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1 Introduction

Let G+
M be the Artin monoid ([B-S] 1.2) generated by the letters ai, i∈ I with

respect to a Coxeter matrix M =(mij)i,j∈I . That is, G+
M is a monoid generated

by the letters ai, i ∈ I which are subordinate to the relation generated by

(1.1) aiajai · · · = ajaiaj · · · i, j ∈ I,

where both hand sides are words of alternating sequences of letters ai and aj

of the same length mij = mji. More precisely, G+
M is the quotient of the

free monoid generated by the letters ai (i ∈ I) by the equivalence relation:
two words U and V in the letters are equivalent, if there exists a sequence
U0 := U, U1, · · · , Um := V such that the word Uk (k = 1, · · · , m) is obtained
by replacing a phrase in Uk−1 of the form on LHS of (1.1) by RHS of (1.1) for
some i, j ∈ I . We write by U =

•
V if U and V are equivalent. The equivalence

class (i.e. an element of G+
M ) of a word W is denoted by the same notation W .

By the definition, equivalent words have the same length. Hence, we define the
degree homomorphism:

(1.2) deg : G+
M −→ Z≥0

by assigning the length to each equivalence class of words.
In [S] §12, we considered the growth series for the Artin monoid, defined by

(1.3) PG+

M
,I(t) :=

∑

n∈Z≥0

#{W ∈G+
M | deg(W )≤n} tn,

and asked to determine the space Ω(PG+

M
,I) of opposite series [ibid] for a fi-

nite type M .1 In the present paper, we, conjecturally, answer to the question.
Namely, in §2, we show that the growth series has an expression

(1.4) PG+

M
,I(t) = 1/(1 − t)NM (t),

where NM (t) is a polynomial determined explicitly from the Coxeter-Dynkin
graph of M . In §3, we show that zeroes of NM (t) = 0 lie in the disc of radius
1+ε for a small ε. We further give a conjectural description of the distribution of
the zero-loci in §4, which concludes that Ω(PG+

M
,I) consists of a single element,

answering to the question posed above.
1In the present paper, we call a Coxeter matrix M is of finite type if it is indecomposable

and the associated Coxeter group GM ([B] Ch.IV §1) is finite.
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2 Growth series PG+
M ,I(t)

For a Coxeter matrix M , consider the spherical growth series of the monoid G+
M :

(2.1) ṖG+

M
,I(t) :=

∑

n∈Z≥0

#(deg−1(n)) tn,

so that PG+

M
,I(t) = ṖG+

M
,I(t)/(1− t). The goal of the present § is the following.

Theorem. Let G+
M be the Artin monoid with respect to a Coxeter matrix M

of finite type. Then the spherical growth series of the monoid is given by the
Taylor expansion of the rational function of the form

(2.2) ṖG+

M
,I(t) = 1/NM (t),

where the denominator NM (t) is a monic polynomial in t given by

(2.3) NM (t) :=
∑

J⊂I

(−1)#(J) tdeg(∆J).

Here, the summation index J runs over all subsets of I, and ∆J is the funda-
mental element in G+

M associated to the set J ([B-S] §5 Definition. See also
Lemma-Definition and Remark 2.1 of the present note).

Proof. The proof is achieved by a recursion formula on the coefficients of the
growth series. For the proof of the recursion formula, we use the method used to
solve the word problem for the Artin monoid ([B-S] 6.1), which we recall below.

A word U is said to be divisible (from the left) by a word V , and denoted by
V |U , if there exists a word W such that U =

•
V W . There exists an algorithm,

which terminates in finite steps, to decide whether V |U or not for given words
U and V (see [B-S]§3). Since V =

•
V ′, U =

•
U ′ and V |U implies V ′|U ′, we use the

notation “|” of divisibility also between elements of the monoid G+
M .

We have the following basic concepts ([B-S] §5 Definition and §6 6.1)

Lemma-Definition 1. For any subset J ⊂ I , there exists a unique element
∆J ∈ G+

M , called the fundamental element, such that i) ai|∆J for all i ∈ J , and
ii) if W is a word such that ai|W for all i ∈ J , then ∆J |W .

2. For a word W , we associate a subset of I :

(2.4) I(W ) := {i ∈ I | ai|W}.

One has ∆I(W )|W and if ∆J |W then J ⊂ I(W ). If W =
•

W ′ then I(W ) =

I(W ′). Therefore, we use the same notation I(W ) for an element W in G+
M .

We return to the proof of Theorem. For n ∈ Z≥0 and a subset J ⊂ I , put

(2.5) G+
n := {W ∈ G+

M | deg(W ) = n}
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(2.6) G+
n,J := {W ∈ G+

n | I(W ) = J}.

By the definition, we have the disjoint decomposition:

(2.7) G+
n = qJ⊂I G+

n,J ,

where J runs over all subsets of I . Note that G+
n,∅=∅ if n>0 but G+

0,∅={∅} 6=∅.

For any subset J of I , the union qJ⊂K⊂IG
+
n,K , where the index K runs over

all subsets of I containing J , is equal to the subset of G+
n consisting of elements

divisible by ∆J . That is, it is the image of G+
n−deg(∆J) under the multiplication

by ∆J from the left. On the other hand, since G+
M is injectively embedded

in the Artin group GM ([B-S] Proposition 5.5), the multiplication map of ∆J

is injective. Hence we obtain a bijection: G+
n−deg(∆J ) ' qJ⊂K⊂IG

+
n,K . This

implies a numerical relation:

(2.8) #(G+
n−deg(∆J )) =

∑
J⊂K⊂I #(G+

n,K).

Then, for n > 0, using this formula, we get the recursion relation:

(2.9)
∑

J⊂I

(−1)#(J)#(G+
n−deg(∆J)) = 0.

Together with #(G+
0 )=1 for n=0, this is equivalent to the formula:

(2.10) ṖG+

M
,I(t)NM (t) = 1.

This completes the proof of Theorem.

By the definition (2.3), one has NM (1) =
∑

J⊂I(−1)#J = 0. That is, NM (t)
has the factor 1 − t. Then, we conjecture the following.

Conjecture 1. The polynomial ÑM (t) := NM (t)/(1 − t) is irreducible over Z

for any indecomposable Coxeter matrix M of finite type.

The conjecture is explicitly confirmed (using computer) for the types Al, Bl, Cl

(l ≤ 7), Dl (l ≤ 5), E6, E7, E8, F4 G2 and I2(p) (p ≤ 6). The conjecture shall
play an important role when we study the global space V (G+

M , I) of limit el-

ements [S] 11.4.10, on which the Galois group of the splitting field of ÑM (t)
acts.

Remark 2.1. Actually, deg(∆J ) is equal to the number of reflections in the
Coxeter group GM |J associated to M |J := (mij)i,j∈J ([B-S] 5.7).

Remark 2.2. The fact that the growth series for the Artin monoids are rational
functions with the numerator equal to 1 was first observed by Fuchiwaki for some
examples of low rank [F].
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3 Zeroes of the polynomial NM(t)

The following lemma gives a bound of zero-loci of the polynomial NM (t).

Lemma 3.1. For a Coxeter matrix M , define a numerical invariant:

(3.1) aM :=
deg(∆I) − max{deg(∆J ) | J⊂I, J 6=I}

#I
.

Then, one has
1. aM ≥ 1 for any finite type Coxeter matrix M ,
2. all the roots of NM (t) = 0 are contained in the open disc

of radius 21/aM centered at the origin.

Proof. 1. This is shown by using the classification of finite Coxeter groups:
(3.2)
Al≥1 : deg(∆Al

) = (l+1)l/2 max{deg(∆J )} = l(l−1)/2 aAl
= 1,

Bl≥2 : deg(∆Bl
) = l2 max{deg(∆J )} = (l−1)2 aBl

= (2l−1)/l,
Dl≥4 : deg(∆Dl

) = l(l−1) max{deg(∆J )} = (l−1)(l−2) aDl
= 2(l−1)/l,

E6 : deg(∆E6
) = 36 max{deg(∆J )} = 20 aE6

= 8/3,
E7 : deg(∆E7

) = 63 max{deg(∆J )} = 36 aE7
= 27/7,

E8 : deg(∆E8
) = 120 max{deg(∆J )} = 63 aE8

= 57/8,
F4 : deg(∆F4

) = 24 max{deg(∆J )} = 9 aF4
= 15/4,

G2 : deg(∆G2
) = 6 max{deg(∆J )} = 1 aG2

= 5/2,
H3 : deg(∆H3

) = 15 max{deg(∆J )} = 5 aH3
= 10/3,

H4 : deg(∆H3
) = 60 max{deg(∆J )} = 15 aH4

= 45/4,
I2(p≥3): deg(∆I2(p)) = p max{deg(∆J )} = 1 aI2(p) = (p−1)/2,

2. We compare the roots of NM (t) = 0 with that of tdeg(∆I) = 0 by Rouché’s
theorem as follows. Let t ∈ C be a point with |t| = 21/aM . Then

|NM (t) − (−1)#(I)tdeg(∆I)| = |
∑

J⊂I,J 6=I(−1)#(J)tdeg(∆J )|

≤
∑

J⊂I,J 6=I |t
deg(∆J )| ≤ (2#(I) − 1)|t|max{∆J |J⊂I, J 6=I} < |t|deg(∆I).

Due to Rouché’s theorem, the number of roots of NM =0 in the disc of radius
21/aM is equal to that of tdeg(∆I) =0. That is, all the roots of NM =0 are in the
disc {|t| < 21/aM}.

4 The space of opposite series Ω(PG+
M ,I)

We give conjectures on the distribution of the zeroes of NM (t) to determine
Ω(PG+

W
,I). We formulate them more than necessary for the purpose, because of

possible applications (see §2 Conjecture 1 and its following explanations).

Conjecture 2. There are l − 1 mutually distinct real roots of NM (t) = 0 on
the interval (0, 1), where l := #I is the rank of GM .

Conjecture 3. Let rM (resp. RM ) be the smallest (resp. largest) roots of
NM (t) = 0 on the interval (0, 1). Then, all the remaining roots lie in the
annulus Rw < |t| < R−1

W .

4



The conjectures are directly confirmed (using Sturm criterion) for the types
Al, Bl, Cl (l ≤ 7), Dl (l ≤ 5), E6, E7, E8, F4 G2 and I2(p) (p ≥ 3).

Remark 4.1. An evidence of Conjecture 2 is the following.
Put NM,j(t) =

∑
J⊂I,#J=j tdeg(∆J) for 0 ≤ j ≤ l := #I , and consider the

sequence of polynomials fi(t) :=
∑i

j=0(−1)jNM,j(t) (i=0, 1, · · · , l). Explicitly,

f0 = 1, f1 = 1−l · t, f2 = 1−l · t + (l−1)(l−2)
2 t2 +

∑
edges of
type p

tp , · · · , fl = NM (t).

Obviously, f0(0) = f1(0) = · · · = fl(0) = 1. Their values at t=1 are given by

fi(1) =
∑i

j=0(−1)jNM,j(1) =
∑i

j=0(−1)jCl
j = (−1)iCl−1

i .

So, they form a sign alternating sequence, except the vanishing fl(1)=0 at
the end. Therefore, we may expect to show inductively that

Assertion. The equation fi = 0 has i distinct real roots on the interval (0, 1].

Remark 4.2. Examples show that the angles of the roots in the annulus in
Conjecture 3 are somehow equally distributed. However, we do not know how
we can precisely formulate this phenomenon.

Assuming Conjecture 2 and 3, we are able to determine the space Ω(PG+

M
,I)

of opposite series for PG+

M
,I ([S] (11.2.3)), where we recall that a series in R[[s]]

is called an opposite series for PG+

M
,I if it is an accumulation point (with respect

to the classical topology) of the sequence of polynomials

(4.1) Xn(PG+

M
,I) :=

n∑

k=0

# deg−1(n − k)

# deg−1(n)
sk , n = 0, 1, 2, · · · .

Recall that ∆top
P

G
+

M
,I

(t) denotes the reduced polynomial vanishing at the loci

of the poles of PG+

M
,I of the smallest radius and highest order (among them).

Actually, Conjectures 2 and 3 imply ∆top
P

G
+
M

,I

(t) = t − rM . The Duality Theo-

rem ([S] §11 Theorem) says, in general, that if deg(∆top
P

G
+

M
,I

) = h, then putting

∆op
P

G
+
M

,I

(s) := sh∆top
P

G
+
M

,I

(s−1), the opposite series have the form b(s)/∆op
P

G
+
M

,I

(s)

for suitable polynomial b(s) of degree < h ([S] (11.2) Assertion). This, in par-
ticular in our case, implies the the sequence Xn converges to a unique element
in R[[s]] of the form

(4.2) a(s) =
1

1− rMs
,

where rM ∈ R>0 is given by

(4.3) rM = limn→∞
#deg−1(n−1)
#deg−1(n)

.
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