THE UBIQUITOUS HYPERFINITE II₁ FACTOR *lectures* 1-5

Kyoto U. & RIMS, April 2019

Sorin Popa

< € > < ₽ >

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

- 1 M is closed in the weak operator (wo) topology.
- 2 M is closed in the strong operator (so) topology.

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If $S = S^* \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H})$, $S' := \{y \in \mathcal{B}(\mathcal{H}) \mid yx = xy, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(M)$, then $pMp \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If $S = S^* \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H})$, $S' := \{y \in \mathcal{B}(\mathcal{H}) \mid yx = xy, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(\mathcal{M})$, then $pMp \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

• von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff M = (M')' = M''.

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If $S = S^* \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H})$, $S' := \{y \in \mathcal{B}(\mathcal{H}) \mid yx = xy, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(\mathcal{M})$, then $pMp \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

• von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff M = (M')' = M''.

• Kaplansky Density Theorem shows that if $M \subset \mathcal{B}(\mathcal{H})$ is a vN algebra and $M_0 \subset M$ is a *-sublgebra that's wo-dense in M, then $\overline{(M_0)_1}^{so} = (M)_1$.

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If $S = S^* \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H})$, $S' := \{y \in \mathcal{B}(\mathcal{H}) \mid yx = xy, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(\mathcal{M})$, then $pMp \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

• von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff M = (M')' = M''.

• Kaplansky Density Theorem shows that if $M \subset \mathcal{B}(\mathcal{H})$ is a vN algebra and $M_0 \subset M$ is a *-sublgebra that's wo-dense in M, then $\overline{(M_0)_1}^{so} = (M)_1$.

• A vN algebra M is closed to polar decomposition and Borel functional calculus. Also, if $\{x_i\}_i \subset (M_+)_1$ is an increasing net, then $\sup_i x_i \in M$, and if $\{p_j\}_j \subset M$ are mutually orthogonal projections, then $\sum_i p_j \in M$.

Examples

• $\mathcal{B}(\mathcal{H})$ itself is a vN algebra.

• Let (X, μ) be a standard Borel probability measure space (pmp). Then the function algebra $L^{\infty}X = L^{\infty}(X,\mu)$ with its essential sup-norm $\| \|_{\infty}$, can be represented as a *-algebra of operators on the Hilbert space $L^2 X = L^2(X, \mu)$, as follows: for each $x \in L^{\infty} X$, let $\lambda(x) \in \mathcal{B}(L^2 X)$ denote the operator of (left) multiplication by x on L^2X , i.e., $\lambda(x)(\xi) = x\xi$, $\forall \xi \in L^2 X$. Then $x \mapsto \lambda(x)$ is clearly a *-algebra morphism with $\|\lambda(x)\|_{\mathcal{B}(L^2X)} = \|x\|_{\infty}, \forall x.$ Its image $A \subset \mathcal{B}(L^2X)$ satisfies A' = A, in other words A is a maximal abelian *-subalgebra (MASA) in $\mathcal{B}(L^2X)$. Indeed, if $T \in A'$ then let $\xi = T(1) \in L^2 X$. Denote by $\lambda(\xi) : L^2 X \to L^1 X$ the operator of (left) multiplication by ξ , which by Cauchy-Schwartz is bounded by $\|\xi\|_2$. But $T: L^2X \to L^2X \subset L^1X$ is also bounded as an operator into L^1X , and $\lambda(\xi)$, T coincide on the $\| \|_2$ -dense subspace $L^{\infty}X \subset L^2X$ (*Exercise!*) Thus, $\lambda(\xi) = T$ on all L^2 , forcing $\xi \in L^{\infty}X$ (Exercise!).

This shows that A is a vN algebra (by vN's bicommutant thm).

A key example: the hyperfinite II_1 factor

A vN algebra M is called a **factor** if its center, $\mathcal{Z}(M) := M' \cap M$, is trivial, $\mathcal{Z}(M) = \mathbb{C}1$.

• Let R_0 be the algebraic infinite tensor product $\mathbb{M}_2(\mathbb{C})^{\otimes \infty}$, viewed as inductive limit of the increasing sequence of algebras $\mathbb{M}_{2^n}(\mathbb{C}) = \mathbb{M}_2(\mathbb{C})^{\otimes n}$, via the embeddings $x \mapsto x \otimes \mathbb{1}_{\mathbb{M}_2}$. Endow R_0 with the norm $\|x\| = \|x\|_{\mathbb{M}_{2^n}}$, if $x \in \mathbb{M}_{2^n} \subset R_0$, which is clearly a well defined operator norm, i.e., satisfies $\|x^*x\| = \|x\|_2$. One also endows R_0 with the functional $\tau(x) = Tr(x)/2^n$, for $x \in \mathbb{M}_{2^n}$, which is well defined, positive $(\tau(x^*x) \ge 0, \forall x)$ and satisfies $\tau(xy) = \tau(yx), \forall x, y \in R_0, \tau(1) = 1$, i.e., it is a **trace state**. Define the Hilbert space $L^2(R_0)$ as the completion of R_0 with respect to the Hilbert-norm $\|y\|_2 = \tau(y^*y)^{1/2}$, $y \in R_0$, and denote \hat{R}_0 the copy of R_0 as a subspace of $L^2(R_0)$.

For each $x \in R_0$ define the operator $\lambda(x)$ on $L^2(R_0)$ by $\lambda(x)(\hat{y}) = x\hat{y}$, $\forall y \in R_0$. Note that $R_0 \ni x \mapsto \lambda(x) \in \mathcal{B}(L^2)$ is a *-algebra morphism with $\|\lambda(x)\| = \|x\|, \forall x$. Moreover, $\langle \lambda(x)(\hat{1}), \hat{1} \rangle_{L^2} = \tau(x)$.

< € ► < @ >

One can easily see that the vN algebra $R := \overline{\lambda(R_0)}^{so} = \overline{\lambda(R_0)}^{wo}$ is a factor (*Exercise!*). It can alternatively be defined by $R = \rho(R_0)'$ (*Exercise!*). This is the hyperfinite II₁ factor.

One can easily see that the vN algebra $R := \overline{\lambda(R_0)}^{so} = \overline{\lambda(R_0)}^{wo}$ is a factor (*Exercise!*). It can alternatively be defined by $R = \rho(R_0)'$ (*Exercise!*). This is the hyperfinite II₁ factor.

Yet another way to define R is as the completion of R_0 in the topology of convergence in the norm $||x||_2 = \tau (x^*x)^{1/2}$ of sequences that are bounded in the operator norm (*Exercise!*). Notice that, in both definitions, τ extends to a trace state on R. Note also that if one denotes by $D_0 \subset R_0$ the natural "diagonal subalgebra" (...), then $(D_0, \tau_{|D_0})$ coincides with the algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its closure in R in the above topology, $(D, \tau_{|D})$, is just $(L^{\infty}([0, 1]), \int d\mu)$.

One can easily see that the vN algebra $R := \overline{\lambda(R_0)}^{so} = \overline{\lambda(R_0)}^{wo}$ is a factor (*Exercise!*). It can alternatively be defined by $R = \rho(R_0)'$ (*Exercise!*). This is the hyperfinite II₁ factor.

Yet another way to define R is as the completion of R_0 in the topology of convergence in the norm $||x||_2 = \tau (x^*x)^{1/2}$ of sequences that are bounded in the operator norm (*Exercise!*). Notice that, in both definitions, τ extends to a trace state on R. Note also that if one denotes by $D_0 \subset R_0$ the natural "diagonal subalgebra" (...), then $(D_0, \tau_{|D_0})$ coincides with the algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its closure in R in the above topology, $(D, \tau_{|D})$, is just $(L^{\infty}([0, 1]), \int d\mu)$. Note that (R_0, τ) (and thus R) is completely determined by the sequence

of partial isometries $v_1 = e_{12}^1$, $v_n = (\prod_{i=1}^{n-1} e_{22}^i)e_{12}^n$, $n \ge 2$, with $p_n = v_n v_n^*$ satisfying $\tau(p_n) = 2^{-n}$ and $p_n \sim 1 - \sum_{i=1}^{n} p_i$ (*Exercise!*)

▲ 注 ▶ ▲ 御 ▶

Theorem A

Let M be a vN factor. The following are equivalent:

1° *M* is a **finite** vN algebra, i.e., if $p \in \mathcal{P}(M)$ satisfies $p \sim 1 = 1_M$, then p = 1 (any isometry in *M* is necessarily a unitary element).

2° *M* has a **trace state** τ (i.e., a functional $\tau : M \to \mathbb{C}$ that's positive, $\tau(x^*x) \ge 0$, with $\tau(1) = 1$, and is tracial, $\tau(xy) = \tau(yx), \forall x, y \in M$).

3° *M* has a trace state τ that's **completely additive**, i.e., $\tau(\Sigma_i p_i) = \Sigma_i \tau(p_i), \forall \{p_i\}_i \subset \mathcal{P}(M)$ mutually orthogonal projections. 4° *M* has a trace state τ that's **normal**, i.e., $\tau(\sup_i x_i) = \sup_i \tau(x_i)$,

 $\forall \{x_i\}_i \subset (M_+)_1 \text{ increasing net.}$

Thus, a vN factor is finite iff it is tracial. Moreover, such a factor has a unique trace state τ , which is automatically normal and faithful, and satisfies $\overline{co}\{uxu^* \mid u \in U(M)\} \cap \mathbb{C}1 = \{\tau(x)1\}, \forall x \in M$.

If a vN factor M has a minimal projections, then $M = \mathcal{B}(\ell^2 I)$, for some I. Moreover, if $M = \mathcal{B}(\ell^2 I)$, then the following are eq.:

 1° *M* has a trace.

 $2^{\circ} |I| < \infty.$

3° *M* is finite, i.e. $u \in M$, $u^*u = 1 \Rightarrow uu^* = 1$

Proof: Exercise.

If a vN factor M has a minimal projections, then $M = \mathcal{B}(\ell^2 I)$, for some I. Moreover, if $M = \mathcal{B}(\ell^2 I)$, then the following are eq.:

 1° *M* has a trace.

 $2^{\circ} |I| < \infty.$

3° *M* is finite, i.e. $u \in M$, $u^*u = 1 \Rightarrow uu^* = 1$

Proof: Exercise.

Lemma 2

If *M* is finite then: (a) $p, q \in \mathcal{P}(M)$, $p \sim q \Rightarrow 1 - p \sim 1 - q$. (b) pMp is finite $\forall p \in \mathcal{P}(M)$, i.e., $q \in \mathcal{P}(M)$, $q \leq p$, $q \sim p$, then q = p.

Proof: Use the comparison theorem (Exercise).

< ≧ > < @ >

If M vN factor with no atoms and $p \in \mathcal{P}(M)$ is so that $\dim(pMp) = \infty$, then $\exists P_0, P_1 \in \mathcal{P}(M)$, $P_0 \sim P_1$, $P_0 + P_1 = p$.

Proof: Consider the family $\mathcal{F} = \{(p_i^0, p_i^1)_i \mid \text{with } p_i^0, p_j^1 \text{ all mutually} \text{ orthogonal } \leq p \text{ such that } p_i^0 \sim p_i^1, \forall i\}$, with its natural order. Clearly inductively ordered. If $(p_i^0, p_i^1)_{i \in I}$ is a maximal element, then $P_0 = \sum_i p_i^0, P_1 = \sum_i p_i^1$ will do (for if not, then the comparison Thm. gives a contradiction).

If M vN factor with no atoms and $p \in \mathcal{P}(M)$ is so that $\dim(pMp) = \infty$, then $\exists P_0, P_1 \in \mathcal{P}(M)$, $P_0 \sim P_1$, $P_0 + P_1 = p$.

Proof: Consider the family $\mathcal{F} = \{(p_i^0, p_i^1)_i \mid \text{with } p_i^0, p_j^1 \text{ all mutually} orthogonal <math>\leq p$ such that $p_i^0 \sim p_i^1, \forall i\}$, with its natural order. Clearly inductively ordered. If $(p_i^0, p_i^1)_{i \in I}$ is a maximal element, then $P_0 = \sum_i p_i^0, P_1 = \sum_i p_i^1$ will do (for if not, then the comparison Thm. gives a contradiction).

Lemma 4

If *M* is a factor with no minimal projections, then $\exists \{p_n\}_n \subset \mathcal{P}(M)$ mutually orthogonal such that $p_n \sim 1 - \sum_{i=1}^n p_i$, $\forall n$.

Proof: Apply **L3** recursively.

If *M* is a finite factor and $\{p_n\}_n \subset \mathcal{P}(M)$ are as in L4, then:

(a) If $p \prec p_n$, $\forall n$, then p = 0. Equivalently, if $p \neq 0$, then $\exists n$ such that $p_n \prec p$. Moreover, if n is the first integer such that $p_n \prec p$ and $p'_n \leq p$, $p'_n \sim p_n$, then $p - p'_n \prec p_n$.

(b) If $\{q_n\}_n \subset \mathcal{P}(M)$ increasing and $q_n \leq q \in \mathcal{P}(M)$ and $q - q_n \prec p_n$, $\forall n$, then $q_n \nearrow q$ (with so-convergence).

 $(c) \sum_{n} p_n = 1.$

Proof: If $p \simeq p'_n \le p_n$, $\forall n$, then $P = \sum_n p'_n$ and $P_0 = \sum_k p'_{2k+1}$ satisfy $P_0 < P$ and $P_0 \sim P$, contradicting the finiteness of M. Rest is *Exercise!*

If *M* is a finite factor and $\{p_n\}_n \subset \mathcal{P}(M)$ are as in L4, then:

(a) If $p \prec p_n$, $\forall n$, then p = 0. Equivalently, if $p \neq 0$, then $\exists n$ such that $p_n \prec p$. Moreover, if n is the first integer such that $p_n \prec p$ and $p'_n \leq p$, $p'_n \sim p_n$, then $p - p'_n \prec p_n$.

(b) If $\{q_n\}_n \subset \mathcal{P}(M)$ increasing and $q_n \leq q \in \mathcal{P}(M)$ and $q - q_n \prec p_n$, $\forall n$, then $q_n \nearrow q$ (with so-convergence). (c) $\sum_n p_n = 1$.

Proof: If $p \simeq p'_n \leq p_n$, $\forall n$, then $P = \sum_n p'_n$ and $P_0 = \sum_k p'_{2k+1}$ satisfy $P_0 < P$ and $P_0 \sim P$, contradicting the finiteness of M. Rest is *Exercise!*

Lemma 6

Let *M* be a finite factor without atoms. If $p \in \mathcal{P}(M)$, $\neq 0$, then \exists a unique infinite sequence $1 \leq n_1 < n_2 < ...$ such that *p* decomposes as $p = \sum_{k \geq 1} p'_{n_k}$, for some $\{p'_{n_k}\}_k \subset \mathcal{P}(M)$ with $p'_{n_k} \sim p_{n_k}$, $\forall k$.

Proof: Apply Part (a) of L5 recursively (*Exercise!*).

If *M* is a finite factor without atoms, then we let dim : $\mathcal{P}(M) \to [0,1]$ be defined by dim(p) = 0 if p = 0 and dim $(p) = \sum_{k=1}^{\infty} 2^{-n_k}$, if $p \neq 0$, where $n_1 < n_2 < \dots$, are given by L4.

If *M* is a finite factor without atoms, then we let dim : $\mathcal{P}(M) \to [0, 1]$ be defined by dim(p) = 0 if p = 0 and dim $(p) = \sum_{k=1}^{\infty} 2^{-n_k}$, if $p \neq 0$, where $n_1 < n_2 < \dots$, are given by L4.

Lemma 7

 \dim satisfies the conditions:

(a) dim $(p_n) = 2^{-n}$

(b) If $p, q \in \mathcal{P}(M)$ then $p \sim q$ iff $\dim(p) \leq text \dim(q)$

(c) dim is completely additive: if $q_i \in \mathcal{P}(M)$ are mutually orthogonal, then $\dim(\Sigma_i q_i) = \Sigma_i \dim(q_i)$.

Proof: Exercise!.

If *M* is a finite factor without atoms, then we let dim : $\mathcal{P}(M) \to [0, 1]$ be defined by dim(p) = 0 if p = 0 and dim $(p) = \sum_{k=1}^{\infty} 2^{-n_k}$, if $p \neq 0$, where $n_1 < n_2 < \dots$, are given by L4.

Lemma 7

 \dim satisfies the conditions:

(a) dim $(p_n) = 2^{-n}$

(b) If $p, q \in \mathcal{P}(M)$ then $p \sim q$ iff $\dim(p) \leq text \dim(q)$

(c) dim is completely additive: if $q_i \in \mathcal{P}(M)$ are mutually orthogonal, then $\dim(\Sigma_i q_i) = \Sigma_i \dim(q_i)$.

Proof: Exercise!.

Lemma 8 (Radon-Nykodim trick)

Let $\varphi, \psi : \mathcal{P}(M) \to [0, 1]$ be completely additive functions, $\varphi \neq 0$, and $\varepsilon > 0$. There exists $p \in \mathcal{P}(M)$ with $\dim(p) = 2^{-n}$ for some $n \ge 1$, and $\theta \ge 0$, such that $\theta \varphi(q) \le \psi(q) \le (1 + \varepsilon) \theta \varphi(q)$, $\forall q \in \mathcal{P}(pMp)$.

Proof: Denote $\mathcal{F} = \{p \mid \exists n \text{ with } p \sim p_n\}$. Note first we may assume φ faithful: take a maximal family of mutually orthogonal non-zero projections $\{e_i\}_i$ with $\varphi(e_i) = 0$, $\forall i$, then let $f = 1 - \sum_i e_i \neq 0$ (because $\varphi(1) \neq 0$); it follows that φ is faithful on fMf, and by replacing with some $f_0 \leq f$ in \mathcal{F} , we may also assume $f \in \mathcal{F}$. Thus, proving the lemma for M is equivalent to proving it for fMf, which amounts to assuming φ faithful. If $\psi = 0$, then take $\theta = 0$. If $\psi \neq 0$, then by replacing φ by $\varphi(1)^{-1}\varphi$ and

 ψ by $\psi(1)^{-1}\psi$, we may assume $\varphi(1) = \psi(1) = 1$. Let us show this implies: (1) $\exists g \in \mathcal{F}$, s.t. $\forall g_0 \in \mathcal{F}$, $g_0 \leq g$, we have $\varphi(g_0) \leq \psi(g_0)$. For if not then (2) $\forall g \in \mathcal{F}$, $\exists g_0 \in \mathcal{F}$, $g_0 \leq g$ s.t. $\varphi(g_0) > \psi(g_0)$.

Take a maximal family of mut. orth. projections $\{g_i\}_i \subset \mathcal{F}$, with $\varphi(g_i) > \psi(g_i)$, $\forall i$. If $1 - \sum_i g_i \neq 0$, then take $g \in \mathcal{F}$, $g \leq 1 - \sum_i g_i$ (cf. **L5**) and apply (2) to get $g_0 \leq g$, $g_0 \in \mathcal{F}$ with $\varphi(g_0) > \psi(g_0)$, contradicting the maximality. Thus,

$$1 = \varphi(\sum_i g_i) = \sum_i \varphi(g_i) > \sum_i \psi(g_i) = \psi(\sum_i g_i) = \psi(1) = 1,$$

a contradiction. Thus, (1) holds true.

Define $\theta = \sup\{\theta' \mid \theta'\varphi(g_0) \le \psi(g_0), \forall g_0 \le g, g_0 \in \mathcal{F}\}.$

Clearly $1 \le \theta < \infty$ and $\theta \varphi(g_0) \le \psi(g_0), \forall g_0 \le g, g_0 \in \mathcal{F}$. Moreover, by def. of θ , there exists $g_0 \in \mathcal{F}$, $g_0 \le g$, s.t., $\theta \varphi(g_0) > (1 + \varepsilon)^{-1} \psi(g_0)$. We now repeat the argument for ψ and $\theta(1 + \varepsilon)\varphi$ on $g_0 Mg_0$, to prove that

(3) $\exists g' \in \mathcal{F}, g' \leq g_0$, such that for all $g'_0 \in \mathcal{F}, g'_0 \leq g_0$, we have $\psi(g'_0) \leq \theta(1 + \varepsilon)\varphi(g'_0)$.

Indeed, for if not, then

(4) $\forall g' \in \mathcal{F}, g' \leq g_0, \exists g'_0 \leq g' \text{ in } \mathcal{F} \text{ s.t. } \psi(g'_0) > \theta(1+\varepsilon)\varphi(g'_0).$

But then we take a maximal family of mutually orthogonal $g'_i \leq g_0$ in \mathcal{F} , s.t. $\psi(g'_i) \geq \theta(1+\varepsilon)\varphi(g'_i)$, and using L5 and (4) above we get $\sum_i g'_i = g_0$. This implies that $\psi(g_0) \geq \theta(1+\varepsilon)\varphi(g_0) > \psi(g_0)$, a contradiction. Thus, (3) above holds true for some $g' \leq g_0$ in \mathcal{F} . Taking p = g', we get that any $q \in \mathcal{F}$ under p satisfies both $\theta\varphi(q) \leq \psi(q)$ and $\psi(q) \leq \theta(1+\varepsilon)\varphi(q)$. By complete additivity of φ, ψ and L6, we are done.

< 三 → < 回 →

We now apply **L8** to $\psi = \dim$ and φ a vector state on $M \subset \mathcal{B}(\mathcal{H})$, to get:

Lemma 9

 $\forall \varepsilon > 0, \exists p \in \mathcal{P}(M)$ with $\dim(p) = 2^{-n}$ for some $n \ge 1$, and a vector (thus normal) state φ_0 on pMp such that, $\forall q \in \mathcal{P}(pMp)$, we have $(1 + \varepsilon)^{-1}\varphi_0(q) \le \dim(q) \le (1 + \varepsilon)\varphi_0(q)$.

Proof: trivial by L8

▲ 臣 ▶ ▲ @ ▶

We now apply **L8** to $\psi = \dim$ and φ a vector state on $M \subset \mathcal{B}(\mathcal{H})$, to get:

Lemma 9

 $\forall \varepsilon > 0, \exists p \in \mathcal{P}(M) \text{ with } \dim(p) = 2^{-n} \text{ for some } n \ge 1, \text{ and a vector}$ (thus normal) state φ_0 on pMp such that, $\forall q \in \mathcal{P}(pMp)$, we have $(1 + \varepsilon)^{-1}\varphi_0(q) \le \dim(q) \le (1 + \varepsilon)\varphi_0(q).$

Proof: trivial by **L8**

Lemma 10

With p, φ_0 as in **L9**, let $v_1 = p, v_2, ..., v_{2^n} \in M$ such that $v_i v_i^* = p$, $\sum_i v_i^* v_i = 1$. Let $\varphi(x) := \sum_{i=1}^{2^n} \varphi_0(v_i x v_i^*)$, $x \in M$. Then φ is a normal state on M satisfying $\varphi(x^*x) \leq (1 + \varepsilon)\varphi(xx^*)$, $\forall x \in M$.

Proof: Note first that $\varphi_0(x^*x) \leq (1 + \varepsilon)\varphi_0(xx^*)$, $\forall x \in pMp$ (Hint: do it first for x partial isometry, then for x with x^*x having finite spectrum). To deduce the inequality for φ itself, note that $\sum_j v_i^* v_i = 1$ implies that for any $x \in M$ we have

$$\varphi(x^*x) = \sum_i \varphi_0(v_i x^* (\sum_j v_j^* v_j) x v_i^*) = \sum_{i,j} \varphi_0((v_i x^* v_j^*) (v_j x v_i))$$

$$\leq (1+\varepsilon)\sum_{i,j}\varphi_0((v_jxv_i)(v_ix^*v_j^*)) = \ldots = (1+\varepsilon)\varphi(xx^*).$$

$$\leq (1+\varepsilon)\sum_{i,j}\varphi_0((v_jxv_i)(v_ix^*v_j^*)) = \ldots = (1+\varepsilon)\varphi(xx^*).$$

If φ is a state on M that satisfies $\varphi(x^*x) \leq (1+\varepsilon)\varphi(xx^*)$, $\forall x \in M$, then $(1+\varepsilon)^{-1}\varphi(p) \leq \dim(p) \leq (1+\varepsilon)\varphi(p)$, $\forall p \in \mathcal{P}(M)$.

Proof: By complete additivity, it is sufficient to prove it for $p \in \mathcal{F}$, for which we have for $v_1, ..., v_{2^n}$ as in **L10** $\varphi(p) = \varphi(v_j^* v_j) \leq (1 + \varepsilon)\varphi(v_j v_j^*)$, $\forall j$, so that

$$2^n \varphi(p) \leq (1 + \varepsilon) \sum_j \varphi(v_j v_j^*) = (1 + \varepsilon) 2^n \dim(p)$$

and similarly $2^n \dim(p) = 1 \le (1 + \varepsilon) 2^n \varphi(p)$.

< ∃ > < ₫ >

Proof of Thm A

Define $\tau: M \to \mathbb{C}$ as follows. First, if $x \in (M_+)_1$ then we let $\tau(x) = \tau(\sum_n 2^{-n} e_n) = \sum_n 2^{-n} \dim(e_n)$, where $x = \sum_n 2^{-n} e_n$ is the (unique) dyadic decomposition of $0 \le x \le 1$. Extend τ to M_+ by homothety, then further extend to M_h by $\tau(x) = \tau(x_+) - \tau(x_-)$, where for $x = x^* \in M_h$, $x = x_+ - x_-$ is the dec. of x into its positive and negative parts. Finally, extend τ to all M by $\tau(x) = \tau(\operatorname{Re} x) + i\tau(\operatorname{Im} x)$.

Proof of Thm A

Define $\tau: M \to \mathbb{C}$ as follows. First, if $x \in (M_+)_1$ then we let $\tau(x) = \tau(\sum_n 2^{-n} e_n) = \sum_n 2^{-n} \dim(e_n)$, where $x = \sum_n 2^{-n} e_n$ is the (unique) dyadic decomposition of $0 \le x \le 1$. Extend τ to M_+ by homothety, then further extend to M_h by $\tau(x) = \tau(x_+) - \tau(x_-)$, where for $x = x^* \in M_h$, $x = x_+ - x_-$ is the dec. of x into its positive and negative parts. Finally, extend τ to all M by $\tau(x) = \tau(\operatorname{Re} x) + i\tau(\operatorname{Im} x)$.

By L11, $\forall \varepsilon > 0$, $\exists \varphi$ normal state on M such that $|\tau(p) - \varphi(p)| \leq \varepsilon$, $\forall p \in \mathcal{P}(M)$. By the way τ was defined and the linearity of φ , this implies $|\tau(x) - \varphi(x)| \leq \varepsilon$, $\forall x \in (M_+)_1$, and thus $|\tau(x) - \varphi(x)| \leq 4\varepsilon$, $\forall x \in (M)_1$. This implies $|\tau(x + y) - \tau(x) - \tau(y)| \leq 8\varepsilon$, $\forall x, y \in (M)_1$. Since $\varepsilon > 0$ was arbitrary, this shows that τ is a linear state on M.

By definition of τ , we also have $\tau(uxu^*) = \tau(x)$, $\forall x \in M$, $u \in \mathcal{U}(M)$, so τ is a trace state. From the above argument, it also follows that τ is a norm limit of normal states, which implies τ is normal as well.

< 注 > < /// →

Finite vN algebras

Theorem A'

Let M be a vN algebra that's countably decomposable (i.e., any family of mutually orthogonal projections is countable). The following are equivalent:

1° *M* is a **finite** vN algebra, i.e., if $p \in \mathcal{P}(M)$ satisfies $p \sim 1 = 1_M$, then p = 1 (any isometry in *M* is necessarily a unitary element).

2° M has a faithful normal (equivalently completely additive) trace state au.

Moreover, if M is finite, then there exists a unique normal faithful **central trace**, i.e., a linear positive map $ctr : M \to \mathcal{Z}(M)$ that satisfies ctr(1) = 1, $ctr(z_1xz_2) = z_1ctr(x)z_2$, ctr(xy) = ctr(yx), $x, y \in M$, $z_i \in \mathcal{Z}$. Any trace τ on M is of the form $\tau = \varphi_0 \circ ctr$, for some state φ_0 on \mathcal{Z} . Also, $\overline{co}\{uxu^* \mid u \in \mathcal{U}(M)\} \cap \mathcal{Z} = \{ctr(x)\}, \forall x \in M$.

Proof of $2^{\circ} \Rightarrow 1^{\circ}$: If τ is a faithful trace on M and $u^*u = 1$ for some $u \in M$, then $\tau(1 - uu^*) = 1 - \tau(uu^*) = 1 - \tau(u^*u) = 0$, thus $uu^* = 1$, $u \in \mathbb{R}$,

L^p-spaces from tracial algebras

• A *-operator algebra $M_0 \subset \mathcal{B}(\mathcal{H})$ that's closed in operator norm is called a **C***-algebra. Can be described abstractly as a Banach algebra M_0 with a *-operation and the norm satisfying the axiom $||x^*x|| = ||x||^2$, $\forall x \in M_0$.

• If M_0 is a unital C*-algebra and τ is a faithful trace state on M_0 , then for each $p \ge 1$, $||x||_p = \tau(|x|^p)^{1/p}$, $x \in M_0$, is a norm on M_0 . We denote $L^p M_0$ the completion of $(M_0, || ||_p)$. One has $||x||_p \le ||x||_q$, $\forall 1 \le p \le q \le \infty$, thus $L^p M_0 \supset L^q M_0$.

Note that $L^2 M_0$ is a Hilbert space with scalar product $\langle x, y \rangle_{\tau} = \tau(y^*x)$. The map $M_0 \ni x \mapsto \lambda(x) \in \mathcal{B}(L^2)$ defined by $\lambda(x)(\hat{y}) = x\hat{y}$ is a *-algebra isometric representation of M_0 into $\mathcal{B}(L^2)$ with $\tau(x) = \langle \lambda(x)\hat{1}, \hat{1} \rangle_{\varphi}$. Similarly, $\rho(x)(\hat{y}) = \hat{yx}$ defines an isometric representation of $(M_0)^{op}$ on $L^2 M_0$. One has $[\lambda(x_1), \rho(x_2)] = 0$, $\forall x_i \in M_0$.

More generally, $||x|| = \sup\{||xy||_p \mid ||y||_p \le 1\}$. Also, $||y||_1 = \sup\{|\tau(xy)| \mid x \in (M)_1\}$. In particular, τ extends to L^1M_0 .

Exercise!

Theorem B

Let (M, τ) be a unital C*-algebra with a faithful trace state. The following are equivalent:

1° The image of $\lambda : M \to \mathcal{B}(L^2(M, \tau))$ is a vN algebra (i.e., is wo-closed).

$$2^{\circ} \ \lambda(M) =
ho(M)'$$
 (equivalently, $ho(M) = \lambda(M)').$

 3° (*M*)₁ is complete in the norm $||x||_{2,\tau}$.

4° As Banach spaces, we have $M = (L^1(M, \tau))^*$, where the duality is given by $(M, L^1M) \ni (x, Y) \mapsto \tau(xY)$.

Proof: One uses similar arguments as when we represented $L^{\infty}([0,1])$ as a vN algebra and as in the construction of R (*Exercise!*).

II₁ factors: definition and basic properties

Definition

An ∞ -dim finite factor M (so $M \neq \mathbb{M}_n(\mathbb{C})$, $\forall n$) is called a H_1 factor.

- R is a factor, has a trace, and is ∞ -dimensional, so it is a II₁ factor.
- The construction of the trace on a non-atomic factor satisfying the finiteness axiom in Thm A is based on splitting recursively 1 dyadically into equivalent projections, with the underlying partial isometries generating the hyperfinite II_1 factor R. Thus, R embeds into any II_1 factor.
- If $A \subset M$ is a maximal abelian *-subalgebra (MASA) in a II₁ factor M, then A is diffuse (i.e., it has no atoms).

• The (unique) trace τ on a II₁ factor M is a dimension function on $\mathcal{P}(M)$, i.e., $\tau(p) = \tau(q)$ iff $p \sim q$, with $\tau(\mathcal{P}(M)) = [0, 1]$ (continuous dimension).

• If $B \subset M$ is vN alg, the orth. projection $e_B : L^2M \to \overline{\hat{B}}^{\parallel \parallel 2} = L^2B$ is positive on $\hat{M} = M$, so it takes M onto B, implementing a cond. expect. $E_B : M \to B$ that satisfies $\tau \circ E_B = \tau$. It is unique with this property.

• If $n \ge 2$ then $\mathbb{M}_n(M) = \mathbb{M}_n(\mathbb{C}) \otimes M$ is a II_1 factor with trace state $\tau((x_{ij})_{i,j}) = \sum_i \tau(x_{ii})/n, \ \forall (x_{ij})_{i,j} \in \mathbb{M}_n(M).$

• If $0 \neq p \in \mathcal{P}(M)$, then pMp is a II₁ factor with trace state $\tau(p)^{-1}\tau$, whose isomorphism class only depends on $\tau(p)$.

• Given any t > 0, let $n \ge t$ and $p \in \mathcal{P}(\mathbb{M}_n(M))$ be so that $\tau(p) = t/n$. We denote the isomorphism class of $p\mathbb{M}_n(M)p$ by M^t and call it the **amplification of** M by t (*Exercise*: show that this doesn't depend on the choice of n and p.)

• We have $(M^s)^t = M^{st}$, $\forall s, t > 0$ (*Exercise*). One denotes $\mathcal{F}(M) = \{t > 0 \mid M^t \simeq M\}$. Clearly a multiplicative subgroup of \mathbb{R}_+ , called the **fundamental group of** M. It is an isom. invariant of M.

< 注 > < //>
</

∞ -amplifications, II_∞ factors and semifinite vN alg

If $M_i \subset \mathcal{B}(\mathcal{H}_i)$, i = 1, 2, are vN algebras, then $M_1 \overline{\otimes} M_2 \subset \mathcal{B}(\mathcal{H}_1 \overline{\otimes} \mathcal{H}_2)$ denotes the vN alg generated by alg tens product $M_1 \otimes M_2 \subset \mathcal{B}(\mathcal{H}_1 \overline{\otimes} \mathcal{H}_2)$.
$\infty\text{-}\text{amplifications, II}_\infty$ factors and semifinite vN alg

If $M_i \subset \mathcal{B}(\mathcal{H}_i)$, i = 1, 2, are vN algebras, then $M_1 \overline{\otimes} M_2 \subset \mathcal{B}(\mathcal{H}_1 \overline{\otimes} \mathcal{H}_2)$ denotes the vN alg generated by alg tens product $M_1 \otimes M_2 \subset \mathcal{B}(\mathcal{H}_1 \overline{\otimes} \mathcal{H}_2)$.

- If (M, τ) is tracial (finite) vN algebra, then $\mathcal{M} = M \otimes \mathcal{B}(\ell^2 S) \subset \mathcal{B}(L^2 M \otimes \ell^2 S)$ is a vN algebra with the property $\exists p_i \nearrow 1$ projections such that $p_i \mathcal{M} p_i$ is finite, $\forall i$. Such a vN algebra \mathcal{M} is called **semifinite**. It has a normal faithful semifinite trace $\tau \otimes Tr$.
- If M is a type II₁ factor and $|S| = \infty$, then $\mathcal{M} = M \overline{\otimes} \mathcal{B}(\ell^2 S)$ is called a II_{∞} factor. It can be viewed as the |S|-amplification of M.

$\infty\text{-}\text{amplifications, II}_\infty$ factors and semifinite vN alg

If $M_i \subset \mathcal{B}(\mathcal{H}_i)$, i = 1, 2, are vN algebras, then $M_1 \overline{\otimes} M_2 \subset \mathcal{B}(\mathcal{H}_1 \overline{\otimes} \mathcal{H}_2)$ denotes the vN alg generated by alg tens product $M_1 \otimes M_2 \subset \mathcal{B}(\mathcal{H}_1 \overline{\otimes} \mathcal{H}_2)$.

- If (M, τ) is tracial (finite) vN algebra, then $\mathcal{M} = M \otimes \mathcal{B}(\ell^2 S) \subset \mathcal{B}(L^2 M \otimes \ell^2 S)$ is a vN algebra with the property $\exists p_i \nearrow 1$ projections such that $p_i \mathcal{M} p_i$ is finite, $\forall i$. Such a vN algebra \mathcal{M} is called **semifinite**. It has a normal faithful semifinite trace $\tau \otimes Tr$.
- If M is a type II₁ factor and $|S| = \infty$, then $\mathcal{M} = M \overline{\otimes} \mathcal{B}(\ell^2 S)$ is called a II_{∞} factor. It can be viewed as the |S|-amplification of M.

• An important example: If $B \subset M$ is a vN subalgebra and $e_B : L^2M \to L^2B$ as before, then: $e_Bxe_B = E_B(x)e_B$, $\forall x \in \lambda(M) = M$, the vN algebra $\langle M, e_B \rangle$ generated by M and e_B in $\mathcal{B}(L^2M)$ is equal to the wo-closure of the *-algebra sp{ $xe_By \mid x, y \in M$ }, and also equal to $\rho(B)' \cap \mathcal{B}(L^2M)$. It has a normal semifinite faithful trace uniquely determined by $Tr(xe_By) = \tau(xy)$. ($\langle M, e_B \rangle$, Tr) is called the **basic construction** algebra for $B \subset M$. • If M is a vN algebra, then a *-rep $\pi : M \to \mathcal{B}(\mathcal{H})$ is a vN rep (i.e., $\pi(M)$ wo-closed) iff π is completely additive. We'll call such representations **normal representations** and \mathcal{H} a (left) **Hilbert** *M*-module. Two Hilbert *M*-modules \mathcal{H}, \mathcal{K} are equivalent if there exists a unitary $U : \mathcal{H} \simeq \mathcal{K}$ that intertwines the two *M*-module structures (reps).

• If *M* is a vN algebra, then a *-rep $\pi : M \to \mathcal{B}(\mathcal{H})$ is a vN rep (i.e., $\pi(M)$ wo-closed) iff π is completely additive. We'll call such representations **normal representations** and \mathcal{H} a (left) **Hilbert** *M*-module. Two Hilbert *M*-modules \mathcal{H}, \mathcal{K} are equivalent if there exists a unitary $U : \mathcal{H} \simeq \mathcal{K}$ that intertwines the two *M*-module structures (reps).

• If $M \subset \mathcal{B}(\mathcal{H})$ is a vN algebra and $p' \in M'$, then $M \ni x \mapsto xp' \in \mathcal{B}(p'(\mathcal{H}))$ is a vN representation of M. Also, if $\pi_i : M \to \mathcal{B}(\mathcal{H}_i)$ are vN representations of M, then $x \mapsto \oplus_i \pi_i(x) \in \mathcal{B}(\oplus_i \mathcal{H}_i)$ is a vN rep. of M. • If *M* is a vN algebra, then a *-rep $\pi : M \to \mathcal{B}(\mathcal{H})$ is a vN rep (i.e., $\pi(M)$ wo-closed) iff π is completely additive. We'll call such representations **normal representations** and \mathcal{H} a (left) **Hilbert** *M*-module. Two Hilbert *M*-modules \mathcal{H}, \mathcal{K} are equivalent if there exists a unitary $U : \mathcal{H} \simeq \mathcal{K}$ that intertwines the two *M*-module structures (reps).

• If $M \subset \mathcal{B}(\mathcal{H})$ is a vN algebra and $p' \in M'$, then $M \ni x \mapsto xp' \in \mathcal{B}(p'(\mathcal{H}))$ is a vN representation of M. Also, if $\pi_i : M \to \mathcal{B}(\mathcal{H}_i)$ are vN representations of M, then $x \mapsto \oplus_i \pi_i(x) \in \mathcal{B}(\oplus_i \mathcal{H}_i)$ is a vN rep. of M.

• If (M, τ) is a tracial vN algebra, then a *-rep $\pi : M \to \mathcal{B}(\mathcal{H})$ is a vN rep iff π is continuous from $(M)_1$ with the $|| ||_2$ -topology to $\mathcal{B}(\mathcal{H})$ with the so-topology.

• If *M* is tracial vN algebra then any cyclic Hilbert *M*-module is of the form $\rho(p)(L^2M) = L^2(Mp)$. Any Hilbert *M*-module \mathcal{H} is of the form $\bigoplus_i L^2(Mp_i)$, for some projections $\{p_i\}_i \subset M$.

- < ≧ > < @ >

• If *M* is tracial vN algebra then any cyclic Hilbert *M*-module is of the form $\rho(p)(L^2M) = L^2(Mp)$. Any Hilbert *M*-module \mathcal{H} is of the form $\bigoplus_i L^2(Mp_i)$, for some projections $\{p_i\}_i \subset M$.

• If M is a II₁ factor and $\mathcal{K} = \bigoplus_j L^2(Mq_j)$ is another Hilbert M-module for some $\{q_j\}_j \subset \mathcal{P}(M)$, then ${}_M\mathcal{H} \simeq_M \mathcal{K}$ iff $\sum_i \tau(p_i) = \sum_j \tau(q_j)$. One denotes $\dim({}_M\mathcal{H}) = \sum_i \tau(p_i)$, called the **dimension** of the Hilbert M-module \mathcal{H} . Thus, Hilbert M-modules ${}_M\mathcal{H}$ are completely classified (up to equivalence) by their dimension $\dim({}_M\mathcal{H})$, which takes all values $[0, \infty) \cup \{\text{infinite cardinals}\}.$ • If M is tracial vN algebra then any cyclic Hilbert M-module is of the form $\rho(p)(L^2M) = L^2(Mp)$. Any Hilbert M-module \mathcal{H} is of the form $\bigoplus_i L^2(Mp_i)$, for some projections $\{p_i\}_i \subset M$.

• If M is a II₁ factor and $\mathcal{K} = \bigoplus_j L^2(Mq_j)$ is another Hilbert M-module for some $\{q_j\}_j \subset \mathcal{P}(M)$, then ${}_M\mathcal{H} \simeq_M \mathcal{K}$ iff $\sum_i \tau(p_i) = \sum_j \tau(q_j)$. One denotes $\dim({}_M\mathcal{H}) = \sum_i \tau(p_i)$, called the **dimension** of the Hilbert M-module \mathcal{H} . Thus, Hilbert M-modules ${}_M\mathcal{H}$ are completely classified (up to equivalence) by their dimension $\dim({}_M\mathcal{H})$, which takes all values $[0,\infty) \cup \{\text{infinite cardinals}\}.$

• If $t = \dim(_M \mathcal{H}) \ge 1$ and $p \in M^t$ has trace 1/t then $_M \mathcal{H} \simeq_M L^2(pM^t)$.

• If $t = \dim(_M \mathcal{H}) < \infty$ then $\dim(_{M'} \mathcal{H}) = 1/t$. Also, M' is naturally isomorphic to $(M^t)^{op}$, equivalently \mathcal{H} has a natural Hilbert right M^t -module structure.

< ∃ > < ₫ >

$\ensuremath{\textsc{II}}\xspace_1$ factors from groups and group actions

• Let Γ be a discrete group, $\mathbb{C}\Gamma$ its (complex) group algebra and $\mathbb{C}\Gamma \ni x \mapsto \lambda(x) \in \mathcal{B}(\ell^2\Gamma)$ the left regular representation. The wo-closure of $\lambda(\mathbb{C}\Gamma)$ in $\mathcal{B}(\mathcal{H})$ is called the **group von Neumann algebra** of Γ , denoted $L(\Gamma)$, or just $L\Gamma$. Denoting $u_g = \lambda(g)$ (the canonical unitaries), the algebra $L\Gamma$ can be identified with the set of ℓ^2 -summable formal series $x = \sum_g c_g u_g$ with the property that $x \cdot \xi \in \ell^2$, $\forall \xi \in \ell^2\Gamma$. It has a normal faithful trace given by $\tau(\sum_g c_g u_g) = c_e$, implemented by the vector ξ_e , and is thus tracial (finite).

$\ensuremath{\textsc{II}}\xspace_1$ factors from groups and group actions

• Let Γ be a discrete group, $\mathbb{C}\Gamma$ its (complex) group algebra and $\mathbb{C}\Gamma \ni x \mapsto \lambda(x) \in \mathcal{B}(\ell^2\Gamma)$ the left regular representation. The wo-closure of $\lambda(\mathbb{C}\Gamma)$ in $\mathcal{B}(\mathcal{H})$ is called the **group von Neumann algebra** of Γ , denoted $L(\Gamma)$, or just $L\Gamma$. Denoting $u_g = \lambda(g)$ (the canonical unitaries), the algebra $L\Gamma$ can be identified with the set of ℓ^2 -summable formal series $x = \sum_g c_g u_g$ with the property that $x \cdot \xi \in \ell^2$, $\forall \xi \in \ell^2\Gamma$. It has a normal faithful trace given by $\tau(\sum_g c_g u_g) = c_e$, implemented by the vector ξ_e , and is thus tracial (finite).

• $L\Gamma$ is a II₁ factor iff Γ is infinite conjugacy class (ICC).

$\ensuremath{\textsc{II}}\xspace_1$ factors from groups and group actions

• Let Γ be a discrete group, $\mathbb{C}\Gamma$ its (complex) group algebra and $\mathbb{C}\Gamma \ni x \mapsto \lambda(x) \in \mathcal{B}(\ell^2\Gamma)$ the left regular representation. The wo-closure of $\lambda(\mathbb{C}\Gamma)$ in $\mathcal{B}(\mathcal{H})$ is called the **group von Neumann algebra** of Γ , denoted $L(\Gamma)$, or just $L\Gamma$. Denoting $u_g = \lambda(g)$ (the canonical unitaries), the algebra $L\Gamma$ can be identified with the set of ℓ^2 -summable formal series $x = \sum_g c_g u_g$ with the property that $x \cdot \xi \in \ell^2$, $\forall \xi \in \ell^2\Gamma$. It has a normal faithful trace given by $\tau(\sum_g c_g u_g) = c_e$, implemented by the vector ξ_e , and is thus tracial (finite).

• $L\Gamma$ is a II₁ factor iff Γ is infinite conjugacy class (ICC).

• Similarly, if $\Gamma \curvearrowright^{\sigma} X$ is a pmp action, one associates to it the group measure space vN algebra $L^{\infty}(X) \rtimes \Gamma \subset \mathcal{B}(L^2(X) \otimes \ell^2 \Gamma)$, as weak closure of the algebraic crossed product of $L^{\infty}(X)$ by Γ . Can be identified with the algebra of ℓ^2 -summable formal series $\sum_g a_g u_g$, with $a_g \in L^{\infty}(X)$, with multiplication rule $a_g u_g a_h u_h = a_g \sigma_g(a_h) u_{gh}$. It is a II₁ factor if $\Gamma \curvearrowright X$ is free ergodic, in which case $A = L^{\infty}(X)$ is maximal abelian in $L^{\infty}(X) \rtimes \Gamma$ and its normalizer generates $L^{\infty}(X) \rtimes \Gamma$, i.e. A is a *Cartan subalgebra*.

More II_1 factors from operations

Using the above vN algebras as "building blocks", one can obtain more II_1 factors by using *operations*. Besides *amplifications*, we have:

More II_1 factors from operations

Using the above vN algebras as "building blocks", one can obtain more II_1 factors by using *operations*. Besides *amplifications*, we have:

• Tensor product: $(M_i)_{i \in I} \mapsto \overline{\otimes}_i M_i$. It is II₁ factor iff all M_i are finite factors $\neq \mathbb{C}$ and $|I| = \infty$, or $|I| < \infty$ and at least one M_i is II₁.

Using the above vN algebras as "building blocks", one can obtain more II_1 factors by using *operations*. Besides *amplifications*, we have:

• Tensor product: $(M_i)_{i \in I} \mapsto \overline{\otimes}_i M_i$. It is II₁ factor iff all M_i are finite factors $\neq \mathbb{C}$ and $|I| = \infty$, or $|I| < \infty$ and at least one M_i is II₁.

• *Free product*: $(M_1, M_2) \mapsto M_1 * M_2$. Also, if $B \subset M_i$ common vN subalgebra, then $M_1 *_B M_2$ is the *Free product with amalgamation over* B. In general it is II₁ factor....

Using the above vN algebras as "building blocks", one can obtain more II_1 factors by using *operations*. Besides *amplifications*, we have:

• Tensor product: $(M_i)_{i \in I} \mapsto \overline{\otimes}_i M_i$. It is II₁ factor iff all M_i are finite factors $\neq \mathbb{C}$ and $|I| = \infty$, or $|I| < \infty$ and at least one M_i is II₁.

• *Free product*: $(M_1, M_2) \mapsto M_1 * M_2$. Also, if $B \subset M_i$ common vN subalgebra, then $M_1 *_B M_2$ is the *Free product with amalgamation over* B. In general it is II₁ factor....

• Crossed product: (B, τ) vN algebra with a trace (e.g. $B = L^{\infty}(X)$ or B = R), $\Gamma \curvearrowright B$ a trace preserving action $\longmapsto B \rtimes \Gamma$.

Using the above vN algebras as "building blocks", one can obtain more II_1 factors by using *operations*. Besides *amplifications*, we have:

• Tensor product: $(M_i)_{i \in I} \mapsto \overline{\otimes}_i M_i$. It is II₁ factor iff all M_i are finite factors $\neq \mathbb{C}$ and $|I| = \infty$, or $|I| < \infty$ and at least one M_i is II₁.

• *Free product*: $(M_1, M_2) \mapsto M_1 * M_2$. Also, if $B \subset M_i$ common vN subalgebra, then $M_1 *_B M_2$ is the *Free product with amalgamation over* B. In general it is II₁ factor....

• Crossed product: (B, τ) vN algebra with a trace (e.g. $B = L^{\infty}(X)$ or B = R), $\Gamma \curvearrowright B$ a trace preserving action $\longmapsto B \rtimes \Gamma$.

• *Ultraproduct* of finite factors $\Pi_{\omega}M_n$, notably the case $\Pi_{\omega}\mathbb{M}_{n\times n}(\mathbb{C})$ and the ultrapower R^{ω} of R (i.e., the case $M_n = R, \forall n$)

• *Exercise*: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ , then $(A, \tau) \simeq (L^{\infty}([0, 1], \mu), \int d\mu)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

• *Exercise*: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ , then $(A, \tau) \simeq (L^{\infty}([0, 1], \mu), \int d\mu)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD) if $\forall F \subset M$ finite, $\forall \varepsilon > 0$, $\exists B \subset M$ fin dim s.t. $||x - E_B(x)||_2 \le \varepsilon$, $\forall x \in F$.

• *Exercise*: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ , then $(A, \tau) \simeq (L^{\infty}([0, 1], \mu), \int d\mu)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD) if $\forall F \subset M$ finite, $\forall \varepsilon > 0$, $\exists B \subset M$ fin dim s.t. $\|x - E_B(x)\|_2 \le \varepsilon$, $\forall x \in F$.

Theorem: Murray-von Neumann 1943

If *M* is an AFD II₁ factor that's countably generated ($\Leftrightarrow \parallel \parallel_2$ -separable) then $M \simeq R$.

• *Exercise*: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ , then $(A, \tau) \simeq (L^{\infty}([0, 1], \mu), \int d\mu)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD) if $\forall F \subset M$ finite, $\forall \varepsilon > 0$, $\exists B \subset M$ fin dim s.t. $\|x - E_B(x)\|_2 \le \varepsilon$, $\forall x \in F$.

Theorem: Murray-von Neumann 1943

If *M* is an AFD II₁ factor that's countably generated ($\Leftrightarrow \parallel \parallel_2$ -separable) then $M \simeq R$.

Proof: Exercise (Like in the abelian case above, construct increasing "non-commutative dyadic" approximations $\mathbb{M}_{2^{k_n}}(\mathbb{C}) \nearrow M$).

< ∃ > < □ >

• *Exercise*: Show that if (A, τ) is a diffuse (i.e., without atoms) countably generated abelian vN algebra, with faithful completely additive state τ , then $(A, \tau) \simeq (L^{\infty}([0, 1], \mu), \int d\mu)$. Hint: construct an increasing "dyadic" partitions by projections in A (of trace 2^{-n}) that "exhaust" it.

Definition of AFD vN algebras

A tracial vN algebra (M, τ) is approximately finite dimensional (AFD) if $\forall F \subset M$ finite, $\forall \varepsilon > 0$, $\exists B \subset M$ fin dim s.t. $\|x - E_B(x)\|_2 \le \varepsilon$, $\forall x \in F$.

Theorem: Murray-von Neumann 1943

If *M* is an AFD II₁ factor that's countably generated ($\Leftrightarrow \parallel \parallel_2$ -separable) then $M \simeq R$.

Proof: Exercise (Like in the abelian case above, construct increasing "non-commutative dyadic" approximations $\mathbb{M}_{2^{k_n}}(\mathbb{C}) \nearrow M$).

Corollary

$$R^t \simeq R$$
, $\forall t > 0$, i.e., $\mathcal{F}(R) = \mathbb{R}_+$.

Amenability for groups and vN algebras

Definitions

• A group Γ is **amenable** if it has an **invariant mean**, i.e., a state φ on $\ell^{\infty}(\Gamma)$ such that $\varphi(_{g}f) = \varphi(f), \forall f \in \ell^{\infty}\Gamma, g \in \Gamma$, where $_{g}f(h) = f(g^{-1}h), \forall h$.

Amenability for groups and vN algebras

Definitions

• A group Γ is **amenable** if it has an **invariant mean**, i.e., a state φ on $\ell^{\infty}(\Gamma)$ such that $\varphi(_{g}f) = \varphi(f), \forall f \in \ell^{\infty}\Gamma, g \in \Gamma$, where $_{g}f(h) = f(g^{-1}h), \forall h$.

• A tracial vN algebra (M, τ) is **amenable** if it has a **hypertrace** (invariant mean), i.e., a state φ on $\mathcal{B}(L^2M)$ such that $\varphi(xT) = \varphi(Tx)$, $\forall x \in M, T \in \mathcal{B}$, and $\varphi_{|M} = \tau$ (Note: the 2nd condition is redundant if M is a II₁ factor).

Amenability for groups and vN algebras

Definitions

• A group Γ is **amenable** if it has an **invariant mean**, i.e., a state φ on $\ell^{\infty}(\Gamma)$ such that $\varphi(_{g}f) = \varphi(f), \forall f \in \ell^{\infty}\Gamma, g \in \Gamma$, where $_{g}f(h) = f(g^{-1}h), \forall h$.

• A tracial vN algebra (M, τ) is **amenable** if it has a **hypertrace** (invariant mean), i.e., a state φ on $\mathcal{B}(L^2M)$ such that $\varphi(xT) = \varphi(Tx)$, $\forall x \in M, T \in \mathcal{B}$, and $\varphi_{|M} = \tau$ (Note: the 2nd condition is redundant if M is a II₁ factor).

• $L\Gamma$ is amenable iff Γ is amenable

Proof. If φ is a state on $\mathcal{B}(\ell^2\Gamma)$ with $L\Gamma$ in its centralizer (a hypertrace on $L\Gamma$), then and $\mathcal{D} = \ell^{\infty}\Gamma$ is represented in $\mathcal{B}(\ell^2\Gamma)$ as diagonal operators, then $\varphi_{|D}$ is a state on \mathcal{D} that satisfies $\varphi(u_g f u_g^*) = \varphi(f)$, $\forall f \in \mathcal{D} = \ell^{\infty}\Gamma$, where $u_g = \lambda(g)$. But $u_g f u_g^* =_g f$ (Exercise), so $\varphi_{|\mathcal{D}}$ is an invariant mean.

Conversely, if Γ is amenable and $\varphi \in (\ell^{\infty}\Gamma)^*$ is an invariant mean, then $\psi = \int \tau (u_g \cdot u_g^*) d\varphi \in \mathcal{B}^*$ is a state on \mathcal{B} which has $\{u_h\}_h$ in its centralizer and equals τ when restricted to $L\Gamma$. For any $x \in (L\Gamma)_1$ and $\varepsilon > 0$, let $x_0 \in \mathbb{C}\Gamma$ be so that $||x - x_0||_2 \leq \varepsilon$, $||x_0|| \leq 1$ (Kaplansky). By Cauchy-Schwartz, if $T \in (\mathcal{B})_1$, then we have: $|\psi((x - x_0)T)| \leq \varepsilon$, $||\psi(T(x - x_0))| \leq \varepsilon$. Since $\psi(x_0T) = \psi(Tx_0)$ and ε arbitrary, this shows that $\psi(Tx) = \psi(xT)$.

- 4 注 ▶ 4 伊 ▶

Conversely, if Γ is amenable and $\varphi \in (\ell^{\infty}\Gamma)^*$ is an invariant mean, then $\psi = \int \tau (u_g \cdot u_g^*) d\varphi \in \mathcal{B}^*$ is a state on \mathcal{B} which has $\{u_h\}_h$ in its centralizer and equals τ when restricted to $L\Gamma$. For any $x \in (L\Gamma)_1$ and $\varepsilon > 0$, let $x_0 \in \mathbb{C}\Gamma$ be so that $||x - x_0||_2 \leq \varepsilon$, $||x_0|| \leq 1$ (Kaplansky). By Cauchy-Schwartz, if $T \in (\mathcal{B})_1$, then we have: $|\psi((x - x_0)T)| \leq \varepsilon$, $|\psi(T(x - x_0))| \leq \varepsilon$. Since $\psi(x_0T) = \psi(Tx_0)$ and ε arbitrary, this shows that $\psi(Tx) = \psi(xT)$.

• Let (M, τ) be tracial vN algebra. The following are equiv:

$1^{\circ} M$ is amenable.

- 2° $M \subset \mathcal{B}(\mathcal{H})$ has a hypertrace for any normal rep. of M.
- 3° There exists a normal rep $M \subset \mathcal{B}(\mathcal{H})$ with a hypertrace.

Corollary

 1° (M, τ) amenable and $B \subset M$ a vN subablegbra, then (B, τ) amenable.

2° Assume (M, τ) is tracial vN algebra, $B \subset M$ amenable vN subalgebra and $\pi : \Gamma \to \mathcal{U}(M)$ a representation of an amenable group Γ such that $\pi(g)(B) = B, \forall g$, and $B \lor \pi(\Gamma) = M$. Then (M, τ) is amenable. • We have already shown that if Γ amenable then $L\Gamma$ amenable. Some concrete examples of amenable group are: finite groups; more generally locally finite groups (e.g., S_{∞}); \mathbb{Z}^n , $n \ge 1$, in fact all abelian groups; $H \wr \Gamma_0$ with H, Γ_0 amenable; more generally if $1 \to H \to \Gamma \to \Gamma_0 \to 1$ is exact, then Γ amenable iff H, Γ_0 are amenable.

• If in addition Γ is ICC, then $L\Gamma$ is an amenable II₁ factor. Of the above amenable groups, S_{∞} is ICC Also, $H \wr \Gamma_0$ are ICC whenever $|H| \ge 2$ and $|\Gamma_0| = \infty$, so groups like $(\mathbb{Z}/m\mathbb{Z}) \wr \mathbb{Z}^n$ with $m \ge 2, n \ge 1$ are all ICC amenable.

• Let $\mathcal{U}_0 \subset \mathcal{U}(R)$ be the subgroup of all unitaries in $R_0 = \mathbb{M}_2(\mathbb{C})^{\otimes \infty}$ that have only ± 1 and 0 as entries. Then \mathcal{U}_0 is locally finite so it is amenable and it clearly generates R.

Thus *R* is an amenable II₁ factor, and any vN subalgebra $B \subset M$ is amenable, in particular any II₁ subfactor of *R* is an amenable II₁ factor.

• By last Corollary, any abelian vN algebra is amenable (because it is generated by an abelian group of unitaries). Also, any group measure space vN algebra $L^{\infty}X \rtimes \Gamma$ with Γ an amenable group (e.g., like in the above examples), is an amenable vN algebra. Thus, if $\Gamma \curvearrowright X$ is free ergodic with Γ amenable then $L^{\infty}X \rtimes \Gamma$ is an amenable II₁ factor.

Følner condition for groups

Føloner's 1955 characterization of amenability for groups

A group Γ is amenable iff it satisfies the condition: $\forall F \subset \Gamma$ finite, $\varepsilon > 0$, $\exists K \subset \Gamma$ finite such that $|FK \setminus K| < \varepsilon |K|$.

Følner condition for groups

Føloner's 1955 characterization of amenability for groups

A group Γ is amenable iff it satisfies the condition: $\forall F \subset \Gamma$ finite, $\varepsilon > 0$, $\exists K \subset \Gamma$ finite such that $|FK \setminus K| < \varepsilon |K|$.

Proof: \leftarrow If $F_i \nearrow \Gamma$, $K_i \subset \Gamma$ are finite s.t. $|F_iK_i \setminus K_i| \le |F_i|^{-1}$ then $f \mapsto \lim_i |K_i|^{-1} \sum_{g \in K_i} f(g)$ is clearly an invariant mean for Γ (*Exercise!*).

Føloner's 1955 characterization of amenability for groups

A group Γ is amenable iff it satisfies the condition: $\forall F \subset \Gamma$ finite, $\varepsilon > 0$, $\exists K \subset \Gamma$ finite such that $|FK \setminus K| < \varepsilon |K|$.

Proof: ⇐ If $F_i \nearrow Γ$, $K_i ⊂ Γ$ are finite s.t. $|F_iK_i \setminus K_i| \le |F_i|^{-1}$ then $f \mapsto \lim_i |K_i|^{-1} \sum_{g \in K_i} f(g)$ is clearly an invariant mean for Γ (*Exercise!*). \Rightarrow *Step 1: Day's trick*. $\exists \psi \in (\ell^1 \Gamma_+)_1$ s.t. $\|\psi -_g \psi\|_1 \le \varepsilon/|F|$, $\forall g \in F$. Consider the Banach space $(\ell^1 Γ)^{|F|}$ and its convex subspace $C = \{(\psi -_g \psi)_{g \in F} | \psi \in (\ell^1_+)_1\}$. It is sufficient to show that 0 is in norm closure of C. If $0 \notin \overline{C}$, then $\exists f^g \in \ell^{\infty} Γ$ such that

$$\operatorname{Re}\sum_{g\in F} \langle \psi -_g \psi, f^g \rangle \geq c > 0, \forall \psi \in (\ell^1_+)_1$$

But the set of ψ as above is $\sigma((\ell^{\infty})^*, \ell^{\infty})$ dense in the state space of ℓ^{∞} , so the above holds true for all states on ℓ^{∞} , in particular for the invariant mean φ , which gives 0 > c, a contradiction.

Step 2: Namioka's trick. If $b \in (\ell^1 \Gamma)_+)_1$ satisfies $\sum_{g \in \Gamma} \|_g b - b\|_1 < \varepsilon$, then $\exists t > 0$ such that $e = e_t(b)$ (spectral projection of b, or "level set", corresponding to $[t, \infty)$) satisfies $\sum_{g \in \Gamma} \|_g e - e\|_1 < \varepsilon \|e\|_1$.

Note first that $\forall y_1, y_2 \in \mathbb{R}_+$ we have $\int_0^\infty |e_t(y_1) - e_t(y_2)| dt = |y_1 - y_2|$. Thus, if $b_1, b_2 \in \ell^1 \Gamma_+$, then $\int_0^\infty |e_t(b_1) - e_t(b_2)| dt = |b_1 - b_2|$ (pointwise, as functions). Hence, $\int_0^\infty ||e_t(b_1) - e_t(b_2)||_1 dt = ||b_1 - b_2||_1$. Applying this to $b_1 =_g b$, $b_2 = b$, we get:

$$\sum_{g\in F}\int_0^\infty \|ge_t(b)-e_t(b)\|_1 \mathrm{d}t = \sum_{g\in F}\|gb-b\|_1 < \varepsilon \|b\|_1 = \varepsilon \int_0^\infty \|e_t(b)\|_1 \mathrm{d}t$$

Thus, there must exist t > 0 such that $e = e_t(b)$ satisfies $\sum_{g \in F} \|ge - e\|_1 < \varepsilon \|e\|_1.$

- 4 注 ▶ 4 @ ▶

Step 2: Namioka's trick. If $b \in (\ell^1 \Gamma)_+)_1$ satisfies $\sum_{g \in \Gamma} \|_g b - b\|_1 < \varepsilon$, then $\exists t > 0$ such that $e = e_t(b)$ (spectral projection of b, or "level set", corresponding to $[t, \infty)$) satisfies $\sum_{g \in \Gamma} \|_g e - e\|_1 < \varepsilon \|e\|_1$.

Note first that $\forall y_1, y_2 \in \mathbb{R}_+$ we have $\int_0^\infty |e_t(y_1) - e_t(y_2)| dt = |y_1 - y_2|$. Thus, if $b_1, b_2 \in \ell^1 \Gamma_+$, then $\int_0^\infty |e_t(b_1) - e_t(b_2)| dt = |b_1 - b_2|$ (pointwise, as functions). Hence, $\int_0^\infty ||e_t(b_1) - e_t(b_2)||_1 dt = ||b_1 - b_2||_1$. Applying this to $b_1 =_g b$, $b_2 = b$, we get:

$$\sum_{g\in F}\int_0^\infty \|ge_t(b)-e_t(b)\|_1 \mathrm{d}t = \sum_{g\in F}\|gb-b\|_1 < \varepsilon \|b\|_1 = \varepsilon \int_0^\infty \|e_t(b)\|_1 \mathrm{d}t$$

Thus, there must exist t > 0 such that $e = e_t(b)$ satisfies $\sum_{g \in F} \|ge - e\|_1 < \varepsilon \|e\|_1.$

Step 3: End of proof of Følner's Thm. But then the set $K \subset \Gamma$ with $\chi_K = e$ is finite and satisfies $|FK \setminus K| \leq \sum_{g \in F} |gK \setminus K| < \varepsilon |K|$.

▲ 注 ▶ ▲ 御 ▶

Følner condition for II_1 factors

Connes' 1976 Følner-type characterization of amenable II₁ factors

Let $M \subset \mathcal{B}(L^2M)$ be a II_1 factor. Then M is amenable iff for any $F \subset \mathcal{U}(M)$ finite and $\varepsilon > 0$, there exists a finite rank projection $e \in \mathcal{B}(L^2M)$ such that $||ueu^* - e||_{2,Tr} < \varepsilon ||e||_{2,Tr}, \forall u \in F$, where $||X||_{2,Tr} = Tr(X^*X)^{1/2}$ is the Hilbert-Schmidt norm on $\mathcal{B}(L^2M)$.

Følner condition for II_1 factors

Connes' 1976 Følner-type characterization of amenable II₁ factors

Let $M \subset \mathcal{B}(L^2M)$ be a II_1 factor. Then M is amenable iff for any $F \subset \mathcal{U}(M)$ finite and $\varepsilon > 0$, there exists a finite rank projection $e \in \mathcal{B}(L^2M)$ such that $||ueu^* - e||_{2,Tr} < \varepsilon ||e||_{2,Tr}, \forall u \in F$, where $||X||_{2,Tr} = Tr(X^*X)^{1/2}$ is the Hilbert-Schmidt norm on $\mathcal{B}(L^2M)$.

⇒ Step 1: Day-type trick. $\exists b \in (L^1(\mathcal{B})_+)_1$ such that $||ubu^* - b||_{1,T_r} \leq \varepsilon$, $\forall u \in F$, where $\mathcal{B} = \mathcal{B}(L^2M)$, $||X||_{1,T_r} = Tr(|X|)$.

Proof of this part is same as proof of Step 1 of Følner's condition for amenable groups, using the fact that $L^1(\mathcal{B}, Tr)^* = \mathcal{B}(L^2M) = \mathcal{B}$.

Følner condition for II_1 factors

Connes' 1976 Følner-type characterization of amenable II₁ factors

Let $M \subset \mathcal{B}(L^2M)$ be a II_1 factor. Then M is amenable iff for any $F \subset \mathcal{U}(M)$ finite and $\varepsilon > 0$, there exists a finite rank projection $e \in \mathcal{B}(L^2M)$ such that $||ueu^* - e||_{2,Tr} < \varepsilon ||e||_{2,Tr}, \forall u \in F$, where $||X||_{2,Tr} = Tr(X^*X)^{1/2}$ is the Hilbert-Schmidt norm on $\mathcal{B}(L^2M)$.

⇒ Step 1: Day-type trick. $\exists b \in (L^1(\mathcal{B})_+)_1$ such that $||ubu^* - b||_{1,T_r} \leq \varepsilon$, $\forall u \in F$, where $\mathcal{B} = \mathcal{B}(L^2M)$, $||X||_{1,T_r} = Tr(|X|)$.

Proof of this part is same as proof of Step 1 of Følner's condition for amenable groups, using the fact that $L^1(\mathcal{B}, Tr)^* = \mathcal{B}(L^2M) = \mathcal{B}$.

Switching to $\| \|_{2,Tr}$ -estimate. With *b* as above, one has $\|ub^{1/2}u^* - b^{1/2}\|_{2,Tr} \leq 2\varepsilon^{1/2} = 2\varepsilon^{1/2}\|b^{1/2}\|_{2,Tr}, \forall u \in F$. This is due to the Powers-Stømer inequality, showing that if $b_1, b_2 \in L^1(\mathcal{B}, Tr)_+$ then

$$\|b_1^{1/2} - b_2^{1/2}\|_{2,Tr}^2 \le \|b_1 - b_2\|_{1,Tr} \le \|b_1^{1/2} - b_2^{1/2}\|_{2,Tr}\|b_1^{1/2} + b_2^{1/2}\|_{2,Tr}.$$
Step 2: "Connes' joint distribution trick" and "Namioka-type trick". If $a \in L^2(\mathcal{B}, Tr)_+$ satisfies $Tr(a^2) = 1$ and $\sum_{g \in F} ||uau^* - a||_{2,Tr}^2 < \varepsilon'^2$ then $\exists t > 0$ such that $\sum_{g \in F} ||ue_t(a)u^* - e_t(a)||_{2,Tr}^2 < \varepsilon'^2 ||e_t(a)||_{2,Tr}^2$. This is because if $a_1, a_2 \in \mathcal{B}(L^2M)_+$ are finite rank positive operators then there exists a (discrete) measure m on $X = \mathbb{R}_+ \times \mathbb{R}_+$ such that for any Borel functs f_1, f_2 on \mathbb{R}_+ one has $\int_X f_1(t)f_2(s)dm(t,s) = Tr(f_1(a_1)f_2(a_2))$. (this is Applying this to $a_1 = a, a_2 = uau^*$, one then gets:

$$\sum_{g\in F}\int_0^\infty \|ue_t(a)u^*-e_t(a)\|_{2,T^r}^2\mathrm{d} t$$

$$=\sum_{g\in F}\|uau^*-a\|_{2,Tr}^2 < {\varepsilon'}^2\|a\|_{2,Tr}^2 = {\varepsilon'}^2\int_0^\infty \|e_t(a)\|_{2,Tr}^2 \mathrm{d}t$$

But then there must exist t > 0 such that $e = e_t(a)$ satisfies $\sum_{g \in F} \|ueu^* - e\|_{2,Tr}^2 < \varepsilon'^2 \|e\|_{2,Tr}^2$

 \leftarrow *Exercise*!

< ∃ > < □ >

Connes Thm: R is the unique amenable II₁ factor

C's 1976 Fundamental Thm: Any separable amenable II_1 factor is AFD and is thus isomorphic to the hyperfinite factor R.

From C's Følner-type condition to local AFD. Let $1 \in F \subset U(M)$ finite and $\varepsilon > 0$. By the C's Følner condition, $\exists p = p_{\mathcal{H}_0}$ for some finite dim $\mathcal{H}_0 \subset L^2 M$ s.t. $\|upu^* - p\|_{2,Tr} < \varepsilon \|p\|_{2,Tr}, \forall u \in F$. By density of M in $L^2 M$, may assume $\mathcal{H}_0 \subset M$. Let $\{\eta_j\}_j$ be an orthonormal basis of \mathcal{H}_0 , i.e., $\tau(\eta_i^*\eta_j) = \delta_{ij}, \sum_j \mathbb{C}\eta_j = \mathcal{H}_0$.

Connes Thm: R is the unique amenable II₁ factor

C's 1976 Fundamental Thm: Any separable amenable II_1 factor is AFD and is thus isomorphic to the hyperfinite factor R.

From C's Følner-type condition to local AFD. Let $1 \in F \subset \mathcal{U}(M)$ finite and $\varepsilon > 0$. By the C's Følner condition, $\exists p = p_{\mathcal{H}_0}$ for some finite dim $\mathcal{H}_0 \subset L^2 M$ s.t. $\|upu^* - p\|_{2,Tr} < \varepsilon \|p\|_{2,Tr}, \forall u \in F$. By density of M in $L^2 M$, may assume $\mathcal{H}_0 \subset M$. Let $\{\eta_j\}_j$ be an orthonormal basis of \mathcal{H}_0 , i.e., $\tau(\eta_i^*\eta_j) = \delta_{ij}, \sum_j \mathbb{C}\eta_j = \mathcal{H}_0$.

Local quantization (LQ) lemma

 $\forall F' \subset M \text{ finite, } \delta > 0, \exists q \in \mathcal{P}(M) \text{ s.t. } \|qxq - \tau(x)q\|_2 < \delta \|q\|_2, \forall x \in F'.$

We apply the LQ lemma to $F' := \{\eta_i^* u \eta_j \mid u \in F, i, j\}$. Note that, as $\delta \to 0$, the elements $\eta_i q \eta_j^*$ behave like matrix units e_{ij} , i.e., $e_{ij}e_{kl} \approx \delta_{jk}e_{il}$. Thus, the space $\mathcal{H}q\mathcal{H}^* = \sum_{i,j} \mathbb{C}\eta_i q \eta_j^*$ behaves as the algebra $B_0 = \sum_{i,j} \mathbb{C}e_{ij}$, with $1_{B_0} = \sum_j e_{jj} \approx \sum_j \eta_j q \eta_j^*$ satisfying $||usu^* - s||_2 < \varepsilon ||s||_2$ and $||sus - E_{B_0}(sus)||_2 < \varepsilon ||s||_2$, $\forall u \in F$. Since any $y \in M$ is a combination of 4 unitaries in M, we have shown that the amenable II₁ factor M satisfies the following local AFD property:

 $\forall F \subset M$ finite, $\varepsilon > 0$, $\exists B_0 \subset M$ non-zero fin dim *-subalgebra such that if $s = 1_{B_0}$ then $\|E_{B_0}(sys) - sys\|_2 \le \varepsilon \|s\|_2$, $\|[s, y]\|_2 \le \varepsilon \|s\|_2$, $\forall y \in F$.

Since any $y \in M$ is a combination of 4 unitaries in M, we have shown that the amenable II₁ factor M satisfies the following local AFD property:

 $\forall F \subset M$ finite, $\varepsilon > 0$, $\exists B_0 \subset M$ non-zero fin dim *-subalgebra such that if $s = 1_{B_0}$ then $\|E_{B_0}(sys) - sys\|_2 \le \varepsilon \|s\|_2$, $\|[s, y]\|_2 \le \varepsilon \|s\|_2$, $\forall y \in F$.

From local AFD to global AFD. One uses a maximality argument to get from this local AFD, a "global AFD". Let \mathcal{F} be the set of families of subalgebras $(B_i)_i$ of M, with B_i finite dimensional, $s_i = 1_{B_i}$ mutually orthogonal, such that if $B = \bigoplus_i B_i \subset M$, $s = 1_B$, then $||[s, y]||_2 \leq \varepsilon ||s||_2$, $||E_B(sys) - sys||_2 \le \varepsilon ||s||_2, \forall y \in F$. Clearly \mathcal{F} with its natural order given by inclusion is inductively ordered. Let $(B_i)_i$ be a maximal family. Denote $p = 1 - 1_B$ and assume $p \neq 0$. Clearly pMp is amenable, so by local AFD $\exists B_0 \subset pMp$ fin dim *-subalgebra s.t. $s_0 = 1_{B_0}$ satisfies $\|[s_0, x]\|_2 \leq \varepsilon \|s_0\|_2$, $\|E_{B_0}(s_0xs_0) - s_0xs_0\|_2 \le \varepsilon \|s_0\|_2, \forall x \in pFp.$ By Pythagora, one gets that if $B_1 = B \oplus B_0$, $s_1 = 1_{B_1}$ then $||E_{B_1}(s_1ys_1) - s_1ys_1||_2 \le \varepsilon ||s_1||_2$, $\|[s_1, y]\|_2 \le \varepsilon \|s_1\|_2, \forall y \in F$. So $(B_i)_i \cup \{B_1\}$ contradicts the maximality of $(B_i)_i$. Thus, $\sum_i s_i = 1$. But then for a large finite subfamily $(B_i)_{i \in I_0}$, we have that $B = \sum_{i \in I_0} B_i \oplus \mathbb{C}(1 - \Sigma s_i)$ is fin. dim. and satisfies $||E_B(y) - y||_2 \le \varepsilon$, $\forall y \in F$. Thus, M follows AFD.

Some comments

• Connes' proof of "*M* amenable $\implies M \simeq R$ " in Annals of Math 1976, which is different from the above, first shows that any amenable *M* embeds into R^{ω} and "splits off *R*". That original proof became a major source of inspiration in the effort to classify nuclear *C**-algebras (Elliott, Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).

Some comments

• Connes' proof of "*M* amenable $\implies M \simeq R$ " in Annals of Math 1976, which is different from the above, first shows that any amenable *M* embeds into R^{ω} and "splits off *R*". That original proof became a major source of inspiration in the effort to classify nuclear *C**-algebras (Elliott, Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).

• Connes approximate embedding (CAE) conjecture, stated in his Ann Math 1976 paper, predicts that in fact any (separable) II₁ factor Membeds into R^{ω} , equivalently into $\Pi_{\omega}\mathbb{M}_{n\times n}(\mathbb{C})$. For group algebras $M = L(\Gamma)$ this amounts to "simulating" Γ by unitary groups U(n): $\forall F \subset \Gamma, m \ge 1, \varepsilon > 0, \exists n \text{ and } \{v_g\}_{g \in F} \subset U(n) \text{ such that for any word } w$ of length $\le m$ in the free group with generators in F, one has $|tr(w(\{v_g\}_g) - 1| \le \varepsilon \text{ if } w(F) = e \text{ and } |tr(w(\{v_g\}_g))| \le \varepsilon \text{ if } w(F) \neq e.$

Some comments

• Connes' proof of "*M* amenable $\implies M \simeq R$ " in Annals of Math 1976, which is different from the above, first shows that any amenable *M* embeds into R^{ω} and "splits off *R*". That original proof became a major source of inspiration in the effort to classify nuclear *C**-algebras (Elliott, Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).

• Connes approximate embedding (CAE) conjecture, stated in his Ann Math 1976 paper, predicts that in fact any (separable) II₁ factor Membeds into R^{ω} , equivalently into $\Pi_{\omega}\mathbb{M}_{n\times n}(\mathbb{C})$. For group algebras $M = L(\Gamma)$ this amounts to "simulating" Γ by unitary groups U(n): $\forall F \subset \Gamma, m \ge 1, \varepsilon > 0, \exists n \text{ and } \{v_g\}_{g \in F} \subset U(n) \text{ such that for any word } w$ of length $\le m$ in the free group with generators in F, one has $|tr(w(\{v_g\}_g) - 1| \le \varepsilon \text{ if } w(F) = e \text{ and } |tr(w(\{v_g\}_g))| \le \varepsilon \text{ if } w(F) \neq e.$

• An alternative characterization of R by K. Jung from 2007 shows that all embeddings of M in R^{ω} are unitary conjugate iff $M \simeq R$. A related open problem asks whether $(M' \cap M^{\omega})' \cap M^{\omega} = M$ implies $M \simeq R$.

Some consequences to C's Fund Thm

• Connes theorem implies that for any countable ICC amenable group Γ we have $L\Gamma \simeq R$. Also, any group measure space II₁ factor $L^{\infty}X \rtimes \Gamma$ arising from a pmp action of countable amenable group Γ , is isomorphic to R.

Some consequences to C's Fund Thm

• Connes theorem implies that for any countable ICC amenable group Γ we have $L\Gamma \simeq R$. Also, any group measure space II₁ factor $L^{\infty}X \rtimes \Gamma$ arising from a pmp action of countable amenable group Γ , is isomorphic to R.

• More generally, if a II₁ factor M arises as a crossed product $B \rtimes \Gamma$ of a separable amenable tracial vN algebra (B, τ) by a countable amenable group Γ , then $M \simeq R$. In particular, if $\Gamma \curvearrowright R$, with Γ amenable and the action outer, then $R \rtimes \Gamma \simeq R$.

Some consequences to C's Fund Thm

• Connes theorem implies that for any countable ICC amenable group Γ we have $L\Gamma \simeq R$. Also, any group measure space II₁ factor $L^{\infty}X \rtimes \Gamma$ arising from a pmp action of countable amenable group Γ , is isomorphic to R.

• More generally, if a II₁ factor M arises as a crossed product $B \rtimes \Gamma$ of a separable amenable tracial vN algebra (B, τ) by a countable amenable group Γ , then $M \simeq R$. In particular, if $\Gamma \curvearrowright R$, with Γ amenable and the action outer, then $R \rtimes \Gamma \simeq R$.

• Since any vN subalgebra of R is amenable, it follows that any II₁ subfactor of R is isomorphic to R. In fact, one can easily deduce:

Classification of all vN subalgebras of R

If $B \subset R$ is a vN subalgebra, then $B \simeq \bigoplus_{n \ge 1} \mathbb{M}_n(A_n) \oplus R \overline{\otimes} A_0$, where $A_m, m \ge 0$ are abelian vN algebras.

< ∃ > < ₫ >

Regular and Cartan subalgebras: definition and examples

• (Dixmier 1954) If M is a II₁ factor and $B \subset M$ is a vN subalgebra, then $\mathcal{N}_M(B) = \{u \in \mathcal{U}(M) \mid uBu^* = B\}$ is the **normalizer** of B in M. B is **regular** (resp. **singular**) in M if $\mathcal{N}_M(B)'' = M$ (resp. $\mathcal{N}_M(B) = \mathcal{U}(B)$). A regular MASA $A \subset M$ called a **Cartan subalgebra** of M (Vershik, Feldman-Moore 1970s).

Regular and Cartan subalgebras: definition and examples

• (Dixmier 1954) If M is a II₁ factor and $B \subset M$ is a vN subalgebra, then $\mathcal{N}_M(B) = \{u \in \mathcal{U}(M) \mid uBu^* = B\}$ is the **normalizer** of B in M. B is **regular** (resp. **singular**) in M if $\mathcal{N}_M(B)'' = M$ (resp. $\mathcal{N}_M(B) = \mathcal{U}(B)$). A regular MASA $A \subset M$ called a **Cartan subalgebra** of M (Vershik, Feldman-Moore 1970s).

• It is immediate to see that $D \subset R$ is a Cartan subalgebra. Also, if $\Gamma \curvearrowright X$ is a free ergodic pmp action, then $A = L^{\infty}X \subset L^{\infty}X \rtimes \Gamma = M$ is clearly a Cartan subalgebra. For instance, if Γ arbitrary countable group and $\Gamma \curvearrowright (X, \mu) = (X_0, \mu_0)^{\Gamma}$ is the Bernoulli action.

Regular and Cartan subalgebras: definition and examples

• (Dixmier 1954) If M is a II₁ factor and $B \subset M$ is a vN subalgebra, then $\mathcal{N}_M(B) = \{u \in \mathcal{U}(M) \mid uBu^* = B\}$ is the **normalizer** of B in M. B is **regular** (resp. **singular**) in M if $\mathcal{N}_M(B)'' = M$ (resp. $\mathcal{N}_M(B) = \mathcal{U}(B)$). A regular MASA $A \subset M$ called a **Cartan subalgebra** of M (Vershik, Feldman-Moore 1970s).

• It is immediate to see that $D \subset R$ is a Cartan subalgebra. Also, if $\Gamma \curvearrowright X$ is a free ergodic pmp action, then $A = L^{\infty}X \subset L^{\infty}X \rtimes \Gamma = M$ is clearly a Cartan subalgebra. For instance, if Γ arbitrary countable group and $\Gamma \curvearrowright (X, \mu) = (X_0, \mu_0)^{\Gamma}$ is the Bernoulli action.

• If $B \subset M$ is a regular vN subalgebra and $M \subset^{e_B} \langle M, e_B \rangle$ its basic construction, then its canonical normal faithful semifinite trace Tr (defined by $Tr(xe_By) = \tau(xy), \forall x, y \in M$) is semifinite on $B' \cap \langle M, e_B \rangle$.

< 三 > < 四 >

Connes-Feldman-Weiss and Ornstein-Weiss Theorems 1980-1981

If *M* is a separable amenable II₁ factor and $A \subset M$ is Cartan, then $(A \subset M) \simeq (D \subset R)$. In particular, any two free ergodic pmp actions of countable amenable groups $\Gamma \curvearrowright X$, $\Lambda \curvearrowright Y$ are orbit equivalent.

Proof. Note first that given any regular inclusion $B \subset M$, the trace Tr is semifinite on $\mathcal{M} := B' \cap \langle M, e_B \rangle$ (*Exercise!*). Also, if $u \in \mathcal{N}_M(B)$ then $\operatorname{Ad}(u)(\mathcal{M}) = \mathcal{M}$, $Tr \circ \operatorname{Ad}(u) = Tr$.

Connes-Feldman-Weiss and Ornstein-Weiss Theorems 1980-1981

If *M* is a separable amenable II₁ factor and $A \subset M$ is Cartan, then $(A \subset M) \simeq (D \subset R)$. In particular, any two free ergodic pmp actions of countable amenable groups $\Gamma \curvearrowright X$, $\Lambda \curvearrowright Y$ are orbit equivalent.

Proof. Note first that given any regular inclusion $B \subset M$, the trace Tr is semifinite on $\mathcal{M} := B' \cap \langle M, e_B \rangle$ (*Exercise!*). Also, if $u \in \mathcal{N}_M(B)$ then $\operatorname{Ad}(u)(\mathcal{M}) = \mathcal{M}$, $Tr \circ \operatorname{Ad}(u) = Tr$.

Følner-type condition. If *M* is amenable and $B \subset M$ is regular, then $\forall F \subset \mathcal{N}_M(B)$ finite, $\varepsilon > 0$, $\exists p \in \mathcal{P}(\mathcal{M})$ with $Tr(p) < \infty$ such that $\|upu^* - p\|_{2,Tr} < \varepsilon \|p\|_{2,Tr}, \forall u \in F$.

Note first that the hypertrace for $M \subset \mathcal{B}(L^2M)$ restricted to \mathcal{M} gives a state φ on \mathcal{M} such that $\varphi(uxu^*) = \varphi(x)$, $\forall u \in \mathcal{N}_M(B)$ and $x \in \mathcal{M}$. By using exactly as before Day's trick, one gets $b \in L^1(\mathcal{M}, Tr)_+$, Tr(b) = 1 such that $\|ubu^* - b\|_{1,Tr} < \varepsilon$, $\forall u \in F$. Using C's Joint Distribution trick and Namioka-type trick, one gets the desired p as $e_{[t,\infty)}(b)$ for some t > 0.

From the Følner-type condition to local AFD for $A \subset M$ Cartan. Any "finite" $p \in \mathcal{M}$ is of the form $\sum_i v_j e_A v_i^*$ for some finite set v_j of partial isometries normalizing A (*Exercise!*). By "local quantization" $\exists q \in \mathcal{P}(A)$ such that one approximately have $qv_i^*uv_jq \in \mathbb{C}q$, $\forall i, j, \forall u \in F$. This means $B_0 = \sum_{i,i} \mathbb{C} v_i q v_i$ is fin. dim. with diagonal $D_0 = \mathbb{C} v_i q v_i^* \subset A$ s.t. $s_0 = 1_{B_0}$ satisfies $||[s, u]||_2 \le \varepsilon ||s||_2$, $||E_{B_0}(sus) - sus||_2 \le \varepsilon ||s||_2$, $\forall u \in F$. From local AFD to global AFD. Using a maximality argument, one shows that the local AFD implies: $\forall F \subset M$ finite, $\varepsilon > 0$, $\exists B_1 \subset M$ fin dim vN subalgebra, generated by matrix units $\{e_{ii}^k\}_{i,j,k}$ such that $e_{ii}^k \in A$ and e_{ii}^k normalize A. This shows that $A \subset M$ is AFD, which immediately implies $(A \subset M) \simeq (D \subset R)$ (*Exercise!*)

To see the last part of the CFW-OW theorems, about orbit equivalence of amenable group actions, we need some remarks/definitions.

Two remarks, by I.M. Singer 1955, Feldman-Moore 1977

(1) Let $\Gamma \curvearrowright X$, $\Lambda \curvearrowright Y$ be free ergodic pmp actions of countable groups. Then $(L^{\infty}X \subset L^{\infty}X \rtimes \Gamma) \simeq (L^{\infty}Y \rtimes L^{\infty}Y \rtimes \Lambda)$ iff $\Gamma \curvearrowright X$, $\Lambda \curvearrowright Y$ are **orbit equivalent** (OE), i.e., $\exists \Delta : X \simeq Y$ such that $\Delta(\Gamma t) = \Lambda(\Delta(t))$, $\forall_{ae}t \in X$.

Thus, since any two free ergodic pmp actions $\Gamma \curvearrowright X$, $\Lambda \curvearrowright Y$ of countable amenable groups give rise to Cartan inclusions into R, the uniqueness of the Cartan in R shows that these two actions are OE. This is Ornstein-Weiss 1980 Thm.

(2) Let $\Gamma \curvearrowright (X, \mu)$ be an ergodic pmp action of a countable group and \mathcal{R} the corresponding orbit equivalence relation on X: $t \sim s$ if $\Gamma t = \Gamma s$.

One associates to it a II₁ factor $L(\mathcal{R})$ with a Cartan subalgebra $A = L^{\infty}X$, by taking the algebra of formal finite sums $\Sigma_{\phi}a_{\phi}\lambda(\phi)$, where $a_{\phi} \in A$, ϕ are local isomorphisms of X with graph in \mathcal{R} , endowed with its structure of multiplicative pseudo-group, endowed with the trace $\tau(av_{\phi}) = \int ai(\varphi) d\mu$, where $i(\phi)$ is the characteristic function of the set $X_0 \subset X$ on which ϕ is the identity. (2) Let $\Gamma \curvearrowright (X, \mu)$ be an ergodic pmp action of a countable group and \mathcal{R} the corresponding orbit equivalence relation on X: $t \sim s$ if $\Gamma t = \Gamma s$.

One associates to it a II₁ factor $L(\mathcal{R})$ with a Cartan subalgebra $A = L^{\infty}X$, by taking the algebra of formal finite sums $\sum_{\phi} a_{\phi}\lambda(\phi)$, where $a_{\phi} \in A$, ϕ are local isomorphisms of X with graph in \mathcal{R} , endowed with its structure of multiplicative pseudo-group, endowed with the trace $\tau(av_{\phi}) = \int ai(\varphi) d\mu$, where $i(\phi)$ is the characteristic function of the set $X_0 \subset X$ on which ϕ is the identity.

Moreover, if $v : \mathcal{R} \times \mathcal{R} \to A$ is a 2-cocycle for \mathcal{R} , then one can form the *v*-twisted version $L(\mathcal{R}, v)$ of this algebra, where $\lambda(\phi)\lambda(\psi) = v_{\phi,\psi}\lambda(\phi\psi)$. Given any Cartan inclusion $A \subset M$, with M a countably generated II₁ factor, there exists (\mathcal{R}, v) such that $(A \subset M) \simeq (L^{\infty}X \subset L(\mathcal{R}, v))$. Also, for Cartan inclusions we have $(A_1 \subset M_1) \simeq (A_2 \subset M_2)$ iff $(\mathcal{R}_1, v_1) \simeq (\mathcal{R}_2, v_2)$ (2) Let $\Gamma \curvearrowright (X, \mu)$ be an ergodic pmp action of a countable group and \mathcal{R} the corresponding orbit equivalence relation on X: $t \sim s$ if $\Gamma t = \Gamma s$.

One associates to it a II₁ factor $L(\mathcal{R})$ with a Cartan subalgebra $A = L^{\infty}X$, by taking the algebra of formal finite sums $\sum_{\phi} a_{\phi}\lambda(\phi)$, where $a_{\phi} \in A$, ϕ are local isomorphisms of X with graph in \mathcal{R} , endowed with its structure of multiplicative pseudo-group, endowed with the trace $\tau(av_{\phi}) = \int ai(\varphi) d\mu$, where $i(\phi)$ is the characteristic function of the set $X_0 \subset X$ on which ϕ is the identity.

Moreover, if $v : \mathcal{R} \times \mathcal{R} \to A$ is a 2-cocycle for \mathcal{R} , then one can form the *v*-twisted version $L(\mathcal{R}, v)$ of this algebra, where $\lambda(\phi)\lambda(\psi) = v_{\phi,\psi}\lambda(\phi\psi)$. Given any Cartan inclusion $A \subset M$, with M a countably generated II₁ factor, there exists (\mathcal{R}, v) such that $(A \subset M) \simeq (L^{\infty}X \subset L(\mathcal{R}, v))$. Also, for Cartan inclusions we have $(A_1 \subset M_1) \simeq (A_2 \subset M_2)$ iff $(\mathcal{R}_1, v_1) \simeq (\mathcal{R}_2, v_2)$

• Thus, by the uniqueness of the Cartan in *R*, we have that any two ergodic pmp actions of any two amenable group on non-atomic prob spaces are OE, and that any 2-cocycle *v* for such actions is co-boundary.

• The CFW theorem shows that there exists just one Cartan subalgebra $A \subset R$, up to conjugacy by an automorphism of R. One would of course like to classify ALL regular inclusions $B \subset R$. A natural "homogeneity/irreducibility" condition to impose is that $B' \cap R = \mathcal{Z}(B)$. Besides the case B = A abelian, a first case of interest is when B = N is a subfactor. By Connes Thm, such N is necessarily isomorphic to R and the irreducibility condition amounts to $N' \cap R = \mathbb{C}$.

• It is an easy exercise to show that if $N \subset M$ is a regular irreducible inclusion of II₁ factors, then $\Gamma_{N \subset M} = \mathcal{N}_M(N)/\mathcal{U}(N)$ is a discrete group, which is countable if M is separable and it is amenable if $M \simeq R$ (all this will follow in a short while, from a more ample discussion).

Ocneanu's Theorem 1985

Irreducible regular inclusions $N \subset R$ are completely classified (up to conjugacy by an automorphism of R) by the normalizing group, $\Gamma_{N \subset R} := \mathcal{N}_R(N)/\mathcal{U}(N).$

More precisely, if $N_0 \subset R$ is another irreducible regular subfactor then there exists an automorphism θ of R s.t. $\theta(N_0) = N$ iff $\Gamma_{N_0 \subset R} \simeq \Gamma_{N \subset R}$.

Since any inclusion $N \subset M = N \rtimes \Gamma$ arising from a free action $\Gamma \curvearrowright N$ is irreducible and regular with $\Gamma_{N \subset M} = \Gamma$, the above is equivalent to saying that any irreducible regular inclusion of factors $(N \subset R)$ is isomorphic to $(N \subset N \rtimes \Gamma)$, where $\Gamma = \Gamma_{N \subset R}$ and $\Gamma \curvearrowright N = R = \mathbb{M}_2(\mathbb{C})^{\overline{\otimes}\Gamma}$ is the Bernoulli action.

▲ 臣 ▶ ▲ 御 ▶

• A cocycle action of a group Γ on a tracial vN algebra (B, τ) is a map $\sigma : \Gamma \to \operatorname{Aut}(B, \tau)$ which is multiplicative modulo inner automorphisms of B,

$$\sigma_{g}\sigma_{h} = \mathrm{Ad}(v_{g,h})\sigma_{gh}, \forall g, h \in \Gamma,$$

with the unitary elements $v_{g,h} \in \mathcal{U}(B)$ satisfying the cocycle relation

$$v_{g,h}v_{gh,k} = \sigma_g(v_{h,k})v_{g,hk}, \forall g, h, k \in \Gamma.$$

The cocycle action is **free** if σ_g properly outer $\forall g \neq e$ ($\theta \in Aut(B, \tau)$) is properly outer if $b \in B$ with $\theta(x)b = bx$, $\forall x \in B$, implies b = 0; thus, if B = N is a II₁ factor then this amounts to θ being outer).

• (σ, v) is a "genuine" action, if $v \equiv 1$.

• Connes-Jones cocycles (1984): Let $\Gamma = \langle S \rangle$ infinite group and $\pi : \mathbb{F}_S \to \Gamma \to 1$ with kernel $ker(\pi) \simeq \mathbb{F}_{\infty}$. This gives rise to $N = L(ker(\pi)) \subset L(\mathbb{F}_S) = M$ irreducible and regular, with $M = N \rtimes_{(\sigma, v)} \Gamma$ for some free cocycle action (σ, v) of Γ on $N = L(\mathbb{F}_{\infty})$. • Connes-Jones cocycles (1984): Let $\Gamma = \langle S \rangle$ infinite group and $\pi : \mathbb{F}_S \to \Gamma \to 1$ with kernel $ker(\pi) \simeq \mathbb{F}_{\infty}$. This gives rise to $N = L(ker(\pi)) \subset L(\mathbb{F}_S) = M$ irreducible and regular, with $M = N \rtimes_{(\sigma,v)} \Gamma$ for some free cocycle action (σ, v) of Γ on $N = L(\mathbb{F}_{\infty})$.

• Amplified cocycles: Given any action $\Gamma \curvearrowright^{\sigma} N$ and $p \in \mathcal{P}(N)$, one has $p \sim \sigma_g(p)$ via some partial isometry $w_g \in N$. Then $\operatorname{Ad}(w_g) \circ \sigma_{g|pNp}$ is a cocyle action of Γ on $N^t = pNp$, where $t = \tau(p)$. Denoted (σ^t, v^t) , in which $v_{g,h}^t := w_g \sigma_g(w_h) w_{gh}^*$, $\forall g, h$.

Crossed product vN algebras from cocycle actions

• Any cocycle action $\Gamma \curvearrowright^{(\sigma,v)}(B,\tau)$ gives rise to a crossed product inclusion $B \subset M = B \rtimes_{(\sigma,v)} \Gamma$, in a similar way we defined the usual crossed product for actions, where multiplication is given by $u_g u_h = v_{g,h} u_{gh}$ and $u_g b = \sigma_g(b) u_g$. Clearly *B* is regular in *M*.

Crossed product vN algebras from cocycle actions

• Any cocycle action $\Gamma \curvearrowright^{(\sigma,v)}(B,\tau)$ gives rise to a crossed product inclusion $B \subset M = B \rtimes_{(\sigma,v)} \Gamma$, in a similar way we defined the usual crossed product for actions, where multiplication is given by $u_g u_h = v_{g,h} u_{gh}$ and $u_g b = \sigma_g(b) u_g$. Clearly *B* is regular in *M*.

• One can easily show that the cocycle action is free iff $B' \cap M = \mathcal{Z}(B)$. In particular, if B = N is a II₁ factor, then (σ, v) is free iff $N' \cap M = \mathbb{C}1$, i.e., N is **irreducible** in $M = N \rtimes \Gamma$.

• Any cocycle action $\Gamma \curvearrowright^{(\sigma,v)}(B,\tau)$ gives rise to a crossed product inclusion $B \subset M = B \rtimes_{(\sigma,v)} \Gamma$, in a similar way we defined the usual crossed product for actions, where multiplication is given by $u_g u_h = v_{g,h} u_{gh}$ and $u_g b = \sigma_g(b) u_g$. Clearly *B* is regular in *M*.

• One can easily show that the cocycle action is free iff $B' \cap M = \mathcal{Z}(B)$. In particular, if B = N is a II₁ factor, then (σ, v) is free iff $N' \cap M = \mathbb{C}1$, i.e., N is **irreducible** in $M = N \rtimes \Gamma$.

• Conversely, if $N \subset M$ is irreducible and regular and one denotes $\Gamma = \mathcal{N}_M(N)/\mathcal{U}(N)$, then choosing $U_g \in \mathcal{N}$ for each $g \in \Gamma$ and letting

$$\sigma_{g} = \operatorname{Ad}(U_{g}), \ \ v_{g,h} = U_{g}U_{h}U_{gh}^{*}$$

shows that $M = N \rtimes_{(\sigma, v)} \Gamma$ (this is a remark by Jones, Sutherland 1980).

• Two cocycle actions (σ_i, v_i) of Γ_i on (B_i, τ_i) , i = 1, 2, are **cocycle conjugate** if $\exists \theta : (B_1, \tau_1) \simeq (B_2, \tau_2)$, $\gamma : \Gamma_1 \simeq \Gamma_2$ and $w_g \in \mathcal{U}(B_2)$ such that :

$$\theta \sigma_1(g) \theta^{-1} = \mathrm{Ad} \circ \sigma_2(\gamma(g)), \forall g,$$

$$heta(v_1(g,h)) = w_g \sigma_2(g)(w_h) v_2(\gamma(g),\gamma(h)) w_{gh}^*, \forall g, h.$$

• Two free cocycle actions $\Gamma_i \curvearrowright^{(\sigma_i, v_i)}$ on the II₁ factors N_i , i = 1, 2, are cocycle conjugate iff their associated crossed product inclusions are isomorphic, $(N_1 \subset N_1 \rtimes \Gamma_1) \simeq (N_2 \subset N_2 \rtimes \Gamma_2)$.

• The cocycle action (σ, v) of Γ on $(B\tau)$ **untwists** (or is **co-boundary**) if $\exists w_g \in \mathcal{U}(B)$ s.t. $v_{g,h} = w_g \sigma_g(w_h) w_{gh}^*$, $\forall g, h$. Thus, (σ, v) untwists iff it is cocycle conjugate to a genuine action.

Note this is a bit stronger than $\sigma'_g = \operatorname{Ad}(w_g) \circ \sigma_g$ being a "genuine" action. It is equivalent to: $\exists w_g \in \mathcal{U}(B)$ s.t. $U'_g = w_g U_g \in B \rtimes_{(\sigma,v)} \Gamma$ satisfy $U'_g U'_h = U'_{gh}$, $\forall g, h$.

• The cocycle action (σ, v) of Γ on $(B\tau)$ **untwists** (or is **co-boundary**) if $\exists w_g \in \mathcal{U}(B)$ s.t. $v_{g,h} = w_g \sigma_g(w_h) w_{gh}^*$, $\forall g, h$. Thus, (σ, v) untwists iff it is cocycle conjugate to a genuine action.

Note this is a bit stronger than $\sigma'_g = \operatorname{Ad}(w_g) \circ \sigma_g$ being a "genuine" action. It is equivalent to: $\exists w_g \in \mathcal{U}(B)$ s.t. $U'_g = w_g U_g \in B \rtimes_{(\sigma,v)} \Gamma$ satisfy $U'_g U'_h = U'_{gh}$, $\forall g, h$.

Example

• Clearly any cocycle action of $\Gamma = \mathbb{F}_n \in$ untwists.

Original formulation of Ocneanu's theorem

• O's original Thm is that any two free cocycle actions of a countable amenable group Γ on R are cocycle conjugate.

This result was already known in the case $\Gamma = \mathbb{Z}$, $\mathbb{Z}/n\mathbb{Z}$ (Connes 1975) and in the case Γ finite (Jones 1980). In case Γ finite, Jones proved that any two free Γ -actions on R are in fact conjugate and that any 1-cocycle of a finite group action on any II₁ factor is co-boundary.

From the above discussion, we see that O's result implies that any cocycle action of a countable amenable group untwists.

If Γ is amenable, the crossed product $R \rtimes_{(\sigma,v)} \Gamma$ is amenable, so by C's Thm it is isomorphic to R. Thus, by the above remarks, the uniqueness (up to cocycle conjugacy) of free cocycle Γ -actions on R translates into the uniqueness (up to conjugacy by automorphisms of R) of irreducible regular subfactors $N \subset R$ with $\Gamma_{N \subset R} = \Gamma$. In particular, O's result shows that any such irreducible regular inclusion $N \subset R$ is a "true" (untwisted) crossed product construction, coming from a "genuine" Γ -action.

Sketch of proof of O's Thm (two approaches)....

• Let M be a II_1 factor and $B \subset M$ regular with $B' \cap M = \mathcal{Z}(B) = L^{\infty}(X, \mu)$. These assumptions imply B is "homogeneous", i.e., either $B = M_n(\mathbb{C}) \overline{\otimes} L^{\infty} X$, for some $n \ge 1$, or $B = \int_X B_t d\mu(t)$, where B_t are II_1 factors, $\forall_{ae} t \in X$. If in addition M = R, in this latter case we have $B_t \simeq R$ and $B \simeq R \overline{\otimes} L^{\infty} X$. The normalizer $\mathcal{N}_M(B)$ defines an amenable **discrete measured groupoid** $\mathcal{G} = \mathcal{G}_{B \subset M}$ together with a free cocycle action $(\alpha, v) = (\alpha_{B \subset M}, v_{B \subset M})$ of \mathcal{G} on B. The iso class of the inclusion $B \subset M$ is completely encoded in the cocycle conjugacy class of $\mathcal{G} \curvearrowright^{(\alpha, v)} B$. • Let M be a II_1 factor and $B \subset M$ regular with $B' \cap M = \mathcal{Z}(B) = L^{\infty}(X, \mu)$. These assumptions imply B is "homogeneous", i.e., either $B = M_n(\mathbb{C}) \overline{\otimes} L^{\infty} X$, for some $n \ge 1$, or $B = \int_X B_t d\mu(t)$, where B_t are II_1 factors, $\forall_{ae} t \in X$. If in addition M = R, in this latter case we have $B_t \simeq R$ and $B \simeq R \overline{\otimes} L^{\infty} X$. The normalizer $\mathcal{N}_M(B)$ defines an amenable **discrete measured groupoid** $\mathcal{G} = \mathcal{G}_{B \subset M}$ together with a free cocycle action $(\alpha, v) = (\alpha_{B \subset M}, v_{B \subset M})$ of \mathcal{G} on B. The iso class of the inclusion $B \subset M$ is completely encoded in the cocycle conjugacy class of $\mathcal{G} \curvearrowright^{(\alpha, v)} B$.

• In the case $B \subset M = R$, the discrete groupoid \mathcal{G} accounts for an amenable ergodic countable equivalence relation "along" the space $\mathcal{G}^{(0)} = X$ of units of \mathcal{G} , with amenable countable isotropy groups Γ_t at each $t \in X$ acting outerly on $B_t \simeq R$.

< ≣ ► < ♂ ► 52/63 • When B is abelian, then $B \simeq L^{\infty}X$ and \mathcal{G} is just a countable amenable equiv rel \mathcal{R} on X, with α intrinsic to \mathcal{R} . The CFW Thm says that there is just one amenable countable equiv. rel. and it has vanishing coh v. This also implies that, for each $n \ge 1$, there is just one regular inclusion $B \subset R$ with $B' \cap R = \mathcal{Z}(B)$ and B of type I_n .
• When B is abelian, then $B \simeq L^{\infty}X$ and \mathcal{G} is just a countable amenable equiv rel \mathcal{R} on X, with α intrinsic to \mathcal{R} . The CFW Thm says that there is just one amenable countable equiv. rel. and it has vanishing coh v. This also implies that, for each $n \ge 1$, there is just one regular inclusion $B \subset R$ with $B' \cap R = \mathcal{Z}(B)$ and B of type I_n.

• If *B* is a factor, then $B \simeq R$ and the groupoid $\mathcal{G}_{B \subset R}$ is the group $\Gamma = \mathcal{N}_R(B)/\mathcal{U}(B)$, which follows countable amenable, and (α, v) is the free cocycle action of Γ on *B* implemented by $\mathcal{N}_R(B)$. O's Thm then shows that \mathcal{G} uniquely determines $B \subset R$. This clearly takes care of the case $\mathcal{Z}(B)$ atomic as well.

Solving the case $B \subset R$ with $B \simeq R \overline{\otimes} L^{\infty} X$

• So we are left with the case $B \subset R$ where $B = R \boxtimes L^{\infty} X$, with X diffuse, i.e., to the problem of classifying $\mathcal{G} \curvearrowright^{(\alpha,\nu)} B = R \boxtimes L^{\infty} X$ up to cocycle conjugacy, for all amenable groupoids \mathcal{G} with $\mathcal{G}^{(0)} = X$. When $v \equiv 1$ (i.e., for "genuine" actions of \mathcal{G}) this was solved as follows:

Solving the case $B \subset R$ with $B \simeq R \overline{\otimes} L^{\infty} X$

• So we are left with the case $B \subset R$ where $B = R \overline{\otimes} L^{\infty} X$, with X diffuse, i.e., to the problem of classifying $\mathcal{G} \curvearrowright^{(\alpha,\nu)} B = R \overline{\otimes} L^{\infty} X$ up to cocycle conjugacy, for all amenable groupoids \mathcal{G} with $\mathcal{G}^{(0)} = X$. When $v \equiv 1$ (i.e., for "genuine" actions of \mathcal{G}) this was solved as follows:

Sutherland-Takesaki Theorem 1985

Any two actions α_1, α_2 of the same amenable groupoid \mathcal{G} on $R \otimes L^{\infty} X$ are cocycle conjugate. Equivalently, any two regular inclusions of the form $B \subset R$ with $B' \cap R = \mathcal{Z}(B)$, with same $\mathcal{G}_{B \subset R}$ and with $v_{B \subset R} \equiv 1$, are conjugate by an automorphism of R.

Solving the case $B \subset R$ with $B \simeq R \overline{\otimes} L^{\infty} X$

• So we are left with the case $B \subset R$ where $B = R \overline{\otimes} L^{\infty} X$, with X diffuse, i.e., to the problem of classifying $\mathcal{G} \curvearrowright^{(\alpha,\nu)} B = R \overline{\otimes} L^{\infty} X$ up to cocycle conjugacy, for all amenable groupoids \mathcal{G} with $\mathcal{G}^{(0)} = X$. When $v \equiv 1$ (i.e., for "genuine" actions of \mathcal{G}) this was solved as follows:

Sutherland-Takesaki Theorem 1985

Any two actions α_1, α_2 of the same amenable groupoid \mathcal{G} on $R \otimes L^{\infty} X$ are cocycle conjugate. Equivalently, any two regular inclusions of the form $B \subset R$ with $B' \cap R = \mathcal{Z}(B)$, with same $\mathcal{G}_{B \subset R}$ and with $v_{B \subset R} \equiv 1$, are conjugate by an automorphism of R.

By the above result, it follows that we are left with proving that any 2-cocycle v for a cocycle action $\mathcal{G} \curvearrowright^{(\alpha,v)} R \overline{\otimes} L^{\infty} X$ of an amenable groupoid \mathcal{G} is co-boundary. As it turns out, this is a rather difficult problem.

< ∃ > < □ >

Theorem (P 2018)

Given any countable amenable group Γ , any free cocycle Γ -action $\Gamma \curvearrowright^{(\alpha,\nu)} N$ on an arbitrary II₁ factor N untwisis.

Theorem (P 2018)

Given any countable amenable group Γ , any free cocycle Γ -action $\Gamma \curvearrowright^{(\alpha,\nu)} N$ on an arbitrary II₁ factor N untwisis.

Same actually holds true for $\Gamma = \Gamma_1 *_K \Gamma_2 *_K \dots \in$, with Γ_n countable amenable and $K \subset \Gamma_n$ common finite subgroup, $\forall n$.

We prove this by building an embedding $R \hookrightarrow N$ that's $\alpha(\Gamma)$ -equivariant, modulo an inner perturbation (α', v') of (α, v) , and which is "large" in N, in the sense that $R' \cap N \rtimes \Gamma = \mathbb{C}$. This last condition forces v' to take values in R. By O's vanishing oh Thm, $(\alpha'_{|R}, v' \text{ can be perturbed to an}$ actual action α'' , with the untwisting of the cocycle v' in R, $v'_{g,h} = w_g \alpha'_g(w_h) w^*_{gh}$. But this means we have untwisted (α, v) as a cocycle action on N as well.

< ≧ > < @ >

An amenable/non-amenable dichotomy

While the "universal vanishing cohomology" property for a group Γ holds true for $\Gamma = \mathbb{F}_n$ and more generally free products of amenable groups, the existence of Γ -equivariant embeddings of the hyperfinite factor characterizes amenability of Γ :

Theorem (P 2018)

(1) Any cocycle action σ of a countable amenable group Γ on an arbitrary II₁ factor N admits an inner perturbation σ' that normalizes a hyperfinite subfactor $R \subset N$ satisfying $R' \cap N \rtimes_{\sigma} \Gamma = \mathbb{C}$.

An amenable/non-amenable dichotomy

While the "universal vanishing cohomology" property for a group Γ holds true for $\Gamma = \mathbb{F}_n$ and more generally free products of amenable groups, the existence of Γ -equivariant embeddings of the hyperfinite factor characterizes amenability of Γ :

Theorem (P 2018)

(1) Any cocycle action σ of a countable amenable group Γ on an arbitrary II₁ factor N admits an inner perturbation σ' that normalizes a hyperfinite subfactor $R \subset N$ satisfying $R' \cap N \rtimes_{\sigma} \Gamma = \mathbb{C}$.

(2) Conversely, if Γ is non-amenable, then there exist free actions $\Gamma \curvearrowright N = L(\mathbb{F}_{\infty})$ such that no inner perturbation of σ can normalize a diffuse amenable subalgebra $B \subset N$.

An amenable/non-amenable dichotomy

While the "universal vanishing cohomology" property for a group Γ holds true for $\Gamma = \mathbb{F}_n$ and more generally free products of amenable groups, the existence of Γ -equivariant embeddings of the hyperfinite factor characterizes amenability of Γ :

Theorem (P 2018)

(1) Any cocycle action σ of a countable amenable group Γ on an arbitrary II₁ factor N admits an inner perturbation σ' that normalizes a hyperfinite subfactor $R \subset N$ satisfying $R' \cap N \rtimes_{\sigma} \Gamma = \mathbb{C}$.

(2) Conversely, if Γ is non-amenable, then there exist free actions $\Gamma \curvearrowright N = L(\mathbb{F}_{\infty})$ such that no inner perturbation of σ can normalize a diffuse amenable subalgebra $B \subset N$.

PROOF of (1) uses subfactor techniques, constructing R as an inductive limit of relative commutants of a sequence of subfactors of finite index, coming from a "generalized tunnel" associated with a "diagonal subfactor" $(N \subset M_{\sigma})$. Part (2) uses deformation-rigidity (Ozawa-Popa 2007).

Theorem: P-Shlyakhtenko-Vaes 2018

Let \mathcal{G} be a discrete measured groupoid with $X = \mathcal{G}^{(0)}$ and $(B_t)_{t \in X}$ a measurable field of II₁ factors with separable predual. Assume that \mathcal{G} is amenable and that (α, v) is a free cocycle action of \mathcal{G} on $(B_t)_{t \in X}$. Then the cocycle v is a co-boundary: there exists a measurable field of unitaries $\mathcal{G} \ni g \mapsto w_g \in (B_t)_t$ s.t. $v(g, h) = \alpha_g(w_h^*) w_g^* w_{gh}$, $\forall (g, h) \in \mathcal{G}^{(2)}$.

Before discussing the proof, we mention that we have finally proved:

Complete classification of regular $B \subset R$ with $B' \cap R = \mathcal{Z}(B)$

Two regular vN subalgebras $B \subset R$ satisfying $B' \cap R = \mathcal{Z}(B)$ are conjugate by an automorphism of R iff they are of the same type and have isomorphic associated discrete measured groupoids $\mathcal{G}_{B \subset R}$.

Theorem: P-Shlyakhtenko-Vaes 2018

Let \mathcal{G} be a discrete measured groupoid with $X = \mathcal{G}^{(0)}$ and $(B_t)_{t \in X}$ a measurable field of II₁ factors with separable predual. Assume that \mathcal{G} is amenable and that (α, v) is a free cocycle action of \mathcal{G} on $(B_t)_{t \in X}$. Then the cocycle v is a co-boundary: there exists a measurable field of unitaries $\mathcal{G} \ni g \mapsto w_g \in (B_t)_t$ s.t. $v(g, h) = \alpha_g(w_h^*) w_g^* w_{gh}$, $\forall (g, h) \in \mathcal{G}^{(2)}$.

Before discussing the proof, we mention that we have finally proved:

Complete classification of regular $B \subset R$ with $B' \cap R = \mathcal{Z}(B)$

Two regular vN subalgebras $B \subset R$ satisfying $B' \cap R = \mathcal{Z}(B)$ are conjugate by an automorphism of R iff they are of the same type and have isomorphic associated discrete measured groupoids $\mathcal{G}_{B \subset R}$.

Any such *B* contains a Cartan subalgebra of *R* and if $A_1, A_2 \subset B$ are Cartan in *R*, there exists an automorphism θ of *R* satisfying $\theta(B) = B$ and $\theta(A_1) = A_2$.

About the proof

The proof of the vanishing 2-cohomology Thm uses the vanishing 2-coh for cocycle actions of amenable groups on II₁ factors (P 2018), the CFW vanishing of the con along $\mathcal{G}^{(0)} = X$, which we apply to the isotropy groups $\Gamma_t, t \in X$ of the amenable groupoid \mathcal{G} . To extend to the entire \mathcal{G} , we have to make equivariant choices of 2-cocycle vanishing, for the Γ_t , where the equivariance is w.r.t. to the isomorphisms $\Gamma_t \to \Gamma_s$ given by conjugation with an element $g \in \mathcal{G}$ with s(g) = s and t(g) = t (source and target of g).

About the proof

The proof of the vanishing 2-cohomology Thm uses the vanishing 2-coh for cocycle actions of amenable groups on II₁ factors (P 2018), the CFW vanishing of the con along $\mathcal{G}^{(0)} = X$, which we apply to the isotropy groups $\Gamma_t, t \in X$ of the amenable groupoid \mathcal{G} . To extend to the entire \mathcal{G} , we have to make equivariant choices of 2-cocycle vanishing, for the Γ_t , where the equivariance is w.r.t. to the isomorphisms $\Gamma_t \to \Gamma_s$ given by conjugation with an element $g \in \mathcal{G}$ with s(g) = s and t(g) = t (source and target of g).

The proof of this latter part depends on two key points. The first one is a technical result showing that such an equivariant choice exists, provided that the 2-cocycle vanishing for Γ_t , can be done in an "approximately unique way". The fact that a 2-cocycle untwists in an "approximately unique way" amounts to the fact that 1-cocycles for actions are "approximately co-boundary". The second key point is to prove such approximate vanishing of 1-cocycles for arbitrary amenable groups, a result we discuss next because of its independent interest.

• A 1-cocycle for an action $\Gamma \curvearrowright^{\sigma} N$ is a map $w : \Gamma \to \mathcal{U}(N)$ s.t. $w_g \sigma_g(w_h) = w_{gh}, \forall g, h$. The cocycle w is co-boundary if $\exists u \in \mathcal{U}(N)$ such that $w_g = \sigma_g(u)u^*, \forall g$; it is approximate co-boundary if $\exists u_n \in \mathcal{U}(N)$ such that $||w_g - \sigma_g(u_n)u_n^*||_2 \to 0, \forall g$, equivalently w is co-boundary as a 1-cocycle for $\Gamma \curvearrowright^{\sigma^{\omega}} N^{\omega}$. • A 1-cocycle for an action $\Gamma \curvearrowright^{\sigma} N$ is a map $w : \Gamma \to \mathcal{U}(N)$ s.t. $w_g \sigma_g(w_h) = w_{gh}, \forall g, h$. The cocycle w is co-boundary if $\exists u \in \mathcal{U}(N)$ such that $w_g = \sigma_g(u)u^*, \forall g$; it is approximate co-boundary if $\exists u_n \in \mathcal{U}(N)$ such that $||w_g - \sigma_g(u_n)u_n^*||_2 \to 0, \forall g$, equivalently w is co-boundary as a 1-cocycle for $\Gamma \curvearrowright^{\sigma^{\omega}} N^{\omega}$.

Theorem (P-Shlyakhtenko-Vaes 2018)

Let Γ be a countable group. The following conditions are equivalent.

(i) Γ is amenable.

(*ii*) For any free action $\Gamma \curvearrowright^{\sigma} N$ the fixed point algebra of σ^{ω} on N^{ω} is a subfactor with trivial relative commutant in N^{ω} .

(iii) Any free action of Γ on any ${\rm II}_1$ factor is non strongly ergodic.

(iv) Any 1-cocycle w for any $\Gamma \curvearrowright^{\sigma} N$ is approximate co-boundary.

About the proof of approx vanishing 1-coh

• Jones showed in 1980 that any 1-cocycle for a free action σ of a finite group Γ on a II_1 factor is co-boundary. The proof only uses that the fixed point algebra of any such action is an irreducible subfactor: let $\tilde{\sigma}$ be the action of Γ on $\tilde{N} = M_2(N) = N \otimes M_2(\mathbb{C})$ given by $\tilde{\sigma}_g = \sigma_g \otimes id$. If $\{e_{ij} \mid 1 \leq i, j \leq 2\} \subset M_2 \subset \tilde{N}$ is a matrix unit, then $\tilde{w}_g = e_{11} + w_g e_{22}$ is a 1-cocycle for $\tilde{\sigma}$. If $Q \subset \tilde{N}$ denotes the fixed point algebra of the action $\tilde{\sigma}'_g = \mathrm{Ad}(\tilde{w}_g)\tilde{\sigma}$, then $e_{11}, e_{22} \in Q$. The existence of a unitary element $u \in N$ satisfying $w_g = u\sigma_g(u^*)$, $\forall g$, is equivalent to $e_{11} \sim e_{22}$ in Q. Since Q is a II_1 factor and e_{11}, e_{22} have equal trace 1/2 in Q so indeed $e_{11} \sim e_{22}$ in Q, thus w is co-boundary.

About the proof of approx vanishing 1-coh

• Jones showed in 1980 that any 1-cocycle for a free action σ of a finite group Γ on a II₁ factor is co-boundary. The proof only uses that the fixed point algebra of any such action is an irreducible subfactor: let $\tilde{\sigma}$ be the action of Γ on $\tilde{N} = \mathbb{M}_2(N) = N \otimes \mathbb{M}_2(\mathbb{C})$ given by $\tilde{\sigma}_g = \sigma_g \otimes id$. If $\{e_{ij} \mid 1 \leq i, j \leq 2\} \subset \mathbb{M}_2 \subset \tilde{N}$ is a matrix unit, then $\tilde{w}_g = e_{11} + w_g e_{22}$ is a 1-cocycle for $\tilde{\sigma}$. If $Q \subset \tilde{N}$ denotes the fixed point algebra of the action $\tilde{\sigma}'_g = \mathrm{Ad}(\tilde{w}_g)\tilde{\sigma}$, then $e_{11}, e_{22} \in Q$. The existence of a unitary element $u \in N$ satisfying $w_g = u\sigma_g(u^*)$, $\forall g$, is equivalent to $e_{11} \sim e_{22}$ in Q. Since Q is a II₁ factor and e_{11}, e_{22} have equal trace 1/2 in Q so indeed $e_{11} \sim e_{22}$ in Q, thus w is co-boundary.

• Note that the above proof only uses that the fixed point algebra is a II_1 factor. This shows that $(ii) \Rightarrow (iv)$. To show that $(i) \Rightarrow (ii)$ we use the foll Lemma:

If $\Gamma \curvearrowright N$ is a free action of a countable group on a II₁ factor and $\mathcal{X} \subset N^{\omega}$ separable, then $\exists u \in \mathcal{U}(N^{\omega})$ s.t. $\mathcal{X}, \{\sigma_g^{\omega}(uNu^*)\}_{g \in \Gamma}$ are all mutually free independent.

Sketch of proof of $(i) \Rightarrow (ii)$ in the Theorem

• With the notations in the previous lemma, let $Q = \bigvee_g \sigma_g(uNu^*) \simeq N^{*\Gamma}$. Note that Q is free independent to N and $\sigma^{\omega}(Q) = Q$, with $\rho = \sigma_{|Q}^{\omega}$ implementing on $Q \simeq N^{*\Gamma}$ the free Bernoulli Γ -action. Let $a = a^* \in N$ be a semi-circular element and denote by a_g its identical copies in the $(N)_g \simeq N$ components of $N^{*\Gamma}$, $g \in \Gamma$. Thus, ρ acts on the set $\{a_g\}_g$ by left translation, $\rho_h(a_g) = a_{hg}$. Let $K_n \subset \Gamma$ be a sequence of Folner sets and denote $b_n = |K_n|^{-1/2} \sum_{g \in K_n} a_g$. Then b_n is also a semicircular element and one has

$$\|\rho_h(b_n) - b_n\|_2^2 = |hF_n\Delta F_n|/|K_n| \to 0, \forall h \in \Gamma.$$

Thus, the element $\tilde{b} = (b_n)_n \in (N^{*\Gamma})^{\omega}$ is semicircular with $\rho_h(\tilde{b}) = \tilde{b}$, $\forall h \in \Gamma$, showing that ρ is not strongly ergodic.

This shows that there exist finite partitions $\{q_i\}_i \subset \mathcal{P}(Q)$ of arbitrary small mesh and which are almost σ^{ω} -invariant. So given any $x \in \mathcal{X}$, we have that $\|\sum_i q_i x q_i - \tau(x) \mathbf{1}\|_2$ small, because Q is free independent to $x \in \mathcal{X}$. This readily implies $(N^{\omega})^{\sigma^{\omega'}} \cap N^{\omega} = \mathbb{C}$.

Proposition

 $1^{\circ} R_{\omega} = R' \cap R^{\omega}$ satisfies $R'_{\omega} \cap R^{\omega} = R$.

2° $\forall \theta \in \operatorname{Aut}(R), \exists U_{\theta} \in \mathcal{N}_{R^{\omega}}(R)$ such that $\operatorname{Ad}(U_{\theta})_{|R} = \theta$. If $U'_{\theta} \in \mathcal{N}_{R^{\omega}}(R)$ is another unitary satisfying $\operatorname{Ad}(U'_{\theta})_{|R} = \theta$, then $U'_{\theta} = vU_{\theta} = U_{\theta}v'$ for some $v, v' \in \mathcal{U}(R_{\omega})$.

3° If θ , U_{θ} as in 2°, then $\operatorname{Ad}(U_{\theta})_{|R_{\omega}}$ implements $\theta_{\omega} \in \operatorname{Out}(R_{\omega})$ and $\tilde{\theta}_{\omega} = \operatorname{Ad}(U_{\theta})_{|R \vee R_{\omega}} \in \operatorname{Out}(R \vee R_{\omega})$, with $\theta \in \operatorname{Aut}(R)$ outer iff θ_{ω} outer and iff $\tilde{\theta}_{\omega}$ outer.

4° Any free action $\Gamma \curvearrowright^{\sigma} R$ gives rise to a free cocycle action $\tilde{\sigma}_{\omega}$ of Γ on $R \lor R_{\omega}$, by $\tilde{\sigma}_{\omega}(g) = \operatorname{Ad}(U_{\sigma(g)})_{|R \lor R_{\omega}}$, $g \in \Gamma$, with corresponding 2-cocycle $v_{\omega}^{\sigma} : \Gamma \times \Gamma \to \mathcal{U}(R_{\omega})$.

< ∃ > < ⊡ >

Vanishing cohomology for $\tilde{\sigma}_{\omega}$ and the CE conjecture

Theorem

 $\Gamma \curvearrowright^{\sigma} R$ free action of Γ on R. The II₁ factor $M = R \rtimes_{\sigma} \Gamma$ has the CAE property (i.e., is embeddable into R^{ω}) iff the $\mathcal{U}(R_{\omega})$ -valued 2-cocycle v_{ω}^{σ} vanishes, i.e., iff there exist unitary elements $\{U_g \mid g \in \Gamma\} \subset \mathcal{N}_{R^{\omega}}(R)$ that implement σ on R and satisfy $U_g U_h = U_{gh}, \forall g, h \in \Gamma$.

A related problem

We have seen that one has a group isomorphism

$$\operatorname{Out}(R) \ni \theta \mapsto \operatorname{Ad}(U_{\theta}) \in \operatorname{Out}(R \vee R_{\omega})$$

which is also onto if on the right side we restrict to autom that leave R invariant. Lifting this map to a grp morphism into to $\mathcal{N}_{R^{\omega}}(R)$ when restricted to a countable subgroup $\Gamma \subset \operatorname{Out}(R)$ implementing a genuine action, is equiv. to CE conjecture for $R \rtimes \Gamma$. But even if CE holds true for these factors, it seems quite clear that such lifting is not possible for the entire $\Gamma = \operatorname{Out}(R)$. However, we do not have a proof for this.

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

 $\forall F' \subset M \text{ finite, } \delta > 0, \ \exists q \in \mathcal{P}(M) \text{ s.t. } \|qxq - \tau(x)q\|_2 < \delta \|q\|_2, \ \forall x \in F'.$

< ∃ > < @ >

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

 $\forall F' \subset M \text{ finite, } \delta > 0, \ \exists q \in \mathcal{P}(M) \text{ s.t. } \|qxq - \tau(x)q\|_2 < \delta \|q\|_2, \ \forall x \in F'.$

Also, in the proof of the approximate vanishing 1-cohomology, we used:

free independence lemma

If $\Gamma \curvearrowright N$ is a free action of a countable group on a separable II₁ factor and $\mathcal{X} \subset N^{\omega}$ separable subspace, then $\exists u \in \mathcal{U}(N^{\omega})$ s.t. $\mathcal{X}, \{\sigma^{\omega}_{\sigma}(uNu^*)\}_{\sigma \in \Gamma}$ are all mutually free independent.

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

 $\forall F' \subset M \text{ finite, } \delta > 0, \ \exists q \in \mathcal{P}(M) \text{ s.t. } \|qxq - \tau(x)q\|_2 < \delta \|q\|_2, \ \forall x \in F'.$

Also, in the proof of the approximate vanishing 1-cohomology, we used:

free independence lemma

If $\Gamma \curvearrowright N$ is a free action of a countable group on a separable II₁ factor and $\mathcal{X} \subset N^{\omega}$ separable subspace, then $\exists u \in \mathcal{U}(N^{\omega})$ s.t. $\mathcal{X}, \{\sigma_{g}^{\omega}(uNu^{*})\}_{g\in\Gamma}$ are all mutually free independent.

This result is in fact a consequence of the following more general:

Theorem (free independence in irreducible subfactors)

If $N \subset M$ is an irreducible inclusion of II₁ factors, then $\forall B \subset M^{\omega}$ separable vN algebra, $\exists A \subset N^{\omega}$ abelian diffuse such that $A \lor B \simeq A * B$.

< 三 → < 回 →

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

 $\forall F' \subset M \text{ finite, } \delta > 0, \ \exists q \in \mathcal{P}(M) \text{ s.t. } \|qxq - \tau(x)q\|_2 < \delta \|q\|_2, \ \forall x \in F'.$

Also, in the proof of the approximate vanishing 1-cohomology, we used:

free independence lemma

If $\Gamma \curvearrowright N$ is a free action of a countable group on a separable II₁ factor and $\mathcal{X} \subset N^{\omega}$ separable subspace, then $\exists u \in \mathcal{U}(N^{\omega})$ s.t. $\mathcal{X}, \{\sigma_{g}^{\omega}(uNu^{*})\}_{g\in\Gamma}$ are all mutually free independent.

This result is in fact a consequence of the following more general:

Theorem (free independence in irreducible subfactors)

If $N \subset M$ is an irreducible inclusion of II₁ factors, then $\forall B \subset M^{\omega}$ separable vN algebra, $\exists A \subset N^{\omega}$ abelian diffuse such that $A \lor B \simeq A * B$.

Indeed, taking $M = N \rtimes \Gamma$ we have $N' \cap M = \mathbb{C}$. Then apply the Thm to get $A \subset N^{\omega}$ free independent to the vN algebra $B = (\mathcal{X} \cup M)''$.

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0, 1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0, 1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:

(1) Constructing ergodic embeddings of R into II_1 factors: $\forall M$ separable II_1 factor, $\exists R \subset M$ with $R' \cap M = \mathbb{C}1$. *Proof*: sketch on the blackboard.

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0, 1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:

(1) Constructing ergodic embeddings of R into II_1 factors: $\forall M$ separable II_1 factor, $\exists R \subset M$ with $R' \cap M = \mathbb{C}1$. *Proof*: sketch on the blackboard.

(2) "Ergodicity" (irreducibility) of an inclusion of separable II₁ factors $N \subset M$ entails existence of "ergodic $(D \subset R)$ -direction" inside N: $\exists R \subset N$ with $D' \cap M = D$ and $R' \cap M = \mathbb{C}1$. *Proof*: sketch on blackboard

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0, 1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:

(1) Constructing ergodic embeddings of R into II_1 factors: $\forall M$ separable II_1 factor, $\exists R \subset M$ with $R' \cap M = \mathbb{C}1$. *Proof*: sketch on the blackboard.

(2) "Ergodicity" (irreducibility) of an inclusion of separable II₁ factors $N \subset M$ entails existence of "ergodic $(D \subset R)$ -direction" inside N: $\exists R \subset N$ with $D' \cap M = D$ and $R' \cap M = \mathbb{C}1$. *Proof.* sketch on blackboard

(3) Strong form of LQ lemma: if $N \subset M$ irreducible, then $\forall F \subset M$ finite, $\varepsilon > 0$, $\exists q \in \mathcal{P}(N)$ s.t. $\|qxq - \tau(x)q\|_2 < \varepsilon \|q\|_2$, $\forall x \in F$. *Proof* sketch on blackboard.

The technical results above are in fact related,: the LQ lemma plays a key role in the proof of "free independence embeddings of $L^{\infty}([0, 1])$ ", while the free independence embeddings allow sharp quantitative versions of LQ lemma. To deduce them, we'll go through several steps:

(1) Constructing ergodic embeddings of R into II_1 factors: $\forall M$ separable II_1 factor, $\exists R \subset M$ with $R' \cap M = \mathbb{C}1$. *Proof*: sketch on the blackboard.

(2) "Ergodicity" (irreducibility) of an inclusion of separable II₁ factors $N \subset M$ entails existence of "ergodic $(D \subset R)$ -direction" inside N: $\exists R \subset N$ with $D' \cap M = D$ and $R' \cap M = \mathbb{C}1$. *Proof*: sketch on blackboard

(3) Strong form of LQ lemma: if $N \subset M$ irreducible, then $\forall F \subset M$ finite, $\varepsilon > 0$, $\exists q \in \mathcal{P}(N)$ s.t. $\|qxq - \tau(x)q\|_2 < \varepsilon \|q\|_2$, $\forall x \in F$. *Proof* sketch on blackboard.

(4) blackboard comments on the proof of "approximately free independent" embeddings of $L^{\infty}([0, 1])$ and the incremental patching method.

Free random embeddings of $L^{\infty}([0,1])$ and R

The incremental patching method allows proving the following general

Theorem (approx. free independence with amalgamation)

Let M_n be a sequence of finite factors with dim $M_n \to \infty$ and denote by **M** the ultraproduct II₁ factor $\Pi_{\omega}M_n$, over a free ultrafilter ω on \mathbb{N} . Let $\mathbf{Q} \subset \mathbf{M}$ be a vN subalgebra satisfying one of the following:

(a) $\mathbf{Q} = \prod_{\omega} Q_n$, for some vN alg. $Q_n \subset M_n$ with $Q_n \not\prec_{M_n} Q'_n \cap M_n$, $\forall n$;

(b) $\mathbf{Q} = B' \cap \mathbf{M}$, for some separable amenable vN alg. $B \subset \mathbf{M}$.

Then given any separable subspace $X \subset \mathbf{M} \ominus (\mathbf{Q}' \cap \mathbf{M})$, there exists a diffuse abelian vN alg. $A \subset \mathbf{Q}$ such that A is free independent to X, relative to $\mathbf{Q}' \cap \mathbf{M}$, i.e. $E_{\mathbf{Q}' \cap \mathbf{M}}(x_0 \prod_{i=1}^n a_i x_i) = 0$, for all $n \ge 1$, $x_0, x_k \in X \cup \{1\}, x_i \in X, 1 \le i \le k-1, a_i \in A \ominus \mathbb{C}1, 1 \le i \le n$.

• The above result led us to the discovery in 1990-1994 of the *reconstruction method* in subfactor theory, and the *axiomatisation* of the standard invariant of a subfactor.

Applications

• Existence of ergodic embeddings of AFD factors into arbitrary vN factors is crucial for establishing Stone-Weierstrass type theorems for inclusions of C*-algebras (Kadison, Sakai, Glimm, J. Anderson, Bunce, etc). A complete solution to the "factor state" such result' was given using (1) above.

• Existence of ergodic embeddings of R into II₁ factors M were used to prove that $H^2(M, M) = 0$ (Kadison-Ringrose Hochshild-type 2nd coh) for a large class of II₁ factors M (Schmidt-Sinclair 95).

• Embeddings of $L^{\infty}([0, 1])$ and R into a II₁ factor M that are asympt. free to M where key to establishing a variety of vanishing cohomology results:

(a) All derivations from a vN algebra M that take values in $\mathcal{K}(\mathcal{H})$ (more generally, all "smooth derivations") are inner, i.e., $H^1(M, \mathcal{K}) = 0$ (Popa 1984, Popa-Radulescu 1986, Galatan-Popa 2014).

(b) Vanishing of the Connes-Shlyakhtenko-Thom 1st L^2 cohomology, $H^1(M, \operatorname{Aff}(M \otimes M^{op})) = 0$ (Popa-Vaes 2016).

(c) Approx. vanishing of 1-cohomology for any action of an amenable groups on any II₁ factor (Popa-Shlyakhtenko-Vaes 2018). $_{67/63}$

Coarse subalgebras and coarse pairs

A vN subalgebra $B \subset M$ is **coarse** if the vN algebra generated by left-right multiplication by elements in B on $L^2(M \ominus B)$ is $B \otimes B^{op}$. The vN subalgebras $B, Q \subset M$ form a **coarse pair** if the vN algebra generated by left multiplication by B and right multiplication by Q on L^2M is $B \otimes Q^{op}$.

Mixing subalgebras

A vN subalgebra $B \subset M$ is **mixing** if $\lim_{u \in U(B)} ||E_B(xuy)||_2 = 0$, $\forall x, y \in M \ominus B$, where the limit is over $u \in U(B)$ tending wo to 0.

Strongly malnormal subalgebras

A vN subalgebra $B \subset M$ is **strongly malnormal** if its weak intertwining space $w\mathcal{I}_M(B, B)$ is equal to B, i.e., if $x \in M$ satisfies $\dim(L^2(A_0xB)_B) < \infty$, then $x \in B$.

Proposition

One has the implications "coarse \Rightarrow mixing \Rightarrow strongly malnormal".

68/63

Theorem (P 2018-19)

Any separable II₁ factor M contains a hyperfinite factor $R \subset M$ that's coarse in M (and thus also mixing and strongly malnormal in M). Moreover, given any irreducible subfactor $P \subset M$, any vN alg. $Q \subset M$ satisfying $P \not\prec_M Q$ and any $\varepsilon > 0$, the coarse subfactor $R \subset M$ can be constructed so that to be contained in P, make a coarse pair with Q and satisfy $R \perp_{\varepsilon} Q$.

Proof comments on blackboard.

Theorem (P 2018-19)

Any separable II₁ factor M contains a hyperfinite factor $R \subset M$ that's coarse in M (and thus also mixing and strongly malnormal in M). Moreover, given any irreducible subfactor $P \subset M$, any vN alg. $Q \subset M$ satisfying $P \not\prec_M Q$ and any $\varepsilon > 0$, the coarse subfactor $R \subset M$ can be constructed so that to be contained in P, make a coarse pair with Q and satisfy $R \perp_{\varepsilon} Q$.

Proof comments on blackboard.

Corollary

Any separable II₁ factor M has a coarse MASA $A \subset M$, which in addition is strongly malnormal and mixing, with infinite multiplicity (Pukansky invariant equal to ∞). Moreover, given any irreducible subfactor $P \subset M$, any vN alg. $Q \subset M$ such that $P \not\prec_M Q$ and any $\varepsilon > 0$, the coarse MASA $A \subset M$ can be constructed inside P, coarse to Q, and satisfying $A \perp_{\varepsilon} Q$.

Coarseness conjecture

Any maximal amenable (equivalently maximal AFD) von Neumann subalgebra B of $L(\mathbb{F}_t)$ is coarse, and thus also mixing and strongly malnormal, $\forall 1 < t \leq \infty$.

Coarseness conjecture

Any maximal amenable (equivalently maximal AFD) von Neumann subalgebra B of $L(\mathbb{F}_t)$ is coarse, and thus also mixing and strongly malnormal, $\forall 1 < t \leq \infty$.

• Note that if $B \subset M$ is strongly malnormal, then any weak intertwiner of B in M is contained in B, in particular if $u \in U(M)$ is so that $uBu^* \cap B$ is diffuse, then $u \in B$. It also implies that if $B_0 \subset M$ amenable and $B_0 \cap B$ diffuse, then $B_0 \subset B$. Thus, the above coarseness conjecture implies the *Peterson-Thom conjecture*, which predicts that any $B_0 \subset L\mathbb{F}_n$ amenable diffuse is contained in a unique maximal amenable subalgebra of $L\mathbb{F}_n$.
• Connes Approximate Embedding (CAE) conjecture asks whether any countably generated tracial vN algebra has an "approximate embeding" into R, i.e., M embeds into R^{ω} , equivalently into $\Pi_{\omega}\mathbb{M}_{n}(\mathbb{C})$. (Can any tracial vN algebra be "simulated" by matrix algebras?).

• Connes Approximate Embedding (CAE) conjecture asks whether any countably generated tracial vN algebra has an "approximate embeding" into R, i.e., M embeds into R^{ω} , equivalently into $\Pi_{\omega}\mathbb{M}_{n}(\mathbb{C})$. (Can any tracial vN algebra be "simulated" by matrix algebras?).

• Connes Bicentralizer problem asks whether given any (separable) type III₁ factor \mathcal{M} there exists an irreducible embedding $R \hookrightarrow \mathcal{M}$ that's the range of a normal conditional expectation. Equivalently, whether \mathcal{M} necessarily has a normal faithful state φ such that its centralizer \mathcal{M}_{φ} has trivial relative commutant in \mathcal{M} .

• Connes Approximate Embedding (CAE) conjecture asks whether any countably generated tracial vN algebra has an "approximate embeding" into R, i.e., M embeds into R^{ω} , equivalently into $\Pi_{\omega}\mathbb{M}_{n}(\mathbb{C})$. (Can any tracial vN algebra be "simulated" by matrix algebras?).

• Connes Bicentralizer problem asks whether given any (separable) type III₁ factor \mathcal{M} there exists an irreducible embedding $R \hookrightarrow \mathcal{M}$ that's the range of a normal conditional expectation. Equivalently, whether \mathcal{M} necessarily has a normal faithful state φ such that its centralizer \mathcal{M}_{φ} has trivial relative commutant in \mathcal{M} .

Ergodic embeddings of R (work in progress: to be checked)

Any vN factor \mathcal{M} that's not of type I and has separable predual, contains an ergodic copy of R, i.e., a hyperfinite subfactor $R \subset \mathcal{M}$ with trivial relative commutant, $R' \cap \mathcal{M} = \mathbb{C}1$.

▲ ヨト ▲ 御 ト