$ irreducible, then $\forall F \subset M$ finite, $\varepsilon>0, \exists q \in \mathcal{P}(N)$ s.t. $\|q x q-\tau(x) q\|_{2}<\varepsilon\|q\|_{2}, \forall x \in F$. Proof sketch on blackboard.

Ergodic embeddings of $L^{\infty}([0,1])$ and R into factors

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0,1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:
(1) Constructing ergodic embeddings of R into I_{1} factors: $\forall M$ separable I_{1} factor, $\exists R \subset M$ with $R^{\prime} \cap M=\mathbb{C} 1$. Proof: sketch on the blackboard.
(2) "Ergodicity" (irreducibility) of an inclusion of separable II_{1} factors
$N \subset M$ entails existence of "ergodic $(D \subset R)$-direction" inside N :
$\exists R \subset N$ with $D^{\prime} \cap M=D$ and $R^{\prime} \cap M=\mathbb{C} 1$. Proof: sketch on blackboard
(3) Strong form of LQ lemma: if $N \subset M$ irreducible, then $\forall F \subset M$ finite, $\varepsilon>0, \exists q \in \mathcal{P}(N)$ s.t. $\|q x q-\tau(x) q\|_{2}<\varepsilon\|q\|_{2}, \forall x \in F$. Proof sketch on blackboard.
(4) blackboard comments on the proof of "approximately free independent" embeddings of $L^{\infty}([0,1])$ and the incremental patching method.

Free random embeddings of $L^{\infty}([0,1])$ and R

The incremental patching method allows proving the following general
Theorem (approx. free independence with amalgamation)
Let M_{n} be a sequence of finite factors with $\operatorname{dim} M_{n} \rightarrow \infty$ and denote by \mathbf{M} the ultraproduct II_{1} factor $\Pi_{\omega} M_{n}$, over a free ultrafilter ω on \mathbb{N}. Let $\mathbf{Q} \subset \mathbf{M}$ be a $v N$ subalgebra satisfying one of the following:
(a) $\mathbf{Q}=\Pi_{\omega} Q_{n}$, for some $v N$ alg. $Q_{n} \subset M_{n}$ with $Q_{n} \not M_{n} Q_{n}^{\prime} \cap M_{n}, \forall n$; (b) $\mathbf{Q}=B^{\prime} \cap \mathbf{M}$, for some separable amenable vN alg. $B \subset \mathbf{M}$. Then given any separable subspace $X \subset \mathbf{M} \ominus\left(\mathbf{Q}^{\prime} \cap \mathbf{M}\right)$, there exists a diffuse abelian vN alg. $A \subset \mathbf{Q}$ such that A is free independent to X, relative to $\mathbf{Q}^{\prime} \cap \mathbf{M}$, i.e. $E_{\mathbf{Q}^{\prime} \cap \mathbf{M}}\left(x_{0} \Pi_{i=1}^{n} a_{i} x_{i}\right)=0$, for all $n \geq 1$, $x_{0}, x_{k} \in X \cup\{1\}, x_{i} \in X, 1 \leq i \leq k-1, a_{i} \in A \ominus \mathbb{C} 1,1 \leq i \leq n$.

- The above result led us to the discovery in 1990-1994 of the reconstruction method in subfactor theory, and the axiomatisation of the standard invariant of a subfactor.

Applications

- Existence of ergodic embeddings of AFD factors into arbitrary vN factors is crucial for establishing Stone-Weierstrass type theorems for inclusions of C*-algebras (Kadison, Sakai, Glimm, J. Anderson, Bunce, etc). A complete solution to the "factor state" such result' was given using (1) above.
- Existence of ergodic embeddings of R into II_{1} factors M were used to prove that $H^{2}(M, M)=0$ (Kadison-Ringrose Hochshild-type 2nd coh) for a large class of II_{1} factors M (Schmidt-Sinclair 95).
- Embeddings of $L^{\infty}([0,1])$ and R into a I_{1} factor M that are asympt. free to M where key to establishing a variety of vanishing cohomology results:
(a) All derivations from a $v \mathrm{~N}$ algebra M that take values in $\mathcal{K}(\mathcal{H})$ (more generally, all "smooth derivations") are inner, i.e., $H^{1}(M, \mathcal{K})=0$ (Popa 1984, Popa-Radulescu 1986, Galatan-Popa 2014).
(b) Vanishing of the Connes-Shlyakhtenko-Thom 1st L^{2} cohomology, $H^{1}\left(M, \operatorname{Aff}\left(M \bar{\otimes} M^{o p}\right)\right)=0($ Popa-Vaes 2016).
(c) Approx. vanishing of 1-cohomology for any action of an amenable groups on any II_{1} factor (Popa-Shlyakhtenko-Vaes 2018).

Coarse, mixing, and strongly malnormal embeddings

Coarse subalgebras and coarse pairs

A $v N$ subalgebra $B \subset M$ is coarse if the vN algebra generated by left-right multiplication by elements in B on $L^{2}(M \ominus B)$ is $B \bar{\otimes} B^{o p}$. The $v N$ subalgebras $B, Q \subset M$ form a coarse pair if the vN algebra generated by left multiplication by B and right multiplication by Q on $L^{2} M$ is $B \bar{\otimes} Q^{o p}$.

Mixing subalgebras

A $v N$ subalgebra $B \subset M$ is mixing if $\lim _{u \in \mathcal{U}(B)} \| E_{B}($ xuy $) \|_{2}=0$, $\forall x, y \in M \ominus B$, where the limit is over $u \in \mathcal{U}(B)$ tending wo to 0 .

Strongly malnormal subalgebras

A $v N$ subalgebra $B \subset M$ is strongly malnormal if its weak intertwining space $w \mathcal{I}_{M}(B, B)$ is equal to B, i.e., if $x \in M$ satisfies $\operatorname{dim}\left(L^{2}\left(A_{0} \times B\right)_{B}\right)<\infty$, then $x \in B$.

Proposition

One has the implications "coarse \Rightarrow mixing \Rightarrow strongly malnormal".

Coarse embeddings of R and $L^{\infty}([0,1])$

Theorem (P 2018-19)

Any separable II_{1} factor M contains a hyperfinite factor $R \subset M$ that's coarse in M (and thus also mixing and strongly malnormal in M). Moreover, given any irreducible subfactor $P \subset M$, any vN alg. $Q \subset M$ satisfying $P \not_{M} Q$ and any $\varepsilon>0$, the coarse subfactor $R \subset M$ can be constructed so that to be contained in P, make a coarse pair with Q and satisfy $R \perp_{\varepsilon} Q$.

Proof comments on blackboard.

Coarse embeddings of R and $L^{\infty}([0,1])$

Theorem (P 2018-19)

Any separable II_{1} factor M contains a hyperfinite factor $R \subset M$ that's coarse in M (and thus also mixing and strongly malnormal in M).
Moreover, given any irreducible subfactor $P \subset M$, any vN alg. $Q \subset M$ satisfying $P \not_{M} Q$ and any $\varepsilon>0$, the coarse subfactor $R \subset M$ can be constructed so that to be contained in P, make a coarse pair with Q and satisfy $R \perp_{\varepsilon} Q$.

Proof comments on blackboard.

Corollary

Any separable II_{1} factor M has a coarse MASA $A \subset M$, which in addition is strongly malnormal and mixing, with infinite multiplicity (Pukansky invariant equal to ∞). Moreover, given any irreducible subfactor $P \subset M$, any vN alg. $Q \subset M$ such that $P \not_{M} Q$ and any $\varepsilon>0$, the coarse MASA $A \subset M$ can be constructed inside P, coarse to Q, and satisfying $A \perp_{\varepsilon} Q$.

Coarseness and strong malnormality in $L \mathbb{F}_{n}$

Coarseness conjecture

Any maximal amenable (equivalently maximal AFD) von Neumann subalgebra B of $L\left(\mathbb{F}_{t}\right)$ is coarse, and thus also mixing and strongly malnormal, $\forall 1<t \leq \infty$.

Coarseness and strong malnormality in $L \mathbb{F}_{n}$

Coarseness conjecture

Any maximal amenable (equivalently maximal AFD) von Neumann subalgebra B of $L\left(\mathbb{F}_{t}\right)$ is coarse, and thus also mixing and strongly malnormal, $\forall 1<t \leq \infty$.

- Note that if $B \subset M$ is strongly malnormal, then any weak intertwiner of B in M is contained in B, in particular if $u \in \mathcal{U}(M)$ is so that $u B u^{*} \cap B$ is diffuse, then $u \in B$. It also implies that if $B_{0} \subset M$ amenable and $B_{0} \cap B$ diffuse, then $B_{0} \subset B$. Thus, the above coarseness conjecture implies the Peterson-Thom conjecture, which predicts that any $B_{0} \subset L \mathbb{F}_{n}$ amenable diffuse is contained in a unique maximal amenable subalgebra of $L \mathbb{F}_{n}$.

More on R-embeddings

- Connes Approximate Embedding (CAE) conjecture asks whether any countably generated tracial vN algebra has an "approximate embeding" into R, i.e., M embeds into R^{ω}, equivalently into $\Pi_{\omega} \mathbb{M}_{n}(\mathbb{C})$. (Can any tracial vN algebra be "simulated" by matrix algebras?).

More on R-embeddings

- Connes Approximate Embedding (CAE) conjecture asks whether any countably generated tracial vN algebra has an "approximate embeding" into R, i.e., M embeds into R^{ω}, equivalently into $\Pi_{\omega} \mathbb{M}_{n}(\mathbb{C})$. (Can any tracial vN algebra be "simulated" by matrix algebras?).
- Connes Bicentralizer problem asks whether given any (separable) type III_{1} factor \mathcal{M} there exists an irreducible embedding $R \hookrightarrow \mathcal{M}$ that's the range of a normal conditional expectation. Equivalently, whether \mathcal{M} necessarily has a normal faithful state φ such that its centralizer \mathcal{M}_{φ} has trivial relative commutant in \mathcal{M}.

More on R-embeddings

- Connes Approximate Embedding (CAE) conjecture asks whether any countably generated tracial vN algebra has an "approximate embeding" into R, i.e., M embeds into R^{ω}, equivalently into $\Pi_{\omega} \mathbb{M}_{n}(\mathbb{C})$. (Can any tracial vN algebra be "simulated" by matrix algebras?).
- Connes Bicentralizer problem asks whether given any (separable) type III $_{1}$ factor \mathcal{M} there exists an irreducible embedding $R \hookrightarrow \mathcal{M}$ that's the range of a normal conditional expectation. Equivalently, whether \mathcal{M} necessarily has a normal faithful state φ such that its centralizer \mathcal{M}_{φ} has trivial relative commutant in \mathcal{M}.

Ergodic embeddings of R (work in progress: to be checked)

Any vN factor \mathcal{M} that's not of type I and has separable predual, contains an ergodic copy of R, i.e., a hyperfinite subfactor $R \subset \mathcal{M}$ with trivial relative commutant, $R^{\prime} \cap \mathcal{M}=\mathbb{C} 1$.

