Growth series for Artin monoids of finite type

Kyoji Saito

1 Introduction

Let G_M^+ be the Artin monoid ([B-S] 1.2) generated by the letters a_i , $i \in I$ with respect to a Coxeter matrix $M = (m_{ij})_{i,j \in I}$. That is, G_M^+ is a monoid generated by the letters a_i , $i \in I$ which are subordinate to the relation generated by (1.1) $a_i a_j a_i \cdots = a_j a_i a_j \cdots i, j \in I$,

where both hand sides are words of alternating sequences of letters a_i and a_j of the same length $m_{ij} = m_{ji}$. More precisely, G_M^+ is the quotient of the free monoid generated by the letters a_i $(i \in I)$ by the equivalence relation: two words U and V in the letters are equivalent, if there exists a sequence $U_0 := U, U_1, \cdots, U_m := V$ such that the word U_k $(k = 1, \cdots, m)$ is obtained by replacing a phrase in U_{k-1} of the form on LHS of (1.1) by RHS of (1.1) for some $i, j \in I$. We write by U = V if U and V are equivalent. The equivalence class (i.e. an element of G_M^+) of a word W is denoted by the same notation W. By the definition, equivalent words have the same length. Hence, we define the degree homomorphism:

(1.2)
$$\deg : G_M^+ \longrightarrow \mathbb{Z}_{\geq 0}$$

by assigning the length to each equivalence class of words.

In [S] §12, we considered the growth series for the Artin monoid, defined by

$$(1.3) P_{G_M^+,I}(t) := \sum_{n \in \mathbb{Z}_{\geq 0}} \#\{W \in G_M^+ \mid \deg(W) \leq n\} t^n,$$

and asked to determine the space $\Omega(P_{G_M^+,I})$ of opposite series [ibid] for a *finite type* M.¹ In the present paper, we, conjecturally, answer to the question. Namely, in §2, we show that the growth series has an expression

(1.4)
$$P_{G_M^+,I}(t) = 1/(1-t)N_M(t),$$

where $N_M(t)$ is a polynomial determined explicitly from the Coxeter-Dynkin graph of M. In §3, we show that zeroes of $N_M(t) = 0$ lie in the disc of radius $1+\varepsilon$ for a small ε . We further give a conjectural description of the distribution of the zero-loci in §4, which concludes that $\Omega(P_{G_M^+,I})$ consists of a single element, answering to the question posed above.

¹In the present paper, we call a Coxeter matrix M is of finite type if it is indecomposable and the associated Coxeter group \overline{G}_M ([B] Ch.IV §1) is finite.

2 Growth series $P_{G_M^+,I}(t)$

For a Coxeter matrix M, consider the spherical growth series of the monoid G_M^+ :

(2.1)
$$\dot{P}_{G_M^+,I}(t) := \sum_{n \in \mathbb{Z}_{\geq 0}} \#(\deg^{-1}(n)) t^n,$$

so that $P_{G_M^+,I}(t) = \dot{P}_{G_M^+,I}(t)/(1-t)$. The goal of the present § is the following.

Theorem. Let G_M^+ be the Artin monoid with respect to a Coxeter matrix M of finite type. Then the spherical growth series of the monoid is given by the Taylor expansion of the rational function of the form

(2.2)
$$\dot{P}_{G_{1}^+,I}(t) = 1/N_M(t),$$

where the denominator $N_M(t)$ is a monic polynomial in t given by

(2.3)
$$N_M(t) := \sum_{J \subset I} (-1)^{\#(J)} t^{\deg(\Delta_J)}.$$

Here, the summation index J runs over all subsets of I, and Δ_J is the fundamental element in G_M^+ associated to the set J ([B-S] §5 Definition. See also Lemma-Definition and Remark 2.1 of the present note).

Proof. The proof is achieved by a recursion formula on the coefficients of the growth series. For the proof of the recursion formula, we use the method used to solve the word problem for the Artin monoid ([B-S] 6.1), which we recall below.

A word U is said to be divisible (from the left) by a word V, and denoted by V|U, if there exists a word W such that U = VW. There exists an algorithm, which terminates in finite steps, to decide whether V|U or not for given words U and V (see [B-S]§3). Since V = V', U = U' and V|U implies V'|U', we use the

notation "|" of divisibility also between elements of the monoid G_M^+ . We have the following basic concepts ([B-S] §5 Definition and §6 6.1)

we have the following basic concepts ([D-5] 35 Demittion and 30 0.1)

Lemma-Definition 1. For any subset $J \subset I$, there exists a unique element $\Delta_J \in G_M^+$, called the *fundamental element*, such that i) $a_i | \Delta_J$ for all $i \in J$, and ii) if W is a word such that $a_i | W$ for all $i \in J$, then $\Delta_J | W$.

2. For a word W, we associate a subset of I:

(2.4)
$$I(W) := \{i \in I \mid a_i | W\}.$$

One has $\Delta_{I(W)}|W$ and if $\Delta_J|W$ then $J \subset I(W)$. If W = W' then I(W) = I(W'). Therefore, we use the same notation I(W) for an element W in G_M^+ .

We return to the proof of Theorem. For $n \in \mathbb{Z}_{\geq 0}$ and a subset $J \subset I$, put

(2.5)
$$G_n^+ := \{ W \in G_M^+ | \deg(W) = n \}$$

(2.6)
$$G_{n,J}^+ := \{ W \in G_n^+ \mid I(W) = J \}.$$

By the definition, we have the disjoint decomposition:

$$(2.7) G_n^+ = \amalg_{J \subset I} G_{n,J}^+,$$

where J runs over all subsets of I. Note that $G_{n,\emptyset}^+ = \emptyset$ if n > 0 but $G_{0,\emptyset}^+ = \{\emptyset\} \neq \emptyset$. For any subset J of I, the union $\coprod_{J \subset K \subset I} G_{n,K}^+$, where the index K runs over all subsets of I containing J, is equal to the subset of G_n^+ consisting of elements divisible by Δ_J . That is, it is the image of $G_{n-\deg(\Delta_J)}^+$ under the multiplication by Δ_J from the left. On the other hand, since G_M^+ is injectively embedded in the Artin group G_M ([B-S] Proposition 5.5), the multiplication map of Δ_J is injective. Hence we obtain a bijection: $G_{n-\deg(\Delta_J)}^+ \simeq \coprod_{J \subset K \subset I} G_{n,K}^+$. This implies a numerical relation:

(2.8)
$$\#(G_{n-\deg(\Delta_J)}^+) = \sum_{J \subset K \subset I} \#(G_{n,K}^+).$$

Then, for n > 0, using this formula, we get the recursion relation:

(2.9)
$$\sum_{J \subset I} (-1)^{\#(J)} \#(G_{n-\deg(\Delta_J)}^+) = 0.$$

Together with $\#(G_0^+)=1$ for n=0, this is equivalent to the formula:

(2.10)
$$\dot{P}_{G_{M}^{+},I}(t)N_{M}(t) = 1.$$

This completes the proof of Theorem.

By the definition (2.3), one has $N_M(1) = \sum_{J \subset I} (-1)^{\#J} = 0$. That is, $N_M(t)$ has the factor 1 - t. Then, we conjecture the following.

Conjecture 1. The polynomial $\tilde{N}_M(t) := N_M(t)/(1-t)$ is irreducible over \mathbb{Z} for any indecomposable Coxeter matrix M of finite type.

The conjecture is explicitly confirmed (using computer) for the types A_l , B_l , C_l $(l \leq 7)$, D_l $(l \leq 5)$, E_6 , E_7 , E_8 , F_4 G_2 and $I_2(p)$ $(p \leq 6)$. The conjecture shall play an important role when we study the global space $V(G_M^+, I)$ of limit elements [S] 11.4.10, on which the Galois group of the splitting field of $\tilde{N}_M(t)$ acts.

Remark 2.1. Actually, $\deg(\Delta_J)$ is equal to the number of reflections in the Coxeter group $\overline{G}_{M|_J}$ associated to $M|_J := (m_{ij})_{i,j \in J}$ ([B-S] 5.7).

Remark 2.2. The fact that the growth series for the Artin monoids are rational functions with the numerator equal to 1 was first observed by Fuchiwaki for some examples of low rank [F].

3 Zeroes of the polynomial $N_M(t)$

The following lemma gives a bound of zero-loci of the polynomial $N_M(t)$.

Lemma 3.1. For a Coxeter matrix M, define a numerical invariant:

(3.1)
$$a_M := \frac{\deg(\Delta_I) - \max\{\deg(\Delta_J) \mid J \subset I, \ J \neq I\}}{\#I}$$

Then, one has

1. $a_M \ge 1$ for any finite type Coxeter matrix M,

2. all the roots of $N_M(t) = 0$ are contained in the open disc of radius $2^{1/a_M}$ centered at the origin.

Proof. 1. This is shown by using the classification of finite Coxeter groups: (3.2)

$A_{l>1}:$	$\deg(\Delta_{A_l}) = (l+1)l/2$	max	$\{\deg(\Delta_J)\}$	= l(l-1)/2	$a_{A_l} = 1,$
$B_{l>2}^{-}$:	$\deg(\Delta_{B_l}) = l^2$	max	$\{\deg(\Delta_J)\}$	$= (l-1)^2$	$a_{B_l} = (2l-1)/l,$
$D_{l>4}^{-}$:	$\deg(\Delta_{D_l}) = l(l-1)$	max	$\{\deg(\Delta_J)\}$	= (l-1)(l-2)) $a_{D_l} = 2(l-1)/l$,
E_{6}^{-} :	$\deg(\Delta_{E_6}) = 36$	max	$\{\deg(\Delta_J)\}$	= 20	$a_{E_6} = 8/3,$
E_{7} :	$\deg(\Delta_{E_7}) = 63$	max	$\{\deg(\Delta_J)\}$	= 36	$a_{E_7} = 27/7,$
E_{8} :	$\deg(\Delta_{E_8}) = 120$	max	$\{\deg(\Delta_J)\}$	$\} = 63$	$a_{E_8} = 57/8,$
F_4 :	$\deg(\Delta_{F_4}) = 24$	max	$\{\deg(\Delta_J)\}$	= 9	$a_{F_4} = 15/4,$
G_2 :	$\deg(\Delta_{G_2}) = 6$	max	$\{\deg(\Delta_J)\}$	= 1	$a_{G_2} = 5/2,$
H_3 :	$\deg(\Delta_{H_3}) = 15$	max	$\{\deg(\Delta_J)\}$	= 5	$a_{H_3} = 10/3,$
H_4 :	$\deg(\Delta_{H_3}) = 60$	max	$\{\deg(\Delta_J)\}$	$\} = 15$	$a_{H_4} = 45/4,$
$I_2(p_{>3})$:	$\deg(\Delta_{I_2(p)}) = p$	max	$\{\deg(\Delta_J)\}$	$\} = 1$	$a_{I_2(p)} = (p-1)/2,$
					H \ F \

2. We compare the roots of $N_M(t) = 0$ with that of $t^{\deg(\Delta_I)} = 0$ by Rouché's theorem as follows. Let $t \in \mathbb{C}$ be a point with $|t| = 2^{1/a_M}$. Then

$$|N_M(t) - (-1)^{\#(I)} t^{\deg(\Delta_I)}| = |\sum_{J \subset I, J \neq I} (-1)^{\#(J)} t^{\deg(\Delta_J)}|$$

$$\leq \sum_{J \subset I, J \neq I} |t^{\deg(\Delta_J)}| \leq (2^{\#(I)} - 1) |t|^{\max\{\Delta_J \mid J \subset I, J \neq I\}} < |t|^{\deg(\Delta_I)}.$$

Due to Rouché's theorem, the number of roots of $N_M = 0$ in the disc of radius $2^{1/a_M}$ is equal to that of $t^{\deg(\Delta_I)} = 0$. That is, all the roots of $N_M = 0$ are in the disc $\{|t| < 2^{1/a_M}\}$.

4 The space of opposite series $\Omega(P_{G_M^+,I})$

We give conjectures on the distribution of the zeroes of $N_M(t)$ to determine $\Omega(P_{G_W^+,I})$. We formulate them more than necessary for the purpose, because of possible applications (see §2 Conjecture 1 and its following explanations).

Conjecture 2. There are l-1 mutually distinct real roots of $N_M(t) = 0$ on the interval (0, 1), where l := #I is the rank of G_M .

Conjecture 3. Let r_M (resp. R_M) be the smallest (resp. largest) roots of $N_M(t) = 0$ on the interval (0, 1). Then, all the remaining roots lie in the annulus $R_w < |t| < R_W^{-1}$.

The conjectures are directly confirmed (using Sturm criterion) for the types $A_l, B_l, C_l \ (l \le 7), \ D_l \ (l \le 5), \ E_6, E_7, E_8, \ F_4 \ G_2 \ \text{and} \ I_2(p) \ (p \ge 3).$

Remark 4.1. An evidence of Conjecture 2 is the following.

Put $N_{M,j}(t) = \sum_{J \subset I, \#J=j} t^{\deg(\Delta_J)}$ for $0 \le j \le l := \#I$, and consider the sequence of polynomials $f_i(t) := \sum_{j=0}^i (-1)^j N_{M,j}(t)$ $(i=0,1,\cdots,l)$. Explicitly,

$$f_0 = 1, \ f_1 = 1 - l \cdot t, \ f_2 = 1 - l \cdot t + \frac{(l-1)(l-2)}{2}t^2 + \sum_{\substack{\text{edge} \\ \text{type } p}} f_0^p, \ \cdots, \ f_l = N_M(t).$$

Obviously, $f_0(0) = f_1(0) = \cdots = f_l(0) = 1$. Their values at t=1 are given by

$$f_i(1) = \sum_{j=0}^{i} (-1)^j N_{M,j}(1) = \sum_{j=0}^{i} (-1)^j C_j^l = (-1)^i C_i^{l-1}.$$

So, they form a sign alternating sequence, except the vanishing $f_l(1) = 0$ at the end. Therefore, we may expect to show inductively that

Assertion. The equation $f_i = 0$ has i distinct real roots on the interval (0, 1]. Remark 4.2. Examples show that the angles of the roots in the annulus in Conjecture 3 are somehow equally distributed. However, we do not know how we can precisely formulate this phenomenon.

Assuming Conjecture 2 and 3, we are able to determine the space $\Omega(P_{G_{M,I}^+})$ of opposite series for $P_{G_M^+,I}$ ([S] (11.2.3)), where we recall that a series in $\mathbb{R}[s]$ is called an opposite series for $P_{G_M^+,I}$ if it is an accumulation point (with respect to the classical topology) of the sequence of polynomials

(4.1)
$$X_n(P_{G_M^+,I}) := \sum_{k=0}^n \frac{\# \deg^{-1}(n-k)}{\# \deg^{-1}(n)} s^k , \qquad n = 0, 1, 2, \cdots.$$

Recall that $\Delta_{P_{G_{1,I}^{+},I}}^{top}(t)$ denotes the reduced polynomial vanishing at the loci of the poles of $P_{G_M^+,I}^{M^+}$ of the smallest radius and highest order (among them). Actually, Conjectures 2 and 3 imply $\Delta_{P_{G_M^+,I}^+}^{top}(t) = t - r_M$. The Duality Theorem ([S] §11 Theorem) says, in general, that if $\deg(\Delta_{P_{G_M^+,I}^{top}}^{top}) = h$, then putting $\Delta^{op}_{P_{G^+_{sr},I}}(s) := s^h \Delta^{top}_{P_{G^+_{sr},I}}(s^{-1}), \text{ the opposite series have the form } b(s)/\Delta^{op}_{P_{G^+_{M},I}}(s)$ for suitable polynomial b(s) of degree < h ([S] (11.2) Assertion). This, in particular in our case, implies the the sequence X_n converges to a unique element in $\mathbb{R}[[s]]$ of the form

(4.2)
$$a(s) = \frac{1}{1 - r_M s},$$

where $r_M \in \mathbb{R}_{>0}$ is given by

(4.3)
$$r_M = \lim_{n \to \infty} \frac{\# \deg^{-1}(n-1)}{\# \deg^{-1}(n)}.$$

Acknowledgement. The author is grateful to M. Fuchiwaki and M. Fujii for their interest and discussions. The present paper was inspired by the examples by Fuchiwaki of the growth series $P_{G_{M}^{+},I}$ done by the different methods.

References

- [B] N. Bourbaki: groups et algeébres de Lie, Chaitres 4,5, et 6. Eleéments de Mathématique XXXIV. Paris: Hermann 1968.
- [B-S] Egbert Brieskorn & Kyoji Saito: Artin-Gruppen und Coxeter-Gruppen, Invent. Math. **17** (1972), 245–271.
- [F] Makoto Fuchiwaki, Master Thesis, RIMS, Feb. 2008.
- [F-F-S-T] Makoto Fuchiwaki, Michihiko Fujii, Kyoji Saito & Shunsuke Tsuchioka: Geodesic automatic structures and growth functions of Artin monoids, in preparation.
- [S] Kyoji Saito: Limit elements in the Configuration Algebra for a Discrete Group, preprint RIMS-1593, May 2007.