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Generalities on von Neumann algebras

A von Neumann (vN) algebra is a ∗-algebra of operators acting on a
Hilbert space, M ⊂ B(H), that contains 1 = idH and satisfies any of the
following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If S = S∗ ⊂ B(H), then the commutant (or centralizer) of S
in B(H), S ′ := {y ∈ B(H) | yx = xy , ∀x ∈ S}, satisfies 2 above, so it is a
vN algebra; (b) if p ∈ P(M), then pMp ⊂ B(p(H)) is vN algebra.

• von Neumann’s Bicommutant Theorem shows that M ⊂ B(H)
satisfies the above conditions iff M = (M ′)′ = M ′′.

• Kaplansky Density Theorem shows that if M ⊂ B(H) is a vN algebra
and M0 ⊂ M is a ∗-sublgebra that’s wo-dense in M, then (M0)1

so
= (M)1.

• A vN algebra M is closed to polar decomposition and Borel functional
calculus. Also, if {xi}i ⊂ (M+)1 is an increasing net, then supi xi ∈ M,
and if {pj}j ⊂ M are mutually orthogonal projections, then

∑
j pj ∈ M.
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Examples

• B(H) itself is a vN algebra.

• Let (X , µ) be a standard Borel probability measure space (pmp). Then
the function algebra L∞X = L∞(X , µ) with its essential sup-norm ‖ ‖∞,
can be represented as a ∗-algebra of operators on the Hilbert space
L2X = L2(X , µ), as follows: for each x ∈ L∞X , let λ(x) ∈ B(L2X ) denote
the operator of (left) multiplication by x on L2X , i.e., λ(x)(ξ) = xξ,
∀ξ ∈ L2X . Then x 7→ λ(x) is clearly a ∗-algebra morphism with
‖λ(x)‖B(L2X ) = ‖x‖∞, ∀x . Its image A ⊂ B(L2X ) satisfies A′ = A, in

other words A is a maximal abelian ∗-subalgebra (MASA) in B(L2X ).

Indeed, if T ∈ A′ then let ξ = T (1) ∈ L2X . Denote by λ(ξ) : L2X → L1X
the operator of (left) multiplication by ξ, which by Cauchy-Schwartz is
bounded by ‖ξ‖2. But T : L2X → L2X ⊂ L1X is also bounded as an
operator into L1X , and λ(ξ),T coincide on the ‖ ‖2-dense subspace
L∞X ⊂ L2X (Exercise!) Thus, λ(ξ) = T on all L2, forcing ξ ∈ L∞X
(Exercise!).

This shows that A is a vN algebra (by vN’s bicommutant thm).
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A key example: the hyperfinite II1 factor

A vN algebra M is called a factor if its center, Z(M) := M ′ ∩M, is trivial,
Z(M) = C1.

• Let R0 be the algebraic infinite tensor product M2(C)⊗∞, viewed as
inductive limit of the increasing sequence of algebras M2n(C) = M2(C)⊗n,
via the embeddings x 7→ x ⊗ 1M2 . Endow R0 with the norm
‖x‖ = ‖x‖M2n

, if x ∈M2n ⊂ R0, which is clearly a well defined operator
norm, i.e., satisfies ‖x∗x‖ = ‖x‖2. One also endows R0 with the functional
τ(x) = Tr(x)/2n, for x ∈M2n , which is well defined, positive
(τ(x∗x) ≥ 0, ∀x) and satisfies τ(xy) = τ(yx), ∀x , y ∈ R0, τ(1) = 1, i.e., it
is a trace state. Define the Hilbert space L2(R0) as the completion of R0

with respect to the Hilbert-norm ‖y‖2 = τ(y∗y)1/2, y ∈ R0, and denote
R̂0 the copy of R0 as a subspace of L2(R0).

For each x ∈ R0 define the operator λ(x) on L2(R0) by λ(x)(ŷ) = x̂y ,
∀y ∈ R0. Note that R0 3 x 7→ λ(x) ∈ B(L2) is a ∗-algebra morphism with
‖λ(x)‖ = ‖x‖, ∀x . Moreover, 〈λ(x)(1̂), 1̂〉L2 = τ(x).
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One similarly defines ρ(x) to be the operator of right multiplication by x
on L2(R0), for which we have [λ(y), ρ(x)] = 0, ∀x , y ∈ R0.

One can easily see that the vN algebra R := λ(R0)
so

= λ(R0)
wo

is a factor
(Exercise!). It can alternatively be defined by R = ρ(R0)′ (Exercise!). This
is the hyperfinite II1 factor.

Yet another way to define R is as the completion of R0 in the topology of
convergence in the norm ‖x‖2 = τ(x∗x)1/2 of sequences that are bounded
in the operator norm (Exercise!). Notice that, in both definitions, τ
extends to a trace state on R. Note also that if one denotes by D0 ⊂ R0

the natural “diagonal subalgebra” (...), then (D0, τ|D0
) coincides with the

algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its
closure in R in the above topology, (D, τ|D), is just (L∞([0, 1]),

∫
dµ).

Note that (R0, τ) (and thus R) is completely determined by the sequence
of partial isometries v1 = e1

12, vn = (Πn−1
i=1 e i22)en12, n ≥ 2, with pn = vnv∗n

satisfying τ(pn) = 2−n and pn ∼ 1−
∑n

i=1 pi (Exercise!)
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Finite factors: some equivalent characterizations

Theorem A

Let M be a vN factor. The following are equivalent:

1◦ M is a finite vN algebra, i.e., if p ∈ P(M) satisfies p ∼ 1 = 1M , then
p = 1 (any isometry in M is necessarily a unitary element).

2◦ M has a trace state τ (i.e., a functional τ : M → C that’s positive,
τ(x∗x) ≥ 0, with τ(1) = 1, and is tracial, τ(xy) = τ(yx), ∀x , y ∈ M).

3◦ M has a trace state τ that’s completely additive, i.e.,
τ(Σipi ) = Σiτ(pi ), ∀{pi}i ⊂ P(M) mutually orthogonal projections.

4◦ M has a trace state τ that’s normal, i.e., τ(supi xi ) = supi τ(xi ),
∀{xi}i ⊂ (M+)1 increasing net.

Thus, a vN factor is finite iff it is tracial. Moreover, such a factor has a
unique trace state τ , which is automatically normal and faithful,
and satisfies co{uxu∗ | u ∈ U(M)} ∩ C1 = {τ(x)1}, ∀x ∈ M.
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Some preliminary lemmas

Lemma 1

If a vN factor M has a minimal projections, then M = B(`2I ), for some I .
Moreover, if M = B(`2I ), then the following are eq.:

1◦ M has a trace.

2◦ |I | <∞.

3◦ M is finite, i.e. u ∈ M, u∗u = 1⇒ uu∗ = 1

Proof: Exercise.

Lemma 2

If M is finite then:
(a) p, q ∈ P(M), p ∼ q ⇒ 1− p ∼ 1− q.
(b) pMp is finite ∀p ∈ P(M), i.e., q ∈ P(M), q ≤ p, q ∼ p, then q = p.

Proof: Use the comparison theorem (Exercise).
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Lemma 3

If M vN factor with no atoms and p ∈ P(M) is so that dim(pMp) =∞,
then ∃P0,P1 ∈ P(M), P0 ∼ P1, P0 + P1 = p.

Proof: Consider the family F = {(p0
i , p

1
i )i | with p0

i , p
1
j all mutually

orthogonal ≤ p such that p0
i ∼ p1

i , ∀i}, with its natural order. Clearly
inductively ordered. If (p0

i , p
1
i )i∈I is a maximal element, then

P0 =
∑

i p0
i ,P1 =

∑
i p1

i will do (for if not, then the comparison Thm.
gives a contradiction).

Lemma 4

If M is a factor with no minimal projections, then ∃{pn}n ⊂ P(M)
mutually orthogonal such that pn ∼ 1−

∑n
i=1 pi , ∀n.

Proof: Apply L3 recursively.
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Lemma 5

If M is a finite factor and {pn}n ⊂ P(M) are as in L4, then:

(a) If p ≺ pn, ∀n, then p = 0. Equivalently, if p 6= 0, then ∃n such that
pn ≺ p. Moreover, if n is the first integer such that pn ≺ p and p′n ≤ p,
p′n ∼ pn, then p − p′n ≺ pn.

(b) If {qn}n ⊂ P(M) increasing and qn ≤ q ∈ P(M) and q − qn ≺ pn, ∀n,
then qn ↗ q (with so-convergence).

(c)
∑

n pn = 1.

Proof: If p ' p′n ≤ pn, ∀n, then P =
∑

n p′n and P0 =
∑

k p′2k+1 satisfy
P0 < P and P0 ∼ P, contradicting the finiteness of M. Rest is Exercise!

Lemma 6

Let M be a finite factor without atoms. If p ∈ P(M), 6= 0, then ∃ a
unique infinite sequence 1 ≤ n1 < n2 < ... such that p decomposes as
p =

∑
k≥1 p′nk , for some {p′nk}k ⊂ P(M) with p′nk ∼ pnk , ∀k .

Proof: Apply Part (a) of L5 recursively (Exercise!).
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If M is a finite factor without atoms, then we let dim : P(M)→ [0, 1] be
defined by dim(p) = 0 if p = 0 and dim(p) =

∑∞
k=1 2−nk , if p 6= 0, where

n1 < n2 < ..., are given by L4.

Lemma 7

dim satisfies the conditions:

(a) dim(pn) = 2−n

(b) If p, q ∈ P(M) then p ∼ q iff dim(p) ≤ textdim(q)

(c) dim is completely additive: if qi ∈ P(M) are mutually orthogonal,
then dim(Σiqi ) = Σidim(qi ).

Proof: Exercise!.

Lemma 8 (Radon-Nykodim trick)

Let ϕ,ψ : P(M)→ [0, 1] be completely additive functions, ϕ 6= 0, and
ε > 0. There exists p ∈ P(M) with dim(p) = 2−n for some n ≥ 1, and
θ ≥ 0, such that θϕ(q) ≤ ψ(q) ≤ (1 + ε)θϕ(q), ∀q ∈ P(pMp).
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Proof: Denote F = {p | ∃n with p ∼ pn}. Note first we may assume ϕ
faithful: take a maximal family of mutually orthogonal non-zero
projections {ei}i with ϕ(ei ) = 0, ∀i , then let f = 1−

∑
i ei 6= 0 (because

ϕ(1) 6= 0); it follows that ϕ is faithful on fMf , and by replacing with some
f0 ≤ f in F , we may also assume f ∈ F . Thus, proving the lemma for M
is equivalent to proving it for fMf , which amounts to assuming ϕ faithful.

If ψ = 0, then take θ = 0. If ψ 6= 0, then by replacing ϕ by ϕ(1)−1ϕ and
ψ by ψ(1)−1ψ, we may assume ϕ(1) = ψ(1) = 1. Let us show this implies:

(1) ∃g ∈ F , s.t. ∀g0 ∈ F , g0 ≤ g , we have ϕ(g0) ≤ ψ(g0). For if not then

(2) ∀g ∈ F , ∃g0 ∈ F , g0 ≤ g s.t. ϕ(g0) > ψ(g0).

Take a maximal family of mut. orth. projections {gi}i ⊂ F , with
ϕ(gi ) > ψ(gi ), ∀i . If 1−

∑
i gi 6= 0, then take g ∈ F , g ≤ 1−

∑
i gi (cf.

L5) and apply (2) to get g0 ≤ g , g0 ∈ F with ϕ(g0) > ψ(g0),
contradicting the maximality. Thus,

1 = ϕ(
∑
i

gi ) =
∑
i

ϕ(gi ) >
∑
i

ψ(gi ) = ψ(
∑
i

gi ) = ψ(1) = 1,

a contradiction. Thus, (1) holds true.
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Define θ = sup{θ′ | θ′ϕ(g0) ≤ ψ(g0),∀g0 ≤ g , g0 ∈ F}.
Clearly 1 ≤ θ <∞ and θϕ(g0) ≤ ψ(g0), ∀g0 ≤ g , g0 ∈ F . Moreover, by
def. of θ, there exists g0 ∈ F , g0 ≤ g , s.t., θϕ(g0) > (1 + ε)−1ψ(g0).
We now repeat the argument for ψ and θ(1 + ε)ϕ on g0Mg0, to prove that

(3) ∃g ′ ∈ F , g ′ ≤ g0, such that for all g ′0 ∈ F , g ′0 ≤ g0, we have
ψ(g ′0) ≤ θ(1 + ε)ϕ(g ′0).

Indeed, for if not, then

(4) ∀g ′ ∈ F , g ′ ≤ g0, ∃g ′0 ≤ g ′ in F s.t. ψ(g ′0) > θ(1 + ε)ϕ(g ′0).

But then we take a maximal family of mutually orthogonal g ′i ≤ g0 in F ,
s.t. ψ(g ′i ) ≥ θ(1 + ε)ϕ(g ′i ), and using L5 and (4) above we get∑

i g ′i = g0. This implies that ψ(g0) ≥ θ(1 + ε)ϕ(g0) > ψ(g0), a
contradiction. Thus, (3) above holds true for some g ′ ≤ g0 in F . Taking
p = g ′, we get that any q ∈ F under p satisfies both θϕ(q) ≤ ψ(q) and
ψ(q) ≤ θ(1 + ε)ϕ(q). By complete additivity of ϕ,ψ and L6, we are done.
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We now apply L8 to ψ = dim and ϕ a vector state on M ⊂ B(H), to get:

Lemma 9

∀ε > 0, ∃p ∈ P(M) with dim(p) = 2−n for some n ≥ 1, and a vector
(thus normal) state ϕ0 on pMp such that, ∀q ∈ P(pMp), we have
(1 + ε)−1ϕ0(q) ≤ dim(q) ≤ (1 + ε)ϕ0(q).

Proof: trivial by L8

Lemma 10

With p, ϕ0 as in L9, let v1 = p, v2, ..., v2n ∈ M such that viv
∗
i = p,∑

i v∗i vi = 1. Let ϕ(x) :=
∑2n

i=1 ϕ0(vixv∗i ), x ∈ M. Then ϕ is a normal
state on M satisfying ϕ(x∗x) ≤ (1 + ε)ϕ(xx∗), ∀x ∈ M.

Proof: Note first that ϕ0(x∗x) ≤ (1 + ε)ϕ0(xx∗), ∀x ∈ pMp (Hint: do it
first for x partial isometry, then for x with x∗x having finite spectrum). To
deduce the inequality for ϕ itself, note that

∑
j v∗i vi = 1 implies that for

any x ∈ M we have

ϕ(x∗x) =
∑
i

ϕ0(vix
∗(
∑
j

v∗j vj)xv∗i ) =
∑
i ,j

ϕ0((vix
∗v∗j )(vjxvi ))
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≤ (1 + ε)
∑
i ,j

ϕ0((vjxvi )(vix
∗v∗j )) = ... = (1 + ε)ϕ(xx∗).

Lemma 11

If ϕ is a state on M that satisfies ϕ(x∗x) ≤ (1 + ε)ϕ(xx∗), ∀x ∈ M, then
(1 + ε)−1ϕ(p) ≤ dim(p) ≤ (1 + ε)ϕ(p), ∀p ∈ P(M).

Proof: By complete additivity, it is sufficient to prove it for p ∈ F , for
which we have for v1, ..., v2n as in L10 ϕ(p) = ϕ(v∗j vj) ≤ (1 + ε)ϕ(vjv

∗
j ),

∀j , so that

2nϕ(p) ≤ (1 + ε)
∑
j

ϕ(vjv
∗
j ) = (1 + ε)2ndim(p)

and similarly 2ndim(p) = 1 ≤ (1 + ε)2nϕ(p).
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Proof of Thm A

Define τ : M → C as follows. First, if x ∈ (M+)1 then we let
τ(x) = τ(Σn2−nen) = Σn2−ndim(en), where x = Σn2−nen is the (unique)
dyadic decomposition of 0 ≤ x ≤ 1. Extend τ to M+ by homothety, then
further extend to Mh by τ(x) = τ(x+)− τ(x−), where for x = x∗ ∈ Mh,
x = x+ − x− is the dec. of x into its positive and negative parts.
Finally, extend τ to all M by τ(x) = τ(Rex) + iτ(Imx).

By L11, ∀ε > 0, ∃ϕ normal state on M such that |τ(p)− ϕ(p)| ≤ ε,
∀p ∈ P(M). By the way τ was defined and the linearity of ϕ, this implies
|τ(x)− ϕ(x)| ≤ ε, ∀x ∈ (M+)1, and thus |τ(x)− ϕ(x)| ≤ 4ε, ∀x ∈ (M)1.
This implies |τ(x + y)− τ(x)− τ(y)| ≤ 8ε, ∀x , y ∈ (M)1. Since ε > 0
was arbitrary, this shows that τ is a linear state on M.

By definition of τ , we also have τ(uxu∗) = τ(x), ∀x ∈ M, u ∈ U(M), so τ
is a trace state. From the above argument, it also follows that τ is a norm
limit of normal states, which implies τ is normal as well.
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Finite vN algebras

Theorem A’

Let M be a vN algebra that’s countably decomposable (i.e., any family of
mutually orthogonal projections is countable). The following are
equivalent:

1◦ M is a finite vN algebra, i.e., if p ∈ P(M) satisfies p ∼ 1 = 1M , then
p = 1 (any isometry in M is necessarily a unitary element).

2◦ M has a faithful normal (equivalently completely additive) trace state τ .

Moreover, if M is finite, then there exists a unique normal faithful central
trace, i.e., a linear positive map ctr : M → Z(M) that satisfies
ctr(1) = 1, ctr(z1xz2) = z1ctr(x)z2, ctr(xy) = ctr(yx), x , y ∈ M, zi ∈ Z.

Any trace τ on M is of the form τ = ϕ0 ◦ ctr , for some state ϕ0 on Z.

Also, co{uxu∗ | u ∈ U(M)} ∩ Z = {ctr(x)}, ∀x ∈ M.

Proof of 2◦ ⇒ 1◦: If τ is a faithful trace on M and u∗u = 1 for some
u ∈ M, then τ(1− uu∗) = 1− τ(uu∗) = 1− τ(u∗u) = 0, thus uu∗ = 1.
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Lp-spaces from tracial algebras

• A ∗-operator algebra M0 ⊂ B(H) that’s closed in operator norm is called
a C∗-algebra. Can be described abstractly as a Banach algebra M0 with a
∗-operation and the norm satisfying the axiom ‖x∗x‖ = ‖x‖2, ∀x ∈ M0.

• If M0 is a unital C∗-algebra and τ is a faithful trace state on M0, then
for each p ≥ 1, ‖x‖p = τ(|x |p)1/p, x ∈ M0, is a norm on M0. We denote
LpM0 the completion of (M0, ‖ ‖p). One has ‖x‖p ≤ ‖x‖q,
∀1 ≤ p ≤ q ≤ ∞, thus LpM0 ⊃ LqM0.

Note that L2M0 is a Hilbert space with scalar product 〈x , y〉τ = τ(y∗x).
The map M0 3 x 7→ λ(x) ∈ B(L2) defined by λ(x)(ŷ) = x̂y is a ∗-algebra
isometric representation of M0 into B(L2) with τ(x) = 〈λ(x)1̂, 1̂〉ϕ.
Similarly, ρ(x)(ŷ) = ŷx defines an isometric representation of (M0)op on
L2M0. One has [λ(x1), ρ(x2)] = 0, ∀xi ∈ M0.

More generally, ‖x‖ = sup{‖xy‖p | ‖y‖p ≤ 1}. Also,
‖y‖1 = sup{|τ(xy)| | x ∈ (M)1}. In particular, τ extends to L1M0.

Exercise!
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Abstract characterizations of finite vN algebras

Theorem B

Let (M, τ) be a unital C∗-algebra with a faithful trace state. The following
are equivalent:

1◦ The image of λ : M → B(L2(M, τ)) is a vN algebra (i.e., is wo-closed).

2◦ λ(M) = ρ(M)′ (equivalently, ρ(M) = λ(M)′).

3◦ (M)1 is complete in the norm ‖x‖2,τ .

4◦ As Banach spaces, we have M = (L1(M, τ))∗, where the duality is
given by (M, L1M) 3 (x ,Y ) 7→ τ(xY ).

Proof: One uses similar arguments as when we represented L∞([0, 1]) as a
vN algebra and as in the construction of R (Exercise!).
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II1 factors: definition and basic properties

Definition

An ∞-dim finite factor M (so M 6= Mn(C), ∀n) is called a II1 factor.

• R is a factor, has a trace, and is ∞-dimensional, so it is a II1 factor.

• The construction of the trace on a non-atomic factor satisfying the
finiteness axiom in Thm A is based on splitting recursively 1 dyadically into
equivalent projections, with the underlying partial isometries generating
the hyperfinite II1 factor R. Thus, R embeds into any II1 factor.

• If A ⊂ M is a maximal abelian ∗-subalgebra (MASA) in a II1 factor M,
then A is diffuse (i.e., it has no atoms).

• The (unique) trace τ on a II1 factor M is a dimension function on P(M),
i.e., τ(p) = τ(q) iff p ∼ q, with τ(P(M)) = [0, 1] (continuous dimension).

• If B ⊂ M is vN alg, the orth. projection eB : L2M → B̂
‖ ‖2

= L2B is
positive on M̂ = M, so it takes M onto B, implementing a cond. expect.
EB : M → B that satisfies τ ◦ EB = τ . It is unique with this property.
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Finite amplifications of II1 factors

• If n ≥ 2 then Mn(M) = Mn(C)⊗M is a II1 factor with trace state
τ((xij)i ,j) =

∑
i τ(xii )/n, ∀(xij)i ,j ∈Mn(M).

• If 0 6= p ∈ P(M), then pMp is a II1 factor with trace state τ(p)−1τ ,
whose isomorphism class only depends on τ(p).

• Given any t > 0, let n ≥ t and p ∈ P(Mn(M)) be so that τ(p) = t/n.
We denote the isomorphism class of pMn(M)p by Mt and call it the
amplification of M by t (Exercise: show that this doesn’t depend on the
choice of n and p.)

• We have (Ms)t = Mst , ∀s, t > 0 (Exercise). One denotes
F(M) = {t > 0 | Mt ' M}. Clearly a multiplicative subgroup of R+,
called the fundamental group of M. It is an isom. invariant of M.
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∞-amplifications, II∞ factors and semifinite vN alg

If Mi ⊂ B(Hi ), i = 1, 2, are vN algebras, then M1⊗M2 ⊂ B(H1⊗H2)
denotes the vN alg generated by alg tens product M1 ⊗M2 ⊂ B(H1⊗H2).

• If (M, τ) is tracial (finite) vN algebra, then
M = M⊗B(`2S) ⊂ B(L2M⊗`2S) is a vN algebra with the property
∃pi ↗ 1 projections such that piMpi is finite, ∀i . Such a vN algebra M is
called semifinite. It has a normal faithful semifinite trace τ ⊗ Tr .

• If M is a type II1 factor and |S | =∞, then M = M⊗B(`2S) is called a
II∞ factor. It can be viewed as the |S |-amplification of M.

• An important example: If B ⊂ M is a vN subalgebra and
eB : L2M → L2B as before, then: eBxeB = EB(x)eB , ∀x ∈ λ(M) = M,
the vN algebra 〈M, eB〉 generated by M and eB in B(L2M) is equal to the
wo-closure of the ∗-algebra sp{xeBy | x , y ∈ M}, and also equal to
ρ(B)′ ∩ B(L2M). It has a normal semifinite faithful trace uniquely
determined by Tr(xeBy) = τ(xy). (〈M, eB〉,Tr) is called the basic
construction algebra for B ⊂ M.
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vN representations and Hilbert M-modules

• If M is a vN algebra, then a ∗-rep π : M → B(H) is a vN rep (i.e., π(M)
wo-closed) iff π is completely additive. We’ll call such representations
normal representations and H a (left) Hilbert M-module. Two Hilbert
M-modules H,K are equivalent if there exists a unitary U : H ' K that
intertwines the two M-module structures (reps).

• If M ⊂ B(H) is a vN algebra and p′ ∈ M ′, then
M 3 x 7→ xp′ ∈ B(p′(H)) is a vN representation of M. Also, if
πi : M → B(Hi ) are vN representations of M, then
x 7→ ⊕iπi (x) ∈ B(⊕iHi ) is a vN rep. of M.

• If (M, τ) is a tracial vN algebra, then a ∗-rep π : M → B(H) is a vN rep
iff π is continuous from (M)1 with the ‖ ‖2-topology to B(H) with the
so-topology.
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Classification of Hilbert modules of a II1 factor

• If M is tracial vN algebra then any cyclic Hilbert M-module is of the
form ρ(p)(L2M) = L2(Mp). Any Hilbert M-module H is of the form
⊕iL

2(Mpi ), for some projections {pi}i ⊂ M.

• If M is a II1 factor and K = ⊕jL
2(Mqj) is another Hilbert M-module for

some {qj}j ⊂ P(M), then MH 'M K iff
∑

i τ(pi ) =
∑

j τ(qj). One
denotes dim(MH) =

∑
i τ(pi ), called the dimension of the Hilbert

M-module H. Thus, Hilbert M-modules MH are completely classified
(up to equivalence) by their dimension dim(MH), which takes all values
[0,∞) ∪ {infinite cardinals}.
• If t = dim(MH) ≥ 1 and p ∈ Mt has trace 1/t then MH 'M L2(pMt).

• If t = dim(MH) <∞ then dim(M′H) = 1/t. Also, M ′ is naturally
isomorphic to (Mt)op, equivalently H has a natural Hilbert right
Mt-module structure.
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II1 factors from groups and group actions

• Let Γ be a discrete group, CΓ its (complex) group algebra and
CΓ 3 x 7→ λ(x) ∈ B(`2Γ) the left regular representation. The wo-closure
of λ(CΓ) in B(H) is called the group von Neumann algebra of Γ,
denoted L(Γ), or just LΓ. Denoting ug = λ(g) (the canonical unitaries),
the algebra LΓ can be identified with the set of `2-summable formal series
x =

∑
g cgug with the property that x · ξ ∈ `2, ∀ξ ∈ `2Γ. It has a normal

faithful trace given by τ(
∑

g cgug ) = ce , implemented by the vector ξe ,
and is thus tracial (finite).

• LΓ is a II1 factor iff Γ is infinite conjugacy class (ICC).

• Similarly, if Γ yσ X is a pmp action, one associates to it the group
measure space vN algebra L∞(X ) o Γ ⊂ B(L2(X )⊗ `2Γ), as weak closure
of the algebraic crossed product of L∞(X ) by Γ. Can be identified with
the algebra of `2-summable formal series

∑
g agug , with ag ∈ L∞(X ), with

multiplication rule agugahuh = agσg (ah)ugh. It is a II1 factor if Γ y X is
free ergodic, in which case A = L∞(X ) is maximal abelian in L∞(X ) o Γ
and its normalizer generates L∞(X ) o Γ, i.e. A is a Cartan subalgebra.
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the algebra LΓ can be identified with the set of `2-summable formal series
x =

∑
g cgug with the property that x · ξ ∈ `2, ∀ξ ∈ `2Γ. It has a normal

faithful trace given by τ(
∑

g cgug ) = ce , implemented by the vector ξe ,
and is thus tracial (finite).

• LΓ is a II1 factor iff Γ is infinite conjugacy class (ICC).

• Similarly, if Γ yσ X is a pmp action, one associates to it the group
measure space vN algebra L∞(X ) o Γ ⊂ B(L2(X )⊗ `2Γ), as weak closure
of the algebraic crossed product of L∞(X ) by Γ. Can be identified with
the algebra of `2-summable formal series

∑
g agug , with ag ∈ L∞(X ), with

multiplication rule agugahuh = agσg (ah)ugh. It is a II1 factor if Γ y X is
free ergodic, in which case A = L∞(X ) is maximal abelian in L∞(X ) o Γ
and its normalizer generates L∞(X ) o Γ, i.e. A is a Cartan subalgebra.
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More II1 factors from operations

Using the above vN algebras as “building blocks”, one can obtain more II1
factors by using operations. Besides amplifications, we have:

• Tensor product: (Mi )i∈I 7−→ ⊗iMi . It is II1 factor iff all Mi are finite
factors 6= C and |I | =∞, or |I | <∞ and at least one Mi is II1.

• Free product: (M1,M2) 7−→ M1 ∗M2. Also, if B ⊂ Mi common vN
subalgebra, then M1 ∗B M2 is the Free product with amalgamation over B.
In general it is II1 factor....

• Crossed product: (B, τ) vN algebra with a trace (e.g. B = L∞(X ) or
B = R), Γ y B a trace preserving action 7−→ B o Γ.

• Ultraproduct of finite factors ΠωMn, notably the case ΠωMn×n(C) and
the ultrapower Rω of R (i.e., the case Mn = R, ∀n)
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R is the unique AFD II1 factor

• Exercise: Show that if (A, τ) is a diffuse (i.e., without atoms) countably
generated abelian vN algebra, with faithful completely additive state τ ,
then (A, τ) ' (L∞([0, 1], µ),

∫
dµ). Hint: construct an increasing

“dyadic” partitions by projections in A (of trace 2−n) that “exhaust” it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD)
if ∀F ⊂ M finite, ∀ε > 0, ∃B ⊂ M fin dim s.t. ‖x − EB(x)‖2 ≤ ε, ∀x ∈ F .

Theorem: Murray-von Neumann 1943

If M is an AFD II1 factor that’s countably generated (⇔ ‖ ‖2-separable)
then M ' R.

Proof: Exercise (Like in the abelian case above, construct increasing
“non-commutative dyadic” approximations M2kn (C)↗ M).

Corollary

Rt ' R, ∀t > 0, i.e., F(R) = R+.
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Amenability for groups and vN algebras

Definitions

• A group Γ is amenable if it has an invariant mean, i.e., a state ϕ on
`∞(Γ) such that ϕ(g f ) = ϕ(f ), ∀f ∈ `∞Γ, g ∈ Γ, where

g f (h) = f (g−1h), ∀h.

• A tracial vN algebra (M, τ) is amenable if it has a hypertrace
(invariant mean), i.e., a state ϕ on B(L2M) such that ϕ(xT ) = ϕ(Tx),
∀x ∈ M, T ∈ B, and ϕ|M = τ (Note: the 2nd condition is redundant if M
is a II1 factor).

• LΓ is amenable iff Γ is amenable

Proof. If ϕ is a state on B(`2Γ) with LΓ in its centralizer (a hypertrace on
LΓ), then and D = `∞Γ is represented in B(`2Γ) as diagonal operators,
then ϕ|D is a state on D that satisfies ϕ(ug fu∗g ) = ϕ(f ), ∀f ∈ D = `∞Γ,
where ug = λ(g). But ug fu∗g =g f (Exercise), so ϕ|D is an invariant mean.
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Conversely, if Γ is amenable and ϕ ∈ (`∞Γ)∗ is an invariant mean, then
ψ =

∫
τ(ug · u∗g )dϕ ∈ B∗ is a state on B which has {uh}h in its centralizer

and equals τ when restricted to LΓ. For any x ∈ (LΓ)1 and ε > 0, let
x0 ∈ CΓ be so that ‖x − x0‖2 ≤ ε, ‖x0‖ ≤ 1 (Kaplansky). By
Cauchy-Schwartz, if T ∈ (B)1, then we have: |ψ((x − x0)T )| ≤ ε,
|ψ(T (x − x0))| ≤ ε. Since ψ(x0T ) = ψ(Tx0) and ε arbitrary, this shows
that ψ(Tx) = ψ(xT ).

• Let (M, τ) be tracial vN algebra. The following are equiv:

1◦ M is amenable.

2◦ M ⊂ B(H) has a hypertrace for any normal rep. of M.

3◦ There exists a normal rep M ⊂ B(H) with a hypertrace.

Corollary

1◦ (M, τ) amenable and B ⊂ M a vN subablegbra, then (B, τ) amenable.

2◦ Assume (M, τ) is tracial vN algebra, B ⊂ M amenable vN subalgebra
and π : Γ→ U(M) a representation of an amenable group Γ such that
π(g)(B) = B, ∀g , and B ∨ π(Γ) = M. Then (M, τ) is amenable.
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Concrete examples of amenable II1 factors

• We have already shown that if Γ amenable then LΓ amenable. Some
concrete examples of amenable group are: finite groups; more generally
locally finite groups (e.g., S∞); Zn, n ≥ 1, in fact all abelian groups;
H o Γ0 with H, Γ0 amenable; more generally if 1→ H → Γ→ Γ0 → 1 is
exact, then Γ amenable iff H, Γ0 are amenable.

• If in addition Γ is ICC, then LΓ is an amenable II1 factor. Of the above
amenable groups, S∞ is ICC Also, H o Γ0 are ICC whenever |H| ≥ 2 and
|Γ0| =∞, so groups like (Z/mZ) o Zn with m ≥ 2, n ≥ 1 are all ICC
amenable.
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Concrete examples of amenable II1 factors
(continuation)

• Let U0 ⊂ U(R) be the subgroup of all unitaries in R0 = M2(C)⊗∞ that
have only ±1 and 0 as entries. Then U0 is locally finite so it is amenable
and it clearly generates R.

Thus R is an amenable II1 factor, and any vN subalgebra B ⊂ M is
amenable, in particular any II1 subfactor of R is an amenable II1 factor.

• By last Corollary, any abelian vN algebra is amenable (because it is
generated by an abelian group of unitaries). Also, any group measure
space vN algebra L∞X o Γ with Γ an amenable group (e.g., like in the
above examples), is an amenable vN algebra. Thus, if Γ y X is free
ergodic with Γ amenable then L∞X o Γ is an amenable II1 factor.
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Følner condition for groups

Føloner’s 1955 characterization of amenability for groups

A group Γ is amenable iff it satisfies the condition: ∀F ⊂ Γ finite, ε > 0,
∃K ⊂ Γ finite such that |FK \ K | < ε|K |.

Proof: ⇐ If Fi ↗ Γ, Ki ⊂ Γ are finite s.t. |FiKi \ Ki | ≤ |Fi |−1 then
f 7→ Limi |Ki |−1

∑
g∈Ki

f (g) is clearly an invariant mean for Γ (Exercise!).

⇒ Step 1: Day’s trick. ∃ψ ∈ (`1Γ+)1 s.t. ‖ψ −g ψ‖1 ≤ ε/|F |, ∀g ∈ F .

Consider the Banach space (`1Γ)|F | and its convex subspace
C = {(ψ −g ψ)g∈F | ψ ∈ (`1

+)1}. It is sufficient to show that 0 is in norm
closure of C. If 0 6∈ C, then ∃f g ∈ `∞Γ such that

Re
∑
g∈F
〈ψ −g ψ, f

g 〉 ≥ c > 0, ∀ψ ∈ (`1
+)1

But the set of ψ as above is σ((`∞)∗, `∞) dense in the state space of `∞,
so the above holds true for all states on `∞, in particular for the invariant
mean ϕ, which gives 0 > c , a contradiction.
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Step 2: Namioka’s trick. If b ∈ (`1Γ)+)1 satisfies
∑

g∈Γ ‖gb − b‖1 < ε,
then ∃t > 0 such that e = et(b) (spectral projection of b, or “level set”,
corresponding to [t,∞)) satisfies

∑
g∈Γ ‖ge − e‖1 < ε‖e‖1.

Note first that ∀y1, y2 ∈ R+ we have
∫∞

0 |et(y1)− et(y2)|dt = |y1 − y2|.
Thus, if b1, b2 ∈ `1Γ+, then

∫∞
0 |et(b1)− et(b2)|dt = |b1 − b2| (pointwise,

as functions). Hence,
∫∞

0 ‖et(b1)− et(b2)‖1dt = ‖b1 − b2‖1 . Applying
this to b1 =g b, b2 = b, we get:∑
g∈F

∫ ∞
0
‖get(b)− et(b)‖1dt =

∑
g∈F
‖gb− b‖1 < ε‖b‖1 = ε

∫ ∞
0
‖et(b)‖1dt

Thus, there must exist t > 0 such that e = et(b) satisfies∑
g∈F ‖ge − e‖1 < ε‖e‖1.

Step 3: End of proof of Følner’s Thm. But then the set K ⊂ Γ with
χK = e is finite and satisfies |FK \ K | ≤

∑
g∈F |gK \ K | < ε|K |.
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Step 3: End of proof of Følner’s Thm. But then the set K ⊂ Γ with
χK = e is finite and satisfies |FK \ K | ≤

∑
g∈F |gK \ K | < ε|K |.
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Følner condition for II1 factors

Connes’ 1976 Følner-type characterization of amenable II1 factors

Let M ⊂ B(L2M) be a II1 factor. Then M is amenable iff for any
F ⊂ U(M) finite and ε > 0, there exists a finite rank projection
e ∈ B(L2M) such that ‖ueu∗ − e‖2,Tr < ε‖e‖2,Tr , ∀u ∈ F , where
‖X‖2,Tr = Tr(X ∗X )1/2 is the Hilbert-Schmidt norm on B(L2M).

⇒ Step 1: Day-type trick. ∃b ∈ (L1(B)+)1 such that ‖ubu∗ − b‖1,Tr ≤ ε,
∀u ∈ F , where B = B(L2M), ‖X‖1,Tr = Tr(|X |).

Proof of this part is same as proof of Step 1 of Følner’s condition for
amenable groups, using the fact that L1(B,Tr)∗ = B(L2M) = B.

Switching to ‖ ‖2,Tr -estimate. With b as above, one has
‖ub1/2u∗ − b1/2‖2,Tr ≤ 2ε1/2 = 2ε1/2‖b1/2‖2,Tr , ∀u ∈ F . This is due to
the Powers-Stømer inequality, showing that if b1, b2 ∈ L1(B,Tr)+ then

‖b1/2
1 − b

1/2
2 ‖

2
2,Tr ≤ ‖b1 − b2‖1,Tr ≤ ‖b

1/2
1 − b

1/2
2 ‖2,Tr‖b

1/2
1 + b

1/2
2 ‖2,Tr .
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Step 2: “Connes’ joint distribution trick” and “Namioka-type trick”.
If a ∈ L2(B,Tr)+ satisfies Tr(a2) = 1 and

∑
g∈F ‖uau∗ − a‖2

2,Tr < ε′2

then ∃t > 0 such that
∑

g∈F ‖uet(a)u∗ − et(a)‖2
2,Tr < ε′2‖et(a)‖2

2,Tr .

This is because if a1, a2 ∈ B(L2M)+ are finite rank positive operators then
there exists a (discrete) measure m on X = R+ × R+ such that for any
Borel functs f1, f2 on R+ one has

∫
X f1(t)f2(s)dm(t, s) = Tr(f1(a1)f2(a2)).

(this is Applying this to a1 = a, a2 = uau∗, one then gets:∑
g∈F

∫ ∞
0
‖uet(a)u∗ − et(a)‖2

2,Tr
dt

=
∑
g∈F
‖uau∗ − a‖2

2,Tr
< ε′

2‖a‖2
2,Tr

= ε′
2
∫ ∞

0
‖et(a)‖2

2,Tr
dt

But then there must exist t > 0 such that e = et(a) satisfies∑
g∈F ‖ueu∗ − e‖2

2,Tr < ε′2‖e‖2
2,Tr

⇐ Exercise!
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Connes Thm: R is the unique amenable II1 factor

C’s 1976 Fundamental Thm: Any separable amenable II1 factor is AFD
and is thus isomorphic to the hyperfinite factor R.

From C’s Følner-type condition to local AFD. Let 1 ∈ F ⊂ U(M) finite
and ε > 0. By the C’s Følner condition, ∃p = pH0 for some finite dim
H0 ⊂ L2M s.t. ‖upu∗ − p‖2,Tr < ε‖p‖2,Tr , ∀u ∈ F . By density of M in
L2M, may assume H0 ⊂ M. Let {ηj}j be an orthonormal basis of H0, i.e.,
τ(η∗i ηj) = δij ,

∑
j Cηj = H0.

Local quantization (LQ) lemma

∀F ′ ⊂ M finite, δ > 0, ∃q ∈ P(M) s.t. ‖qxq − τ(x)q‖2 < δ‖q‖2, ∀x ∈ F ′.

We apply the LQ lemma to F ′ := {η∗i uηj | u ∈ F , i , j}. Note that, as
δ → 0, the elements ηiqη

∗
j behave like matrix units eij , i.e., eijekl ≈ δjkeil .

Thus, the space HqH∗ = Σi ,jCηiqη∗j behaves as the algebra
B0 = Σi ,jCeij , with 1B0 = Σjejj ≈ Σjηjqη

∗
j satisfying ‖usu∗ − s‖2 < ε‖s‖2

and ‖sus − EB0(sus)‖2 < ε‖s‖2, ∀u ∈ F .
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Since any y ∈ M is a combination of 4 unitaries in M, we have shown that
the amenable II1 factor M satisfies the following local AFD property:

∀F ⊂ M finite, ε > 0, ∃B0 ⊂ M non-zero fin dim ∗-subalgebra such that if
s = 1B0 then ‖EB0(sys)− sys‖2 ≤ ε‖s‖2, ‖[s, y ]‖2 ≤ ε‖s‖2, ∀y ∈ F .

From local AFD to global AFD. One uses a maximality argument to get
from this local AFD, a “global AFD”. Let F be the set of families of
subalgebras (Bi )i of M, with Bi finite dimensional, si = 1Bi

mutually
orthogonal, such that if B = ⊕iBi ⊂ M, s = 1B , then ‖[s, y ]‖2 ≤ ε‖s‖2,
‖EB(sys)− sys‖2 ≤ ε‖s‖2, ∀y ∈ F . Clearly F with its natural order given
by inclusion is inductively ordered. Let (Bi )i be a maximal family. Denote
p = 1− 1B and assume p 6= 0. Clearly pMp is amenable, so by local AFD
∃B0 ⊂ pMp fin dim ∗-subalgebra s.t. s0 = 1B0 satisfies ‖[s0, x ]‖2 ≤ ε‖s0‖2,
‖EB0(s0xs0)− s0xs0‖2 ≤ ε‖s0‖2, ∀x ∈ pFp. By Pythagora, one gets that if
B1 = B ⊕ B0, s1 = 1B1 then ‖EB1(s1ys1)− s1ys1‖2 ≤ ε‖s1‖2,
‖[s1, y ]‖2 ≤ ε‖s1‖2, ∀y ∈ F . So (Bi )i ∪ {B1} contradicts the maximality
of (Bi )i . Thus,

∑
i si = 1. But then for a large finite subfamily (Bi )i∈I0 ,

we have that B =
∑

i∈I0 Bi ⊕ C(1− Σsi ) is fin. dim. and satisfies
‖EB(y)− y‖2 ≤ ε, ∀y ∈ F . Thus, M follows AFD.
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Some comments

• Connes’ proof of “M amenable =⇒ M ' R” in Annals of Math 1976,
which is different from the above, first shows that any amenable M
embeds into Rω and “splits off R”. That original proof became a major
source of inspiration in the effort to classify nuclear C ∗-algebras (Elliott,
Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).

• Connes approximate embedding (CAE) conjecture, stated in his Ann
Math 1976 paper, predicts that in fact any (separable) II1 factor M
embeds into Rω, equivalently into ΠωMn×n(C). For group algebras
M = L(Γ) this amounts to “simulating” Γ by unitary groups U(n):
∀F ⊂ Γ, m ≥ 1, ε > 0, ∃n and {vg}g∈F ⊂ U(n) such that for any word w
of length ≤ m in the free group with generators in F , one has
|tr(w({vg}g )− 1| ≤ ε if w(F ) = e and |tr(w({vg}g ))| ≤ ε if w(F ) 6= e.

• An alternative characterization of R by K. Jung from 2007 shows that all
embeddings of M in Rω are unitary conjugate iff M ' R. A related open
problem asks whether (M ′ ∩Mω)′ ∩Mω = M implies M ' R.
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Some consequences to C’s Fund Thm

• Connes theorem implies that for any countable ICC amenable group Γ we
have LΓ ' R. Also, any group measure space II1 factor L∞X o Γ arising
from a pmp action of countable amenable group Γ, is isomorphic to R.

• More generally, if a II1 factor M arises as a crossed product B o Γ of a
separable amenable tracial vN algebra (B, τ) by a countable amenable
group Γ, then M ' R. In particular, if Γ y R, with Γ amenable and the
action outer, then R o Γ ' R.

• Since any vN subalgebra of R is amenable, it follows that any II1
subfactor of R is isomorphic to R. In fact, one can easily deduce:

Classification of all vN subalgebras of R

If B ⊂ R is a vN subalgebra, then B ' ⊕n≥1Mn(An)⊕ R⊗A0, where
Am,m ≥ 0 are abelian vN algebras.
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Uniqueness of Cartan subalgebras of R

Regular and Cartan subalgebras: definition and examples

• (Dixmier 1954) If M is a II1 factor and B ⊂ M is a vN subalgebra, then
NM(B) = {u ∈ U(M) | uBu∗ = B} is the normalizer of B in M. B is
regular (resp. singular) in M if NM(B)′′ = M (resp. NM(B) = U(B)).
A regular MASA A ⊂ M called a Cartan subalgebra of M (Vershik,
Feldman-Moore 1970s).

• It is immediate to see that D ⊂ R is a Cartan subalgebra. Also, if
Γ y X is a free ergodic pmp action, then A = L∞X ⊂ L∞X o Γ = M is
clearly a Cartan subalgebra. For instance, if Γ arbitrary countable group
and Γ y (X , µ) = (X0, µ0)Γ is the Bernoulli action.

• If B ⊂ M is a regular vN subalgebra and M ⊂eB 〈M, eB〉 its basic
construction, then its canonical normal faithful semifinite trace Tr (defined
by Tr(xeBy) = τ(xy),∀x , y ∈ M) is semifinite on B ′ ∩ 〈M, eB〉.
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Connes-Feldman-Weiss and Ornstein-Weiss Theorems 1980-1981

If M is a separable amenable II1 factor and A ⊂ M is Cartan, then
(A ⊂ M) ' (D ⊂ R). In particular, any two free ergodic pmp actions of
countable amenable groups Γ y X , Λ y Y are orbit equivalent.

Proof. Note first that given any regular inclusion B ⊂ M, the trace Tr is
semifinite on M := B ′ ∩ 〈M, eB〉 (Exercise!). Also, if u ∈ NM(B) then
Ad(u)(M) =M, Tr ◦Ad(u) = Tr .

Følner-type condition. If M is amenable and B ⊂ M is regular, then
∀F ⊂ NM(B) finite, ε > 0, ∃p ∈ P(M) with Tr(p) <∞ such that
‖upu∗ − p‖2,Tr < ε‖p‖2,Tr , ∀u ∈ F .

Note first that the hypertrace for M ⊂ B(L2M) restricted to M gives a
state ϕ on M such that ϕ(uxu∗) = ϕ(x), ∀u ∈ NM(B) and x ∈M. By
using exactly as before Day’s trick, one gets b ∈ L1(M,Tr)+, Tr(b) = 1
such that ‖ubu∗ − b‖1,Tr < ε, ∀u ∈ F . Using C’s Joint Distribution trick
and Namioka-type trick, one gets the desired p as e[t,∞)(b) for some t > 0.
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From the Følner-type condition to local AFD for A ⊂ M Cartan. Any
“finite” p ∈M is of the form

∑
j vjeAv∗j for some finite set vj of partial

isometries normalizing A (Exercise!). By “local quantization” ∃q ∈ P(A)
such that one approximately have qv∗i uvjq ∈ Cq, ∀i , j , ∀u ∈ F . This
means B0 =

∑
i ,j Cviqvj is fin. dim. with diagonal D0 = Cviqv∗i ⊂ A s.t.

s0 = 1B0 satisfies ‖[s, u]‖2 ≤ ε‖s‖2, ‖EB0(sus)− sus‖2 ≤ ε‖s‖2, ∀u ∈ F .
From local AFD to global AFD. Using a maximality argument, one shows
that the local AFD implies: ∀F ⊂ M finite, ε > 0, ∃B1 ⊂ M fin dim vN
subalgebra, generated by matrix units {ekij }i ,j ,k such that ekii ∈ A and ekij
normalize A. This shows that A ⊂ M is AFD, which immediately implies
(A ⊂ M) ' (D ⊂ R) (Exercise!)
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To see the last part of the CFW-OW theorems, about orbit equivalence of
amenable group actions, we need some remarks/definitions.

Two remarks, by I.M. Singer 1955, Feldman-Moore 1977

(1) Let Γ y X , Λ y Y be free ergodic pmp actions of countable groups.
Then (L∞X ⊂ L∞X o Γ) ' (L∞Y o L∞Y o Λ) iff Γ y X , Λ y Y are
orbit equivalent (OE), i.e., ∃∆ : X ' Y such that ∆(Γt) = Λ(∆(t)),
∀aet ∈ X .

Thus, since any two free ergodic pmp actions Γ y X , Λ y Y of countable
amenable groups give rise to Cartan inclusions into R, the uniqueness of
the Cartan in R shows that these two actions are OE. This is
Ornstein-Weiss 1980 Thm.
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(2) Let Γ y (X , µ) be an ergodic pmp action of a countable group and R
the corresponding orbit equivalence relation on X : t ∼ s if Γt = Γs.

One associates to it a II1 factor L(R) with a Cartan subalgebra A = L∞X ,
by taking the algebra of formal finite sums Σφaφλ(φ), where aφ ∈ A, φ are
local isomorphisms of X with graph in R, endowed with its structure of
multiplicative pseudo-group, endowed with the trace τ(avφ) =

∫
ai(ϕ)dµ,

where i(φ) is the characteristic function of the set X0 ⊂ X on which φ is
the identity.

Moreover, if v : R×R → A is a 2-cocycle for R, then one can form the
v -twisted version L(R, v) of this algebra, where λ(φ)λ(ψ) = vφ,ψλ(φψ).
Given any Cartan inclusion A ⊂ M, with M a countably generated II1
factor, there exists (R, v) such that (A ⊂ M) ' (L∞X ⊂ L(R, v)). Also,
for Cartan inclusions we have (A1 ⊂ M1) ' (A2 ⊂ M2) iff
(R1, v1) ' (R2, v2)

• Thus, by the uniqueness of the Cartan in R, we have that any two
ergodic pmp actions of any two amenable group on non-atomic prob
spaces are OE, and that any 2-cocycle v for such actions is co-boundary.
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Next problem: classifying all regular inclusions B ⊂ R

• The CFW theorem shows that there exists just one Cartan subalgebra
A ⊂ R, up to conjugacy by an automorphism of R. One would of course
like to classify ALL regular inclusions B ⊂ R. A natural
“homogeneity/irreducibility” condition to impose is that B ′ ∩ R = Z(B).
Besides the case B = A abelian, a first case of interest is when B = N is a
subfactor. By Connes Thm, such N is necessarily isomorphic to R and the
irreducibility condition amounts to N ′ ∩ R = C.

• It is an easy exercise to show that if N ⊂ M is a regular irreducible
inclusion of II1 factors, then ΓN⊂M = NM(N)/U(N) is a discrete group,
which is countable if M is separable and it is amenable if M ' R (all this
will follow in a short while, from a more ample discussion).
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The case N ⊂ R is a regular subfactor

Ocneanu’s Theorem 1985

Irreducible regular inclusions N ⊂ R are completely classified (up to
conjugacy by an automorphism of R) by the normalizing group,
ΓN⊂R := NR(N)/U(N).

More precisely, if N0 ⊂ R is another irreducible regular subfactor then
there exists an automorphism θ of R s.t. θ(N0) = N iff ΓN0⊂R ' ΓN⊂R .

Since any inclusion N ⊂ M = N o Γ arising from a free action Γ y N is
irreducible and regular with ΓN⊂M = Γ, the above is equivalent to saying
that any irreducible regular inclusion of factors (N ⊂ R) is isomorphic to
(N ⊂ N o Γ), where Γ = ΓN⊂R and Γ y N = R = M2(C)⊗Γ is the
Bernoulli action.
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Arbitrary cocycle actions

• A cocycle action of a group Γ on a tracial vN algebra (B, τ) is a map
σ : Γ→ Aut(B, τ) which is multiplicative modulo inner automorphisms of
B,

σgσh = Ad(vg ,h)σgh,∀g , h ∈ Γ,

with the unitary elements vg ,h ∈ U(B) satisfying the cocycle relation

vg ,hvgh,k = σg (vh,k)vg ,hk , ∀g , h, k ∈ Γ.

The cocycle action is free if σg properly outer ∀g 6= e (θ ∈ Aut(B, τ) is
properly outer if b ∈ B with θ(x)b = bx , ∀x ∈ B, implies b = 0; thus, if
B = N is a II1 factor then this amounts to θ being outer).

• (σ, v) is a “genuine” action, if v ≡ 1.
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Some examples

• Connes-Jones cocycles (1984): Let Γ = 〈S〉 infinite group and
π : FS → Γ→ 1 with kernel ker(π) ' F∞. This gives rise to
N = L(ker(π)) ⊂ L(FS) = M irreducible and regular, with M = N o(σ,v) Γ
for some free cocycle action (σ, v) of Γ on N = L(F∞).

• Amplified cocycles: Given any action Γ yσ N and p ∈ P(N), one has
p ∼ σg (p) via some partial isometry wg ∈ N. Then Ad(wg ) ◦ σg |pNp is a

cocyle action of Γ on Nt = pNp, where t = τ(p). Denoted (σt , v t), in
which v t

g ,h := wgσg (wh)w∗gh, ∀g , h. .
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Crossed product vN algebras from cocycle actions

• Any cocycle action Γ y(σ,v) (B, τ) gives rise to a crossed product
inclusion B ⊂ M = B o(σ,v) Γ, in a similar way we defined the usual
crossed product for actions, where multiplication is given by
uguh = vg ,hugh and ugb = σg (b)ug . Clearly B is regular in M.

• One can easily show that the cocycle action is free iff B ′ ∩M = Z(B).
In particular, if B = N is a II1 factor, then (σ, v) is free iff N ′ ∩M = C1,
i.e., N is irreducible in M = N o Γ.

• Conversely, if N ⊂ M is irreducible and regular and one denotes
Γ = NM(N)/U(N), then choosing Ug ∈ N for each g ∈ Γ and letting

σg = Ad(Ug ), vg ,h = UgUhU∗gh

shows that M = N o(σ,v) Γ (this is a remark by Jones, Sutherland 1980).

48/63



Crossed product vN algebras from cocycle actions

• Any cocycle action Γ y(σ,v) (B, τ) gives rise to a crossed product
inclusion B ⊂ M = B o(σ,v) Γ, in a similar way we defined the usual
crossed product for actions, where multiplication is given by
uguh = vg ,hugh and ugb = σg (b)ug . Clearly B is regular in M.

• One can easily show that the cocycle action is free iff B ′ ∩M = Z(B).
In particular, if B = N is a II1 factor, then (σ, v) is free iff N ′ ∩M = C1,
i.e., N is irreducible in M = N o Γ.

• Conversely, if N ⊂ M is irreducible and regular and one denotes
Γ = NM(N)/U(N), then choosing Ug ∈ N for each g ∈ Γ and letting

σg = Ad(Ug ), vg ,h = UgUhU∗gh

shows that M = N o(σ,v) Γ (this is a remark by Jones, Sutherland 1980).

48/63



Crossed product vN algebras from cocycle actions

• Any cocycle action Γ y(σ,v) (B, τ) gives rise to a crossed product
inclusion B ⊂ M = B o(σ,v) Γ, in a similar way we defined the usual
crossed product for actions, where multiplication is given by
uguh = vg ,hugh and ugb = σg (b)ug . Clearly B is regular in M.

• One can easily show that the cocycle action is free iff B ′ ∩M = Z(B).
In particular, if B = N is a II1 factor, then (σ, v) is free iff N ′ ∩M = C1,
i.e., N is irreducible in M = N o Γ.

• Conversely, if N ⊂ M is irreducible and regular and one denotes
Γ = NM(N)/U(N), then choosing Ug ∈ N for each g ∈ Γ and letting

σg = Ad(Ug ), vg ,h = UgUhU∗gh

shows that M = N o(σ,v) Γ (this is a remark by Jones, Sutherland 1980).

48/63



Equivalence of cocyle actions

• Two cocycle actions (σi , vi ) of Γi on (Bi , τi ), i = 1, 2, are cocycle
conjugate if ∃θ : (B1, τ1) ' (B2, τ2), γ : Γ1 ' Γ2 and wg ∈ U(B2) such
that :

θσ1(g)θ−1 = Ad ◦ σ2(γ(g)), ∀g ,

θ(v1(g , h)) = wgσ2(g)(wh)v2(γ(g), γ(h))w∗gh,∀g , h.

• Two free cocycle actions Γi y(σi ,vi ) on the II1 factors Ni , i = 1, 2, are
cocycle conjugate iff their associated crossed product inclusions are
isomorphic, (N1 ⊂ N1 o Γ1) ' (N2 ⊂ N2 o Γ2).

49/63



Untwisting cocycle actions

• The cocycle action (σ, v) of Γ on (Bτ) untwists (or is co-boundary) if
∃wg ∈ U(B) s.t. vg ,h = wgσg (wh)w∗gh, ∀g , h. Thus, (σ, v) untwists iff it is
cocycle conjugate to a genuine action.

Note this is a bit stronger than σ′g = Ad(wg ) ◦ σg being a “genuine”
action. It is equivalent to: ∃wg ∈ U(B) s.t. U ′g = wgUg ∈ B o(σ,v) Γ
satisfy U ′gU ′h = U ′gh, ∀g , h.

Example

• Clearly any cocycle action of Γ = Fn ∈ untwists.
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Original formulation of Ocneanu’s theorem

• O’s original Thm is that any two free cocycle actions of a countable
amenable group Γ on R are cocycle conjugate.

This result was already known in the case Γ = Z, Z/nZ (Connes 1975)
and in the case Γ finite (Jones 1980). In case Γ finite, Jones proved that
any two free Γ-actions on R are in fact conjugate and that any 1-cocycle
of a finite group action on any II1 factor is co-boundary.

From the above discussion, we see that O’s result implies that any cocycle
action of a countable amenable group untwists.

If Γ is amenable, the crossed product R o(σ,v) Γ is amenable, so by C’s
Thm it is isomorphic to R. Thus, by the above remarks, the uniqueness
(up to cocycle conjugacy) of free cocycle Γ-actions on R translates into
the uniqueness (up to conjugacy by automorphisms of R) of irreducible
regular subfactors N ⊂ R with ΓN⊂R = Γ. In particular, O’s result shows
that any such irreducible regular inclusion N ⊂ R is a “true” (untwisted)
crossed product construction, coming from a “genuine” Γ-action.

Sketch of proof of O’s Thm (two approaches)....
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Classifing regular inclusions B ⊂ R: remaining cases

• Let M be a II1 factor and B ⊂ M regular with
B ′ ∩M = Z(B) = L∞(X , µ). These assumptions imply B is
“homogeneous”, i.e., either B = Mn(C)⊗L∞X , for some n ≥ 1, or
B =

∫
X Btdµ(t), where Bt are II1 factors, ∀aet ∈ X . If in addition M = R,

in this latter case we have Bt ' R and B ' R⊗L∞X . The normalizer
NM(B) defines an amenable discrete measured groupoid G = GB⊂M
together with a free cocycle action (α, v) = (αB⊂M , vB⊂M) of G on B.
The iso class of the inclusion B ⊂ M is completely encoded in the cocycle
conjugacy class of G y(α,v) B.

• In the case B ⊂ M = R, the discrete groupoid G accounts for an
amenable ergodic countable equivalence relation “along” the space
G(0) = X of units of G, with amenable countable isotropy groups Γt at
each t ∈ X acting outerly on Bt ' R.
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• When B is abelian, then B ' L∞X and G is just a countable amenable
equiv rel R on X , with α intrinsic to R. The CFW Thm says that there is
just one amenable countable equiv. rel. and it has vanishing coh v . This
also implies that, for each n ≥ 1, there is just one regular inclusion B ⊂ R
with B ′ ∩ R = Z(B) and B of type In.

• If B is a factor, then B ' R and the groupoid GB⊂R is the group
Γ = NR(B)/U(B), which follows countable amenable, and (α, v) is the
free cocycle action of Γ on B implemented by NR(B). O’s Thm then
shows that G uniquely determines B ⊂ R. This clearly takes care of the
case Z(B) atomic as well.
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Solving the case B ⊂ R with B ' R⊗L∞X

• So we are left with the case B ⊂ R where B = R⊗L∞X , with X diffuse,
i.e., to the problem of classifying G y(α,v) B = R⊗L∞X up to cocycle
conjugacy, for all amenable groupoids G with G(0) = X . When v ≡ 1 (i.e.,
for “genuine” actions of G) this was solved as follows:

Sutherland-Takesaki Theorem 1985

Any two actions α1, α2 of the same amenable groupoid G on R⊗L∞X are
cocycle conjugate. Equivalently, any two regular inclusions of the form
B ⊂ R with B ′ ∩ R = Z(B), with same GB⊂R and with vB⊂R ≡ 1, are
conjugate by an automorphism of R.

By the above result, it follows that we are left with proving that any
2-cocycle v for a cocycle action G y(α,v) R⊗L∞X of an amenable
groupoid G is co-boundary. As it turns out, this is a rather difficult
problem.
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Untwisting cocycles on arbitrary II1 factors

Theorem (P 2018)

Given any countable amenable group Γ, any free cocycle Γ-action
Γ y(α,v) N on an arbitrary II1 factor N untwisis.

Same actually holds true for Γ = Γ1 ∗K Γ2 ∗K .... ∈, with Γn countable
amenable and K ⊂ Γn common finite subgroup, ∀n.

We prove this by building an embedding R ↪→ N that’s α(Γ)-equivariant,
modulo an inner perturbation (α′, v ′) of (α, v), and which is “large” in N,
in the sense that R ′ ∩ N o Γ = C. This last condition forces v ′ to take
values in R. By O’s vanishing oh Thm, (α′|R , v

′ can be perturbed to an

actual action α′′, with the untwisting of the cocycle v ′ in R,
v ′g ,h = wgα

′
g (wh)w∗gh. But this means we have untwisted (α, v) as a

cocycle action on N as well.
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An amenable/non-amenable dichotomy

While the “universal vanishing cohomology” property for a group Γ holds
true for Γ = Fn and more generally free products of amenable groups, the
existence of Γ-equivariant embeddings of the hyperfinite factor
characterizes amenability of Γ:

Theorem (P 2018)

(1) Any cocycle action σ of a countable amenable group Γ on an arbitrary
II1 factor N admits an inner perturbation σ′ that normalizes a hyperfinite
subfactor R ⊂ N satisfying R ′ ∩ N oσ Γ = C.

(2) Conversely, if Γ is non-amenable, then there exist free actions
Γ y N = L(F∞) such that no inner perturbation of σ can normalize a
diffuse amenable subalgebra B ⊂ N.

PROOF of (1) uses subfactor techniques, constructing R as an inductive
limit of relative commutants of a sequence of subfactors of finite index,
coming from a “generalized tunnel” associated with a “diagonal subfactor”
(N ⊂ Mσ). Part (2) uses deformation-rigidity (Ozawa-Popa 2007).
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II1 factor N admits an inner perturbation σ′ that normalizes a hyperfinite
subfactor R ⊂ N satisfying R ′ ∩ N oσ Γ = C.

(2) Conversely, if Γ is non-amenable, then there exist free actions
Γ y N = L(F∞) such that no inner perturbation of σ can normalize a
diffuse amenable subalgebra B ⊂ N.

PROOF of (1) uses subfactor techniques, constructing R as an inductive
limit of relative commutants of a sequence of subfactors of finite index,
coming from a “generalized tunnel” associated with a “diagonal subfactor”
(N ⊂ Mσ). Part (2) uses deformation-rigidity (Ozawa-Popa 2007). 56/63



Untwisting cocycle actions of amenable groupoids

Theorem: P-Shlyakhtenko-Vaes 2018

Let G be a discrete measured groupoid with X = G(0) and (Bt)t∈X a
measurable field of II1 factors with separable predual. Assume that G is
amenable and that (α, v) is a free cocycle action of G on (Bt)t∈X . Then
the cocycle v is a co-boundary: there exists a measurable field of unitaries
G 3 g 7→ wg ∈ (Bt)t s.t. v(g , h) = αg (w∗h )w∗g wgh, ∀(g , h) ∈ G(2).

Before discussing the proof, we mention that we have finally proved:

Complete classification of regular B ⊂ R with B ′ ∩ R = Z(B)

Two regular vN subalgebras B ⊂ R satisfying B ′ ∩ R = Z(B) are
conjugate by an automorphism of R iff they are of the same type and have
isomorphic associated discrete measured groupoids GB⊂R .

Any such B contains a Cartan subalgebra of R and if A1,A2 ⊂ B are
Cartan in R, there exists an automorphism θ of R satisfying θ(B) = B and
θ(A1) = A2.
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About the proof

The proof of the vanishing 2-cohomology Thm uses the vanishing 2-coh
for cocycle actions of amenable groups on II1 factors (P 2018), the CFW
vanishing of the con along G(0) = X , which we apply to the isotropy
groups Γt , t ∈ X of the amenable groupoid G. To extend to the entire G,
we have to make equivariant choices of 2-cocycle vanishing, for the Γt ,
where the equivariance is w.r.t. to the isomorphisms Γt → Γs given by
conjugation with an element g ∈ G with s(g) = s and t(g) = t (source
and target of g).

The proof of this latter part depends on two key points. The first one is a
technical result showing that such an equivariant choice exists, provided
that the 2-cocycle vanishing for Γt , can be done in an “approximately
unique way”. The fact that a 2-cocycle untwists in an “approximately
unique way” amounts to the fact that 1-cocycles for actions are
“approximately co-boundary”. The second key point is to prove such
approximate vanishing of 1-cocycles for arbitrary amenable groups, a result
we discuss next because of its independent interest.
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Approximate vanishing 1-cohomology

• A 1-cocycle for an action Γ yσ N is a mapw : Γ→ U(N) s.t.
wgσg (wh) = wgh, ∀g , h. The cocycle w is co-boundary if ∃u ∈ U(N) such
that wg = σg (u)u∗, ∀g ; it is approximate co-boundary if ∃un ∈ U(N) such
that ‖wg − σg (un)u∗n‖2 → 0, ∀g , equivalently w is co-boundary as a
1-cocycle for Γ yσω

Nω.

Theorem (P-Shlyakhtenko-Vaes 2018)

Let Γ be a countable group. The following conditions are equivalent.

(i) Γ is amenable.

(ii) For any free action Γ yσ N the fixed point algebra of σω on Nω is a
subfactor with trivial relative commutant in Nω.

(iii) Any free action of Γ on any II1 factor is non strongly ergodic.

(iv) Any 1-cocycle w for any Γ yσ N is approximate co-boundary.
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About the proof of approx vanishing 1-coh

• Jones showed in 1980 that any 1-cocycle for a free action σ of a finite
group Γ on a II1 factor is co-boundary. The proof only uses that the fixed
point algebra of any such action is an irreducible subfactor: let σ̃ be the
action of Γ on Ñ = M2(N) = N ⊗M2(C) given by σ̃g = σg ⊗ id . If
{eij | 1 ≤ i , j ≤ 2} ⊂M2 ⊂ Ñ is a matrix unit, then w̃g = e11 + wge22 is a
1-cocycle for σ̃. If Q ⊂ Ñ denotes the fixed point algebra of the action
σ̃′g = Ad(w̃g )σ̃, then e11, e22 ∈ Q. The existence of a unitary element
u ∈ N satisfying wg = uσg (u∗), ∀g , is equivalent to e11 ∼ e22 in Q. Since
Q is a II1 factor and e11, e22 have equal trace 1/2 in Q so indeed e11 ∼ e22

in Q, thus w is co-boundary.

• Note that the above proof only uses that the fixed point algebra is a II1
factor. This shows that (ii)⇒ (iv). To show that (i)⇒ (ii) we use the
foll Lemma:

If Γ y N is a free action of a countable group on a II1 factor and X ⊂ Nω

separable, then ∃u ∈ U(Nω) s.t. X , {σωg (uNu∗)}g∈Γ are all mutually free
independent.
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1-cocycle for σ̃. If Q ⊂ Ñ denotes the fixed point algebra of the action
σ̃′g = Ad(w̃g )σ̃, then e11, e22 ∈ Q. The existence of a unitary element
u ∈ N satisfying wg = uσg (u∗), ∀g , is equivalent to e11 ∼ e22 in Q. Since
Q is a II1 factor and e11, e22 have equal trace 1/2 in Q so indeed e11 ∼ e22

in Q, thus w is co-boundary.

• Note that the above proof only uses that the fixed point algebra is a II1
factor. This shows that (ii)⇒ (iv). To show that (i)⇒ (ii) we use the
foll Lemma:

If Γ y N is a free action of a countable group on a II1 factor and X ⊂ Nω

separable, then ∃u ∈ U(Nω) s.t. X , {σωg (uNu∗)}g∈Γ are all mutually free
independent.

60/63



Sketch of proof of (i)⇒ (ii) in the Theorem

• With the notations in the previous lemma, let Q = ∨gσg (uNu∗) ' N∗Γ.
Note that Q is free independent to N and σω(Q) = Q, with ρ = σω|Q
implementing on Q ' N∗Γ the free Bernoulli Γ-action. Let a = a∗ ∈ N be
a semi-circular element and denote by ag its identical copies in the
(N)g ' N components of N∗Γ, g ∈ Γ. Thus, ρ acts on the set {ag}g by
left translation, ρh(ag ) = ahg . Let Kn ⊂ Γ be a sequence of Folner sets
and denote bn = |Kn|−1/2

∑
g∈Kn

ag . Then bn is also a semicircular
element and one has

‖ρh(bn)− bn‖2
2 = |hFn∆Fn|/|Kn| → 0, ∀h ∈ Γ.

Thus, the element b̃ = (bn)n ∈ (N∗Γ)ω is semicircular with ρh(b̃) = b̃,
∀h ∈ Γ, showing that ρ is not strongly ergodic.

This shows that there exist finite partitions {qi}i ⊂ P(Q) of arbitrary
small mesh and which are almost σω-invariant. So given any x ∈ X , we
have that ‖

∑
i qixqi − τ(x)1‖2 small, because Q is free independent to

x ∈ X . This readily implies (Nω)σ
ω ′ ∩ Nω = C.
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From Γ yσ R to Γ y(σ̃ω,v
σ
ω ) R ∨ Rω

Proposition

1◦ Rω = R ′ ∩ Rω satisfies R ′ω ∩ Rω = R.

2◦ ∀θ ∈ Aut(R), ∃Uθ ∈ NRω(R) such that Ad(Uθ)|R = θ. If
U ′θ ∈ NRω(R) is another unitary satisfying Ad(U ′θ)|R = θ, then
U ′θ = vUθ = Uθv ′ for some v , v ′ ∈ U(Rω).

3◦ If θ,Uθ as in 2◦, then Ad(Uθ)|Rω
implements θω ∈ Out(Rω) and

θ̃ω = Ad(Uθ)|R∨Rω
∈ Out(R ∨ Rω), with θ ∈ Aut(R) outer iff θω outer

and iff θ̃ω outer.

4◦ Any free action Γ yσ R gives rise to a free cocycle action σ̃ω of Γ on
R ∨ Rω, by σ̃ω(g) = Ad(Uσ(g))|R∨Rω

, g ∈ Γ, with corresponding 2-cocycle
vσω : Γ× Γ→ U(Rω).
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Vanishing cohomology for σ̃ω and the CE conjecture

Theorem

Γ yσ R free action of Γ on R. The II1 factor M = R oσ Γ has the CAE
property (i.e., is embeddable into Rω) iff the U(Rω)-valued 2-cocycle vσω
vanishes, i.e., iff there exist unitary elements {Ug | g ∈ Γ} ⊂ NRω(R) that
implement σ on R and satisfy UgUh = Ugh, ∀g , h ∈ Γ.

A related problem

We have seen that one has a group isomorphism

Out(R) 3 θ 7→ Ad(Uθ) ∈ Out(R ∨ Rω)

which is also onto if on the right side we restrict to autom that leave R
invariant. Lifting this map to a grp morphism into to NRω(R) when
restricted to a countable subgroup Γ ⊂ Out(R) implementing a genuine
action, is equiv. to CE conjecture for R o Γ. But even if CE holds true for
these factors, it seems quite clear that such lifting is not possible for the
entire Γ = Out(R). However, we do not have a proof for this.
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A closer look at the two technical lemmas

In the proofs of C’s Fund Thm, the CFW Thm, O’s Thm, we used:

local quantization (LQ) lemma

∀F ′ ⊂ M finite, δ > 0, ∃q ∈ P(M) s.t. ‖qxq − τ(x)q‖2 < δ‖q‖2, ∀x ∈ F ′.

Also, in the proof of the approximate vanishing 1-cohomology, we used:

free independence lemma

If Γ y N is a free action of a countable group on a separable II1 factor
and X ⊂ Nω separable subspace, then ∃u ∈ U(Nω) s.t.
X , {σωg (uNu∗)}g∈Γ are all mutually free independent.

This result is in fact a consequence of the following more general:

Theorem (free independence in irreducible subfactors)

If N ⊂ M is an irreducible inclusion of II1 factors, then ∀B ⊂ Mω

separable vN algebra, ∃A ⊂ Nω abelian diffuse such that A ∨ B ' A ∗ B.

Indeed, taking M = N o Γ we have N ′ ∩M = C. Then apply the Thm to
get A ⊂ Nω free independent to the vN algebra B = (X ∪M)′′.
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Ergodic embeddings of L∞([0, 1]) and R into factors

The technical results above are in fact related,: the LQ lemma plays a key
role in the proof of “free independence embeddings of L∞([0, 1])”, while
the free independence embeddings allow sharp quantitative versions of LQ
lemma. To deduce them, we’ll go through several steps:

(1) Constructing ergodic embeddings of R into II1 factors: ∀M separable
II1 factor, ∃R ⊂ M with R ′ ∩M = C1. Proof: sketch on the blackboard.

(2) “Ergodicity” (irreducibility) of an inclusion of separable II1 factors
N ⊂ M entails existence of “ergodic (D ⊂ R)-direction” inside N:
∃R ⊂ N with D ′ ∩M = D and R ′ ∩M = C1. Proof: sketch on blackboard

(3) Strong form of LQ lemma: if N ⊂ M irreducible, then ∀F ⊂ M finite,
ε > 0, ∃q ∈ P(N) s.t. ‖qxq − τ(x)q‖2 < ε‖q‖2, ∀x ∈ F . Proof sketch on
blackboard.

(4) blackboard comments on the proof of “approximately free
independent” embeddings of L∞([0, 1]) and the incremental patching
method.
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Free random embeddings of L∞([0, 1]) and R

The incremental patching method allows proving the following general

Theorem (approx. free independence with amalgamation)

Let Mn be a sequence of finite factors with dim Mn →∞ and denote by
M the ultraproduct II1 factor ΠωMn, over a free ultrafilter ω on N. Let
Q ⊂M be a vN subalgebra satisfying one of the following:

(a) Q = ΠωQn, for some vN alg. Qn ⊂ Mn with Qn 6≺Mn Q ′n ∩Mn, ∀n;

(b) Q = B ′ ∩M, for some separable amenable vN alg. B ⊂M.

Then given any separable subspace X ⊂M	 (Q′ ∩M), there exists a
diffuse abelian vN alg. A ⊂ Q such that A is free independent to X ,
relative to Q′ ∩M, i.e. EQ′∩M(x0Πn

i=1aixi ) = 0, for all n ≥ 1,
x0, xk ∈ X ∪ {1}, xi ∈ X , 1 ≤ i ≤ k − 1, ai ∈ A	 C1, 1 ≤ i ≤ n.

• The above result led us to the discovery in 1990-1994 of the
reconstruction method in subfactor theory, and the axiomatisation of the
standard invariant of a subfactor.
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Applications

• Existence of ergodic embeddings of AFD factors into arbitrary vN factors
is crucial for establishing Stone-Weierstrass type theorems for inclusions of
C∗-algebras (Kadison, Sakai, Glimm, J. Anderson, Bunce, etc). A complete
solution to the “factor state” such result’ was given using (1) above.

• Existence of ergodic embeddings of R into II1 factors M were used to
prove that H2(M,M) = 0 (Kadison-Ringrose Hochshild-type 2nd coh) for
a large class of II1 factors M (Schmidt-Sinclair 95).

• Embeddings of L∞([0, 1]) and R into a II1 factor M that are asympt. free
to M where key to establishing a variety of vanishing cohomology results:

(a) All derivations from a vN algebra M that take values in K(H) (more
generally, all “smooth derivations”) are inner, i.e., H1(M,K) = 0 (Popa
1984, Popa-Radulescu 1986, Galatan-Popa 2014).

(b) Vanishing of the Connes-Shlyakhtenko-Thom 1st L2 cohomology,
H1(M,Aff(M⊗Mop)) = 0 (Popa-Vaes 2016).

(c) Approx. vanishing of 1-cohomology for any action of an amenable
groups on any II1 factor (Popa-Shlyakhtenko-Vaes 2018). 67/63



Coarse, mixing, and strongly malnormal embeddings

Coarse subalgebras and coarse pairs

A vN subalgebra B ⊂ M is coarse if the vN algebra generated by left-right
multiplication by elements in B on L2(M 	 B) is B⊗Bop. The vN
subalgebras B,Q ⊂ M form a coarse pair if the vN algebra generated by
left multiplication by B and right multiplication by Q on L2M is B⊗Qop.

Mixing subalgebras

A vN subalgebra B ⊂ M is mixing if limu∈U(B) ‖EB(xuy)‖2 = 0,
∀x , y ∈ M 	 B, where the limit is over u ∈ U(B) tending wo to 0.

Strongly malnormal subalgebras

A vN subalgebra B ⊂ M is strongly malnormal if its weak intertwining
space wIM(B,B) is equal to B, i.e., if x ∈ M satisfies
dim(L2(A0xB)B) <∞, then x ∈ B.

Proposition

One has the implications “coarse ⇒ mixing ⇒ strongly malnormal”. 68/63



Coarse embeddings of R and L∞([0, 1])

Theorem (P 2018-19)

Any separable II1 factor M contains a hyperfinite factor R ⊂ M that’s
coarse in M (and thus also mixing and strongly malnormal in M).
Moreover, given any irreducible subfactor P ⊂ M, any vN alg. Q ⊂ M
satisfying P 6≺M Q and any ε > 0, the coarse subfactor R ⊂ M can be
constructed so that to be contained in P, make a coarse pair with Q and
satisfy R ⊥ε Q.

Proof comments on blackboard.

Corollary

Any separable II1 factor M has a coarse MASA A ⊂ M, which in addition
is strongly malnormal and mixing, with infinite multiplicity (Pukansky
invariant equal to ∞). Moreover, given any irreducible subfactor P ⊂ M,
any vN alg. Q ⊂ M such that P 6≺M Q and any ε > 0, the coarse MASA
A ⊂ M can be constructed inside P, coarse to Q, and satisfying A ⊥ε Q.
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Coarseness and strong malnormality in LFn

Coarseness conjecture

Any maximal amenable (equivalently maximal AFD) von Neumann
subalgebra B of L(Ft) is coarse, and thus also mixing and strongly
malnormal, ∀1 < t ≤ ∞.

• Note that if B ⊂ M is strongly malnormal, then any weak intertwiner of
B in M is contained in B, in particular if u ∈ U(M) is so that uBu∗ ∩ B is
diffuse, then u ∈ B. It also implies that if B0 ⊂ M amenable and B0 ∩ B
diffuse, then B0 ⊂ B. Thus, the above coarseness conjecture implies the
Peterson-Thom conjecture, which predicts that any B0 ⊂ LFn amenable
diffuse is contained in a unique maximal amenable subalgebra of LFn.
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More on R-embeddings

• Connes Approximate Embedding (CAE) conjecture asks whether any
countably generated tracial vN algebra has an “approximate embeding”
into R, i.e., M embeds into Rω, equivalently into ΠωMn(C). (Can any
tracial vN algebra be “simulated” by matrix algebras?).

• Connes Bicentralizer problem asks whether given any (separable) type
III1 factor M there exists an irreducible embedding R ↪→M that’s the
range of a normal conditional expectation. Equivalently, whether M
necessarily has a normal faithful state ϕ such that its centralizer Mϕ has
trivial relative commutant in M.

Ergodic embeddings of R (work in progress: to be checked)

Any vN factor M that’s not of type I and has separable predual, contains
an ergodic copy of R, i.e., a hyperfinite subfactor R ⊂M with trivial
relative commutant, R ′ ∩M = C1.
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