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1 Introduction

Let G}, be the Artin monoid ([B-S] 1.2) generated by the letters a;, i € I with
respect to a Coxeter matrix M = (m;;); jer. That is, G}, is a monoid generated
by the letters a;, ¢ € I which are subordinate to the relation generated by
(1.1) aiajQ; - = AjQ0; - 1,7 €1,

where both hand sides are words of alternating sequences of letters a; and a;
of the same length m;; = mj;. More precisely, GL is the quotient of the
free monoid generated by the letters a; (i € I) by the equivalence relation:
two words U and V in the letters are equivalent, if there exists a sequence
Uy := U, Uy, ,Upy := V such that the word Uy (k = 1,--- ,m) is obtained
by replacing a phrase in Ui_; of the form on LHS of (1.1) by RHS of (1.1) for
some ¢, j € [. We write by U =V if U and V' are equivalent. The equivalence

class (i.e. an element of G};) of a word W is denoted by the same notation W.
By the definition, equivalent words have the same length. Hence, we define the
degree homomorphism:

(12) deg : GL — ZZO

by assigning the length to each equivalence class of words.
In [S] §12, we considered the growth series for the Artin monoid, defined by

. + n
(1.3) Poy (1) == Y #{WeG} | deg(W)<n} 1",
nGZZO
and asked to determine the space Q(PG;, 1) of opposite series [ibid] for a fi-

nite type M.! In the present paper, we, conjecturally, answer to the question.
Namely, in §2, we show that the growth series has an expression

(1.4) PG;[,[(t) = 1/(1 = t)Num(),

where Nj/(t) is a polynomial determined explicitly from the Coxeter-Dynkin
graph of M. In §3, we show that zeroes of Njs(t) = 0 lie in the disc of radius
1+¢ for a small e. We further give a conjectural description of the distribution of
the zero-loci in §4, which concludes that Q(PGL 1) consists of a single element,
answering to the question posed above.

n the present paper, we call a Coxeter matrix M is of finite type if it is indecomposable
and the associated Coxeter group G s ([B] Ch.IV §1) is finite.



2 Growth series Fy+ /(t)

For a Coxeter matrix M, consider the spherical growth series of the monoid GL:

(2.1) Poe () = D #(deg™'(n)) 1",

TLGZZO

so that PGL,I(t) = Pg+ ;(t)/(1 —t). The goal of the present § is the following.

M>

Theorem. Let GL be the Artin monoid with respect to a Coxeter matriz M
of finite type. Then the spherical growth series of the monoid is given by the
Taylor expansion of the rational function of the form

(2.2) Py 4(t) = 1/Nul(t),
where the denominator Np(t) is a monic polynomial in t given by

(2.3) Ny (t) = Z (—1)#() qdes(d),
JCI

Here, the summation index J runs over all subsets of I, and A is the funda-
mental element in G, associated to the set J ([B-S] §5 Definition. See also
Lemma-Definition and Remark 2.1 of the present note).

Proof. The proof is achieved by a recursion formula on the coefficients of the
growth series. For the proof of the recursion formula, we use the method used to
solve the word problem for the Artin monoid ([B-S] 6.1), which we recall below.

A word U is said to be divisible (from the left) by a word V, and denoted by
V|U, if there exists a word W such that U = VW. There exists an algorithm,

which terminates in finite steps, to decide whether V|U or not for given words

U and V (see [B-S]§3). Since V=V, U=U" and V|U implies V'|U’, we use the

notation “|” of divisibility also between elements of the monoid G7;.
We have the following basic concepts ([B-S] §5 Definition and §6 6.1)

Lemma-Definition 1. For any subset J C I, there exists a unique element
Ay € G}y, called the fundamental element, such that i) a;|A for all i € J, and
ii) if W is a word such that a;|W for all ¢ € J, then A;|W.

2. For a word W, we associate a subset of I:

(2.4) IW) = {iel | a|W}.
One has Ajy)|W and if Ayj[W then J C I(W). If W = W' then I(W) =

I(W'). Therefore, we use the same notation I(W) for an element W in G7;.

We return to the proof of Theorem. For n € Z>( and a subset J C I, put

n

(2.5) Gt = {W e G}, | deg(W) =n}



(2.6) G, = {WeGH|1(W)=J}.
By the definition, we have the disjoint decomposition:

(2.7) G

_ +
n = Wycr G 5,

where .J runs over all subsets of I. Note that G¥ ;=0 if n>0 but G, ={0} #0.
For any subset J of I, the union ;- IG;: x> where the index K runs over

all subsets of I containing J, is equal to the subset of G} consisting of elements

divisible by A ;. That is, it is the image of GI_ deg(A) under the multiplication

by Ay from the left. On the other hand, since GL is injectively embedded
in the Artin group Gjs ([B-S] Proposition 5.5), the multiplication map of A ;
is injective. Hence we obtain a bijection: G:_deg(AJ) ~ HjcchGj;K. This
implies a numerical relation:

(2.8) H(G o _qeg(an) = Lscxer #(Gr k)

Then, for n > 0, using this formula, we get the recursion relation:

(2.9) Y CDFIRGE jay) = O

JCI

Together with # (G )=1 for n=0, this is equivalent to the formula:

(2.10) PGLJ(t)NM(t) = 1.
This completes the proof of Theorem. O

By the definition (2.3), one has Nj/(1) = 3 ;- ;(=1)#7 = 0. That is, Np(t)
has the factor 1 —¢. Then, we conjecture the following.

Conjecture 1. The polynomial Ny (t) := Nas(t)/(1 — t) is irreducible over Z
for any indecomposable Coxeter matrix M of finite type.

The conjecture is explicitly confirmed (using computer) for the types A;, By, C;
(1<7), D (I1<5), Eg, FE7,Eg, Fy G2 and I2(p) (p < 6). The conjecture shall
play an important role when we study the global space V(G7,,I) of limit el-
ements [S] 11.4.10, on which the Galois group of the splitting field of Npy(t)
acts.

Remark 2.1. Actually, deg(A ) is equal to the number of reflections in the
Coxeter group Gy, associated to M| := (my;)ijes ([B-S] 5.7).

Remark 2.2. The fact that the growth series for the Artin monoids are rational
functions with the numerator equal to 1 was first observed by Fuchiwaki for some
examples of low rank [F].



3 Zeroes of the polynomial Nj,(t)

The following lemma gives a bound of zero-loci of the polynomial Ny (t).

Lemma 3.1. For a Cozeter matrix M, define a numerical invariant:

_ deg(Ar) — max{deg(A,) | JCI, J#I}

(3.1) ay : Iy

Then, one has
1. apr > 1 for any finite type Cozxeter matriz M,
2. all the roots of Np(t) = 0 are contained in the open disc

of radius 2'/%M centered at the origin.

Proof. 1. This is shown by using the classification of finite Coxeter groups:
(3.2)

Ap>1 0 deg(Aa,) = (I41)1/2 max{deg(As)} =1(1-1)/2  aa, =1,

Bl>2 : deg(ABl) = l2 max{deg(AJ)} = (l—1)2 ap, = (2l—1)/l,

Dl>4 deg(ADl) = l(l—l) max{deg(AJ)} = (l—l)(l—Q) ap, = 2(l—1)/l,

Es deg(Ag,) = 36 max{deg(As)} =20 ag, = 8/3,

E; deg(Ag,) =63 max{deg(A;)} = 36 ag, = 27/7,

Eg deg(Ag,) =120 max{deg(Ay)} =63 ag, = 57/8,

Fy deg(AF,) = 24 max{deg(As)} =9 ap, = 15/4,

Go deg(Ag,) =6 max{deg(Ay)} =1 ag, = 5/2,

Hs : deg(Ap,) =15 max{deg(Ay)} =5 ag, = 10/3,

Hy : deg(Am,) =060 max{deg(A;)} =15 am, =45/4,
I(p>3): deg(Ar,p) =p max{deg(Ay)} =1 armp = (p—1)/2,

2. We compare the roots of Ny (t) = 0 with that of ¢4°8(21) = 0 by Rouché’s
theorem as follows. Let ¢ € C be a point with [¢| = 21/@¥ . Then

|Nas(t) — (—1)#(Dgdes(An)| = |ZJCJ,J#(—1)#('])td°g(A")|

< ZJCI JI |tdcg(A,7)| < (2#(1) _ 1)|t|max{AJ\JCI, JAT} < |t|dcg(A1)'
Due to Rouché’s theorem, the number of roots of Ny; =0 in the disc of radius
21/am 5 equal to that of t4°8(21) =(. That is, all the roots of Nj; =0 are in the

disc {|t| < 2V/anm}, O

4 The space of opposite series Q(PGL, 7)

We give conjectures on the distribution of the zeroes of Nj/(t) to determine
Q(PG;/ ;). We formulate them more than necessary for the purpose, because of

possible applications (see §2 Conjecture 1 and its following explanations).

Conjecture 2. There are [ — 1 mutually distinct real roots of Njs(t) = 0 on
the interval (0, 1), where [ := #I is the rank of G ;.

Conjecture 3. Let ) (resp. Rps) be the smallest (resp. largest) roots of
Ny (t) = 0 on the interval (0,1). Then, all the remaining roots lie in the
annulus Ry, < [t| < Ry}



The conjectures are directly confirmed (using Sturm criterion) for the types
A, B, Gy (1<7), Dy (1 <5), B, Er, Es, Fy Ga and Ia(p) (p > 3).

Remark 4.1. An evidence of Conjecture 2 is the following.
Put Nasj(t) = >0 Y= tdes(As) for 0 < j < 1:=#I, and consider the

sequence of polynomials f;(t) :Z;:o(_l)jNM,j (t) (i=0,1,---,1). Explicitly,

o=t ii=1-lot, fo= 1=t B2 45 uetle s o fi = Nu(t).
ype p
Obviously, fo(0) = f1(0) =--- = f;(0) = 1. Their values at t=1 are given by

fi(1) = 250 (—1) Nag (1) = 350 (~1)Ch = (-1)'C;
So, they form a sign alternating sequence, except the vanishing f;(1)=0 at
the end. Therefore, we may expect to show inductively that

Assertion. The equation f; = 0 has i distinct real Toots on the interval (0,1].

Remark 4.2. Examples show that the angles of the roots in the annulus in
Conjecture 3 are somehow equally distributed. However, we do not know how
we can precisely formulate this phenomenon.

Assuming Conjecture 2 and 3, we are able to determine the space Q(P, Gt 1)
of opposite series for Pg+ ([S] (11.2.3)), where we recall that a series in R[[ 1]
is called an opposite series for PGL T if it is an accumulation point (with respect
to the classical topology) of the sequence of polynomials

deg™t(n —
(4.1) Z# 8 7;‘ g n=o12...
Gt = #deg” (n)

Recall that Aﬁ;”’ N (t) denotes the reduced polynomial vanishing at the loci

of the poles of PG;{IJOf the smallest radius and highest order (among them).
Actually, Conjectures 2 and 3 imply A?g XI,I(t) =t — rp;. The Duality Theo-
rem ([S] §11 Theorem) says, in general, that if deg(A’;’é’L,I) = h, then putting
AP ot (s):= hAtOP 1( s71), the opposite series have the form b(s)/A(I)DZL,I (s)

IW
for suitable polynomial b(s) of degree < h ([S] (11.2) Assertion). This, in par-
ticular in our case, implies the the sequence X, converges to a unique element
in R[[s]] of the form

1
4.2 = -
(42) als) = 1.
where 7y € Ry is given by
1
(4.3 rar = oo EREGED.

Acknowledgement. The author is grateful to M. Fuchiwaki and M. Fujii for
their interest and discussions. The present paper was inspired by the examples
by Fuchiwaki of the growth series P+ ; done by the different methods.

IR



References

[B] N. Bourbaki: groups et algeébres de Lie, Chaitres 4,5, et 6. Eleéments
de Mathématique XXXIV. Paris: Hermann 1968.

[B-S] Egbert Brieskorn & Kyoji Saito: Artin-Gruppen und Coxeter-
Gruppen, Invent. Math. 17 (1972), 245-271.

[F] Makoto Fuchiwaki, Master Thesis, RIMS, Feb. 2008.

[F-F-S-T] Makoto Fuchiwaki, Michihiko Fujii, Kyoji Saito & Shunsuke Tsu-
chioka: Geodesic automatic structures and growth functions of Artin
monoids, in preparation.

[S] Kyoji Saito: Limit elements in the Configuration Algebra for a Discrete
Group, preprint RIMS-1593, May 2007.



