## Growth series for Artin monoids of finite type

Kyoji Saito

## 1 Introduction

Let $G_{M}^{+}$be the Artin monoid ([B-S $\left.] 1.2\right)$ generated by the letters $a_{i}, i \in I$ with respect to a Coxeter matrix $M=\left(m_{i j}\right)_{i, j \in I}$. That is, $G_{M}^{+}$is a monoid generated by the letters $a_{i}, i \in I$ which are subordinate to the relation generated by

$$
\begin{equation*}
a_{i} a_{j} a_{i} \cdots=a_{j} a_{i} a_{j} \cdots \quad i, j \in I, \tag{1.1}
\end{equation*}
$$

where both hand sides are words of alternating sequences of letters $a_{i}$ and $a_{j}$ of the same length $m_{i j}=m_{j i}$. More precisely, $G_{M}^{+}$is the quotient of the free monoid generated by the letters $a_{i}(i \in I)$ by the equivalence relation: two words $U$ and $V$ in the letters are equivalent, if there exists a sequence $U_{0}:=U, U_{1}, \cdots, U_{m}:=V$ such that the word $U_{k}(k=1, \cdots, m)$ is obtained by replacing a phrase in $U_{k-1}$ of the form on LHS of (1.1) by RHS of (1.1) for some $i, j \in I$. We write by $U=V$ if $U$ and $V$ are equivalent. The equivalence class (i.e. an element of $G_{M}^{+}$) of a word $W$ is denoted by the same notation $W$. By the definition, equivalent words have the same length. Hence, we define the degree homomorphism:

$$
\begin{equation*}
\operatorname{deg}: G_{M}^{+} \longrightarrow \mathbb{Z}_{\geq 0} \tag{1.2}
\end{equation*}
$$

by assigning the length to each equivalence class of words.
In $[\mathrm{S}] \S 12$, we considered the growth series for the Artin monoid, defined by

$$
\begin{equation*}
P_{G_{M}^{+}, I}(t):=\sum_{n \in \mathbb{Z}_{\geq 0}} \#\left\{W \in G_{M}^{+} \mid \operatorname{deg}(W) \leq n\right\} t^{n}, \tag{1.3}
\end{equation*}
$$

and asked to determine the space $\Omega\left(P_{G_{M}^{+}, I}\right)$ of opposite series [ibid] for a $f i$ nite type $M .{ }^{1}$ In the present paper, we, conjecturally, answer to the question. Namely, in §2, we show that the growth series has an expression

$$
\begin{equation*}
P_{G_{M}^{+}, I}(t)=1 /(1-t) N_{M}(t) \tag{1.4}
\end{equation*}
$$

where $N_{M}(t)$ is a polynomial determined explicitly from the Coxeter-Dynkin graph of $M$. In $\S 3$, we show that zeroes of $N_{M}(t)=0$ lie in the disc of radius $1+\varepsilon$ for a small $\varepsilon$. We further give a conjectural description of the distribution of the zero-loci in $\S 4$, which concludes that $\Omega\left(P_{G_{M}^{+}, I}\right)$ consists of a single element, answering to the question posed above.

[^0]
## 2 Growth series $P_{G_{M}^{+}, I}(t)$

For a Coxeter matrix $M$, consider the spherical growth series of the monoid $G_{M}^{+}$:

$$
\begin{equation*}
\dot{P}_{G_{M}^{+}, I}(t):=\sum_{n \in \mathbb{Z}_{\geq 0}} \#\left(\operatorname{deg}^{-1}(n)\right) t^{n} \tag{2.1}
\end{equation*}
$$

so that $P_{G_{M}^{+}, I}(t)=\dot{P}_{G_{M}^{+}, I}(t) /(1-t)$. The goal of the present $\S$ is the following.
Theorem. Let $G_{M}^{+}$be the Artin monoid with respect to a Coxeter matrix M of finite type. Then the spherical growth series of the monoid is given by the Taylor expansion of the rational function of the form

$$
\begin{equation*}
\dot{P}_{G_{M}^{+}, I}(t)=1 / N_{M}(t) \tag{2.2}
\end{equation*}
$$

where the denominator $N_{M}(t)$ is a monic polynomial in $t$ given by

$$
\begin{equation*}
N_{M}(t):=\sum_{J \subset I}(-1)^{\#(J)} t^{\operatorname{deg}\left(\Delta_{J}\right)} \tag{2.3}
\end{equation*}
$$

Here, the summation index $J$ runs over all subsets of $I$, and $\Delta_{J}$ is the fundamental element in $G_{M}^{+}$associated to the set J ([B-S] §5 Definition. See also Lemma-Definition and Remark 2.1 of the present note).

Proof. The proof is achieved by a recursion formula on the coefficients of the growth series. For the proof of the recursion formula, we use the method used to solve the word problem for the Artin monoid ([B-S] 6.1), which we recall below.

A word $U$ is said to be divisible (from the left) by a word $V$, and denoted by $V \mid U$, if there exists a word $W$ such that $U=V W$. There exists an algorithm, which terminates in finite steps, to decide whether $V \mid U$ or not for given words $U$ and $V$ (see [B-S]§3). Since $V=V^{\prime}, U \equiv U^{\prime}$ and $V \mid U$ implies $V^{\prime} \mid U^{\prime}$, we use the notation " $\mid$ " of divisibility also between elements of the monoid $G_{M}^{+}$.

We have the following basic concepts ([B-S] §5 Definition and $\S 66.1$ )
Lemma-Definition 1. For any subset $J \subset I$, there exists a unique element $\Delta_{J} \in G_{M}^{+}$, called the fundamental element, such that i) $a_{i} \mid \Delta_{J}$ for all $i \in J$, and ii) if $W$ is a word such that $a_{i} \mid W$ for all $i \in J$, then $\Delta_{J} \mid W$.
2. For a word $W$, we associate a subset of $I$ :

$$
\begin{equation*}
I(W):=\left\{i \in I\left|a_{i}\right| W\right\} \tag{2.4}
\end{equation*}
$$

One has $\Delta_{I(W)} \mid W$ and if $\Delta_{J} \mid W$ then $J \subset I(W)$. If $W \doteqdot W^{\prime}$ then $I(W)=$ $I\left(W^{\prime}\right)$. Therefore, we use the same notation $I(W)$ for an element $W$ in $G_{M}^{+}$.

We return to the proof of Theorem. For $n \in \mathbb{Z}_{\geq 0}$ and a subset $J \subset I$, put

$$
\begin{equation*}
G_{n}^{+} \quad:=\left\{W \in G_{M}^{+} \mid \operatorname{deg}(W)=n\right\} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
G_{n, J}^{+}:=\left\{W \in G_{n}^{+} \mid I(W)=J\right\} . \tag{2.6}
\end{equation*}
$$

By the definition, we have the disjoint decomposition:

$$
\begin{equation*}
G_{n}^{+}=\amalg_{J \subset I} G_{n, J}^{+}, \tag{2.7}
\end{equation*}
$$

where $J$ runs over all subsets of $I$. Note that $G_{n, \emptyset}^{+}=\emptyset$ if $n>0$ but $G_{0, \emptyset}^{+}=\{\emptyset\} \neq \emptyset$. For any subset $J$ of $I$, the union $\amalg_{J \subset K \subset I} G_{n, K}^{+}$, where the index $K$ runs over all subsets of $I$ containing $J$, is equal to the subset of $G_{n}^{+}$consisting of elements divisible by $\Delta_{J}$. That is, it is the image of $G_{n-\operatorname{deg}\left(\Delta_{J}\right)}^{+}$under the multiplication by $\Delta_{J}$ from the left. On the other hand, since $G_{M}^{+}$is injectively embedded in the Artin group $G_{M}$ ([B-S] Proposition 5.5), the multiplication map of $\Delta_{J}$ is injective. Hence we obtain a bijection: $G_{n-\operatorname{deg}\left(\Delta_{J}\right)}^{+} \simeq \amalg_{J \subset K \subset I} G_{n, K}^{+}$. This implies a numerical relation:

$$
\begin{equation*}
\#\left(G_{n-\operatorname{deg}\left(\Delta_{J}\right)}^{+}\right)=\sum_{J \subset K \subset I} \#\left(G_{n, K}^{+}\right) \tag{2.8}
\end{equation*}
$$

Then, for $n>0$, using this formula, we get the recursion relation:

$$
\begin{equation*}
\sum_{J \subset I}(-1)^{\#(J)} \#\left(G_{n-\operatorname{deg}\left(\Delta_{J}\right)}^{+}\right)=0 \tag{2.9}
\end{equation*}
$$

Together with $\#\left(G_{0}^{+}\right)=1$ for $n=0$, this is equivalent to the formula:

$$
\begin{equation*}
\dot{P}_{G_{M}, I}^{+}(t) N_{M}(t)=1 \tag{2.10}
\end{equation*}
$$

This completes the proof of Theorem.
By the definition (2.3), one has $N_{M}(1)=\sum_{J \subset I}(-1)^{\# J}=0$. That is, $N_{M}(t)$ has the factor $1-t$. Then, we conjecture the following.

Conjecture 1. The polynomial $\tilde{N}_{M}(t):=N_{M}(t) /(1-t)$ is irreducible over $\mathbb{Z}$ for any indecomposable Coxeter matrix $M$ of finite type.

The conjecture is explicitly confirmed (using computer) for the types $A_{l}, B_{l}, C_{l}$ $(l \leq 7), D_{l}(l \leq 5), E_{6}, E_{7}, E_{8}, F_{4} G_{2}$ and $I_{2}(p)(p \leq 6)$. The conjecture shall play an important role when we study the global space $V\left(G_{M}^{+}, I\right)$ of limit elements [S] 11.4.10, on which the Galois group of the splitting field of $\tilde{N}_{M}(t)$ acts.
Remark 2.1. Actually, $\operatorname{deg}\left(\Delta_{J}\right)$ is equal to the number of reflections in the Coxeter group $\bar{G}_{\left.M\right|_{J}}$ associated to $\left.M\right|_{J}:=\left(m_{i j}\right)_{i, j \in J}([\mathrm{~B}-\mathrm{S}] 5.7)$.

Remark 2.2. The fact that the growth series for the Artin monoids are rational functions with the numerator equal to 1 was first observed by Fuchiwaki for some examples of low rank [F].

## 3 Zeroes of the polynomial $N_{M}(t)$

The following lemma gives a bound of zero-loci of the polynomial $N_{M}(t)$.
Lemma 3.1. For a Coxeter matrix $M$, define a numerical invariant:

$$
\begin{equation*}
a_{M}:=\frac{\operatorname{deg}\left(\Delta_{I}\right)-\max \left\{\operatorname{deg}\left(\Delta_{J}\right) \mid J \subset I, J \neq I\right\}}{\# I} . \tag{3.1}
\end{equation*}
$$

Then, one has

1. $a_{M} \geq 1$ for any finite type Coxeter matrix $M$,
2. all the roots of $N_{M}(t)=0$ are contained in the open disc of radius $2^{1 / a_{M}}$ centered at the origin.

Proof. 1. This is shown by using the classification of finite Coxeter groups:

| $A_{l \geq 1}:$ | $\operatorname{deg}\left(\Delta_{A_{l}}\right)=(l+1) l / 2 \max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=l(l-1) / 2$ | $a_{A_{l}}=1$, |  |
| :---: | :--- | :--- | :--- |
| $B_{l \geq 2}:$ | $\operatorname{deg}\left(\Delta_{B_{l}}\right)=l^{2}$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=(l-1)^{2}$ | $a_{B_{l}}=(2 l-1) / l$, |
| $D_{l \geq 4}:$ | $\operatorname{deg}\left(\Delta_{D_{l}}\right)=l(l-1)$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=(l-1)(l-2)$ | $a_{D_{l}}=2(l-1) / l$, |
| $E_{6}:$ | $\operatorname{deg}\left(\Delta_{E_{6}}\right)=36$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=20$ | $a_{E_{6}}=8 / 3$, |
| $E_{7}:$ | $\operatorname{deg}\left(\Delta_{E_{7}}\right)=63$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=36$ | $a_{E_{7}}=27 / 7$, |
| $E_{8}:$ | $\operatorname{deg}\left(\Delta_{E_{8}}\right)=120$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=63$ | $a_{E_{8}}=57 / 8$, |
| $F_{4}:$ | $\operatorname{deg}\left(\Delta_{F_{4}}\right)=24$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=9$ | $a_{F_{4}}=15 / 4$, |
| $G_{2}:$ | $\operatorname{deg}\left(\Delta_{G_{2}}\right)=6$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=1$ | $a_{G_{2}}=5 / 2$, |
| $H_{3}: \operatorname{deg}\left(\Delta_{H_{3}}\right)=15$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=5$ | $a_{H_{3}}=10 / 3$, |  |
| $H_{4}:$ | $\operatorname{deg}\left(\Delta_{H_{3}}=60\right.$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=15$ | $a_{H_{4}}=45 / 4$, |
| $I_{2}\left(p_{\geq 3}\right):$ | $\operatorname{deg}\left(\Delta_{I_{2}(p)}\right)=p$ | $\max \left\{\operatorname{deg}\left(\Delta_{J}\right)\right\}=1$ | $a_{I_{2}(p)}=(p-1) / 2$, |

2. We compare the roots of $N_{M}(t)=0$ with that of $t^{\operatorname{deg}\left(\Delta_{I}\right)}=0$ by Rouché's theorem as follows. Let $t \in \mathbb{C}$ be a point with $|t|=2^{1 / a_{M}}$. Then

$$
\begin{aligned}
& \left|N_{M}(t)-(-1)^{\#(I)} t^{\operatorname{deg}\left(\Delta_{I}\right)}\right|=\left|\sum_{J \subset I, J \neq I}(-1)^{\#(J)} t^{\operatorname{deg}\left(\Delta_{J}\right)}\right| \\
\leq & \sum_{J \subset I, J \neq I}\left|t^{\operatorname{deg}\left(\Delta_{J}\right)}\right| \leq\left(2^{\#(I)}-1\right)|t|^{\max \left\{\Delta_{J} \mid J \subset I, J \neq I\right\}}<|t|^{\operatorname{deg}\left(\Delta_{I}\right)} .
\end{aligned}
$$

Due to Rouché's theorem, the number of roots of $N_{M}=0$ in the disc of radius $2^{1 / a_{M}}$ is equal to that of $t^{\operatorname{deg}\left(\Delta_{I}\right)}=0$. That is, all the roots of $N_{M}=0$ are in the disc $\left\{|t|<2^{1 / a_{M}}\right\}$.

## 4 The space of opposite series $\Omega\left(P_{G_{M}^{+}, I}\right)$

We give conjectures on the distribution of the zeroes of $N_{M}(t)$ to determine $\Omega\left(P_{G_{W}^{+}, I}\right)$. We formulate them more than necessary for the purpose, because of possible applications (see $\S 2$ Conjecture 1 and its following explanations).

Conjecture 2. There are $l-1$ mutually distinct real roots of $N_{M}(t)=0$ on the interval $(0,1)$, where $l:=\# I$ is the rank of $G_{M}$.
Conjecture 3. Let $r_{M}$ (resp. $R_{M}$ ) be the smallest (resp. largest) roots of $N_{M}(t)=0$ on the interval $(0,1)$. Then, all the remaining roots lie in the annulus $R_{w}<|t|<R_{W}^{-1}$.

The conjectures are directly confirmed (using Sturm criterion) for the types $A_{l}, B_{l}, C_{l}(l \leq 7), D_{l}(l \leq 5), E_{6}, E_{7}, E_{8}, F_{4} G_{2}$ and $I_{2}(p)(p \geq 3)$.
Remark 4.1. An evidence of Conjecture 2 is the following.
Put $N_{M, j}(t)=\sum_{J \subset I, \# J=j} t^{\operatorname{deg}\left(\Delta_{J}\right)}$ for $0 \leq j \leq l:=\# I$, and consider the sequence of polynomials $f_{i}(t):=\sum_{j=0}^{i}(-1)^{j} N_{M, j}(t)(i=0,1, \cdots, l)$. Explicitly,

$$
f_{0}=1, f_{1}=1-l \cdot t, f_{2}=1-l \cdot t+\frac{(l-1)(l-2)}{2} t^{2}+\sum_{\substack{\operatorname{edget} t_{\text {of }}^{p} \\ \text { type } p}}, \cdots, f_{l}=N_{M}(t)
$$

Obviously, $f_{0}(0)=f_{1}(0)=\cdots=f_{l}(0)=1$. Their values at $t=1$ are given by

$$
f_{i}(1)=\sum_{j=0}^{i}(-1)^{j} N_{M, j}(1)=\sum_{j=0}^{i}(-1)^{j} C_{j}^{l}=(-1)^{i} C_{i}^{l-1} .
$$

So, they form a sign alternating sequence, except the vanishing $f_{l}(1)=0$ at the end. Therefore, we may expect to show inductively that
Assertion. The equation $f_{i}=0$ has $i$ distinct real roots on the interval $(0,1]$.
Remark 4.2. Examples show that the angles of the roots in the annulus in Conjecture $\mathbf{3}$ are somehow equally distributed. However, we do not know how we can precisely formulate this phenomenon.

Assuming Conjecture 2 and 3, we are able to determine the space $\Omega\left(P_{G_{M}^{+}, I}\right)$ of opposite series for $P_{G_{M}^{+}, I}([\mathrm{~S}](11.2 .3))$, where we recall that a series in $\mathbb{R}[[s]]$ is called an opposite series for $P_{G_{M}, I}$ if it is an accumulation point (with respect to the classical topology) of the sequence of polynomials

$$
\begin{equation*}
X_{n}\left(P_{G_{M}^{+}, I}\right):=\sum_{k=0}^{n} \frac{\# \operatorname{deg}^{-1}(n-k)}{\# \operatorname{deg}^{-1}(n)} s^{k}, \quad n=0,1,2, \cdots . \tag{4.1}
\end{equation*}
$$

Recall that $\Delta_{P_{G_{M}^{+}, I}^{+}}^{\text {top }}(t)$ denotes the reduced polynomial vanishing at the loci of the poles of $P_{G_{M}^{+}, I}$ of the smallest radius and highest order (among them). Actually, Conjectures 2 and 3 imply $\Delta_{P_{G_{M}^{+}, I}}^{t o p}(t)=t-r_{M}$. The Duality Theorem $([\mathrm{S}] \S 11$ Theorem $)$ says, in general, that if $\operatorname{deg}\left(\Delta_{P_{G_{M}^{+}, I}}^{t o p}\right)=h$, then putting $\Delta_{P_{G_{M}^{+}, I}^{o p}}^{o p}(s):=s^{h} \Delta_{P_{G_{M}^{+}, I}}^{t o p}\left(s^{-1}\right)$, the opposite series have the form $b(s) / \Delta_{P_{G_{M}^{+}, I}^{o p}}^{o p}(s)$ for suitable polynomial $b(s)$ of degree $<h$ ([S] (11.2) Assertion). This, in particular in our case, implies the the sequence $X_{n}$ converges to a unique element in $\mathbb{R}[[s]]$ of the form

$$
\begin{equation*}
a(s)=\frac{1}{1-r_{M} s} \tag{4.2}
\end{equation*}
$$

where $r_{M} \in \mathbb{R}_{>0}$ is given by

$$
\begin{equation*}
r_{M}=\lim _{n \rightarrow \infty} \frac{\# \operatorname{deg}^{-1}(n-1)}{\# \operatorname{deg}^{-1}(n)} . \tag{4.3}
\end{equation*}
$$

Acknowledgement. The author is grateful to M. Fuchiwaki and M. Fujii for their interest and discussions. The present paper was inspired by the examples by Fuchiwaki of the growth series $P_{G_{M}^{+}, I}$ done by the different methods.

## References

[B] N. Bourbaki: groups et algeébres de Lie, Chaitres 4,5, et 6. Eleéments de Mathématique XXXIV. Paris: Hermann 1968.
[B-S] Egbert Brieskorn \& Kyoji Saito: Artin-Gruppen und CoxeterGruppen, Invent. Math. 17 (1972), 245-271.
[F] Makoto Fuchiwaki, Master Thesis, RIMS, Feb. 2008
[F-F-S-T] Makoto Fuchiwaki, Michihiko Fujii, Kyoji Saito \& Shunsuke Tsuchioka: Geodesic automatic structures and growth functions of Artin monoids, in preparation.
[S] Kyoji Saito: Limit elements in the Configuration Algebra for a Discrete Group, preprint RIMS-1593, May 2007.


[^0]:    ${ }^{1}$ In the present paper, we call a Coxeter matrix $M$ is of finite type if it is indecomposable and the associated Coxeter group $\bar{G}_{M}([\mathrm{~B}] \mathrm{Ch} . \mathrm{IV} \S 1)$ is finite.

