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In this lecture

I We shall talk about the first categorical model of GoI.

I We will consider GoI 1 (Girard 1989) for MELL.

I I shall follow the paper: Haghverdi & Scott, A Categorical
Model for GoI, ICALP 2004 and TCS 2006.

I We emphasize the notion of categorical trace.
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Sense/Denotation

A critique of reductionism

G. Frege (1848-1925): In Function und Begriff, 1891.

I Sinn/Bedeutung
sense/denotation

I The sense constitutes the particular way in which its
denotation (reference) is given to one who grasps the thought.

I 2 + 3 = 5

I sense/denotation
dynamic/static
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Example

A ` A A ` A
A ` A � A ` A

I idA ◦ idA = idA

I More generally, Π,Π′ proofs of Γ ` A, Π � Π′.

I Then
Π = Π′ : Γ −→ A .

I A static view!

I GoI offers a dynamic semantics.

I Syntax carries irrelevant information.
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Dynamics

I Where is this dynamics to be found?

I Gentzen’s cut elimination theorem

I Theorem (Cut Elimination (Hauptsatz))

(Gentzen, 1934)

If Π is a proof of a sequent Γ ` A, then there is a proof Π′ of the
same sequent which does not use the cut rule.
Γ ` A A,∆ ` B

Γ,∆ ` B
(cut rule)
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Girard’s Implementation (System F)

I

Π ; (u, σ)
a proof of a pair of partial

second order LL symmetries in B(H)
(no additives)

I Dynamics = elimination of cuts (σ) using

EX (u, σ) = (1− σ2)
∑
n≥0

u(σu)n(1− σ2)

I Theorem (Girard, 1987)

(i) If (u, σ) is the interpretation of a proof Π of a sequent ` [∆], Γ
then σu is nilpotent.
(ii) if Γ does not use the symbols “?” or “∃”, then the
interpretation is sound.

I strong normalisation ↔ nilpotency
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Back to our example

` A,A⊥ ` A,A⊥

` [A⊥,A],A,A⊥ � ` A,A⊥

I proofs as matrices on M2m+n(B(`2))

I u =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 σ =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


I Dynamics: EX (u, σ) = (1− σ2)(u + uσu)(1− σ2) =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0
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A Brief History, with apologies

I GoI 2 (1988): Deadlock-free algorithms, Recursion

I GoI 3 (1995): Additives

I GoI 4 (2003): The feedback equation

I GoI 5 (2008): The hyperfinite factor

I Danos (1990): Untyped Lambda Calculus

I Danos, Regnier, Malacaria, Mackie : Path-based Semantics

I Logical complexity related work, optimal lambda reduction,
etc
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History, cont’d

I Abramsky & Jagadeesan (1994): Categorical interpretation
using Domain Theory, Feedback in dataflow networks

I Abramsky (1997): GoI Situation, Abramsky’s Program

I Haghverdi (PhD, 2000): UDC based (particle style) GoI
Situation and more, including path-based semantics

I Abramsky, Haghverdi and Scott (2002): GoI Situation to CA

I Haghverdi, Scott (2004,2006): Categorical models

I Haghverdi, Scott (2005,2009): Typed GoI

I Hines (1997): Self-similarity, inverse semigroups
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Σ-Monoids

Definition (Kuros,Higgs,Manes,Arbib,Benson)

(M,Σ), where M is a nonempty set and Σ is a partial operation on
countable families in M. {xi}i∈I is summable if Σi∈I xi is defined
subject to:

I Partition-Associativity: {xi}i∈I and {Ij}j∈J a countable
partition of I

Σi∈I xi = Σj∈J(Σi∈Ij xi ).

I Unary sum: Σi∈{j}xi = xj .
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Facts about Σ-Monoids

I Σi∈∅xi exists and is denoted by 0. It is a countable additive
identity.

I Sum is commutative and associative whenever defined.

I Σi∈I xϕ(i) is defined for any permutation ϕ of I , whenever
Σi∈I xi exits.

I There are no additive inverses: x + y = 0 implies x = y = 0.
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Examples

I M = PInj(X ,Y ), the set of partial injective functions.

I {fi} is summbale if fi and fj have disjoint domains and
codomains for all i 6= j .

I (ΣI fi )(x) =

{
fj(x) if x ∈ Dom(fj) for some j ∈ I

undefined otherwise.

I M = Pfn(X ,Y ), the set of partial functions.

I {fi} is summable if fi and fj have disjoint domains for all i 6= j .

I (ΣI fi )(x) as above.
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More examples

I M = Rel(X ,Y ), the set of binary relations from X to Y ,

I All families are summable,

I ΣiRi =
⋃

i Ri .

I M = countably complete poset, Σ = sup.
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A Non-example

I M = ω-complete poset,

I {xi} is summable if it is a countable chain,

I Σi∈I xi = supi∈I xi ,

I Suppose x , y , z are in this family, with x ≤ z , y ≤ z and x , y
incomparable, then

I x + (y + z) is defined but (x + y) + z is not defined.
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Unique Decomposition Categories (UDCs)

Definition
A unique decomposition category C is a symmetric monoidal
category where:

I Every homset is a Σ-Monoid

I Composition distributes over sum (careful!)

satisfying the axiom:
(A) For all j ∈ I

I quasi injection: ιj : Xj −→ ⊗IXi ,

I quasi projection: ρj : ⊗IXi −→ Xj ,

such that

I ρkιj = 1Xj
if j = k and 0XjXk

otherwise.

I
∑

i∈I ιiρi = 1⊗I Xi
.
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A Proposition

Proposition (Matricial Representation)

For f : ⊗JXj −→ ⊗IYi , there exists a unique family
{fij}i∈I ,j∈J : Xj −→ Yi with f =

∑
i∈I ,j∈J ιi fijρj , namely,

fij = ρi f ιj .

In particular, for |I | = m, |J| = n

f =

 f11 . . . f1n
...

...
...

fm1 . . . fmn
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Example 1

PInj, the category of sets and partial injective functions.

I X ⊗ Y = X ] Y , Not a coproduct.

I ρj : ⊗i∈IXi −→ Xj ,
ρj(x , i) is undefined for i 6= j and ρj(x , j) = x ,

I ιj : Xj −→ ⊗i∈IXi by ιj(x) = (x , j).
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Example 2

Rel: The category of sets and binary relations.

I X ⊗ Y = X ] Y , a biproduct,

I ρj : ⊗i∈IXi −→ Xj ,
ρj = {((x , j), x) | x ∈ Xj}

I ιj : Xj −→ ⊗i∈IXi ,
ιj = {(x , (x , j)) | x ∈ Xj} = ρop

j .
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Example 3: Hilb2

I Given a set X ,

I `2(X ): the set of all complex valued functions a on X for
which the (unordered) sum

∑
x∈X |a(x)|2 is finite.

I `2(X ) is a Hilbert space

I ||a|| = (
∑

x∈X |a(x)|2)1/2

I < a, b >=
∑

x∈X a(x)b(x) for a, b ∈ `2(X )
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I Barr’s `2 functor: contravariant faithful functor

`2 : PInjop −→ Hilb

where Hilb is the category of Hilbert spaces and linear
contractions (norm ≤ 1).

1. For a set X , `2(X ) is defined as above
2. Given f : X −→ Y in PInj, `2(f ) : `2(Y ) −→ `2(X ) is defined

by

`2(f )(b)(x) =

{
b(f (x)) if x ∈ Dom(f ),

0 otherwise.

I `2(X × Y ) ∼= `2(X )⊗ `2(Y )

I `2(X ] Y ) ∼= `2(X )⊕ `2(Y )
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Example cont’d: Defining Hilb2

I Objects: `2(X ) for a set X

I Arrows: u : `2(X ) −→ `2(Y ) is of the form `2(f ) for some
partial injective function f : Y −→ X

I For `2(X ) and `2(Y ) in Hilb2, the Hilbert space tensor
product `2(X )⊗ `2(Y ) yields a tensor product in Hilb2.

I Similarly for `2(X ) and `2(Y ) in Hilb2, the direct sum
`2(X )⊕ `2(Y ) yields a tensor product (not a coproduct) in
Hilb2.
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The structure on PInj makes Hilb2 into a UDC.

I {`2(fi )}I ∈ Hilb2(`2(X ), `2(Y )), {fi} ∈PInj(Y ,X ), {`2(fi )} is
summable if {fi} is summable in PInj

I
∑

i `2(fi )
def
= `2(

∑
i fi ).
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Categorical trace (JSV 96)

Definition
A traced symmetric monoidal category is a symmetric monoidal
category (C,⊗, I , s) with a family of functions
TrU

X ,Y : C(X ⊗ U,Y ⊗ U) −→ C(X ,Y ) called a trace, subject to
the following axioms:

I Natural in X , TrU
X ,Y (f )g = TrU

X ′,Y (f (g ⊗ 1U)) where
f : X ⊗ U −→ Y ⊗ U, g : X ′ −→ X ,

I Natural in Y , gTrU
X ,Y (f ) = TrU

X ,Y ′((g ⊗ 1U)f ) where
f : X ⊗ U −→ Y ⊗ U, g : Y −→ Y ′,
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I Dinatural in U, TrU
X ,Y ((1Y ⊗ g)f ) = TrU′

X ,Y (f (1X ⊗ g)) where
f : X ⊗ U −→ Y ⊗ U ′, g : U ′ −→ U,

I Vanishing (I,II), Tr I
X ,Y (f ) = f and

TrU⊗V
X ,Y (g) = TrU

X ,Y (TrV
X⊗U,Y⊗U(g)) for f : X ⊗ I −→ Y ⊗ I

and g : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V ,

I Superposing,
TrU

X ,Y (f )⊗ g = TrU
X⊗W ,Y⊗Z ((1Y ⊗ sU,Z )(f ⊗ g)(1X ⊗ sW ,U))

for f : X ⊗ U −→ Y ⊗ U and g : W −→ Z ,

I Yanking, TrU
U,U(sU,U) = 1U .

Esfandiar Haghverdi On Categorical Models of GoILecture 1



Graphical Representation
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Examples

I Consider the category FDVectk of finite dimensional vector
spaces and linear transformations

I Given f : V ⊗ U −→ W ⊗ U, {vi}, {uj}, {wk} bases for
V ,U,W respectively.

I f (vi ⊗ uj) =
∑

k,m akm
ij wk ⊗ um,

I TrU
V ,W (f )(vi ) =

∑
j ,k akj

ij wk

I This is just summing dim(U) many diagonal blocks, each of
size dim(W )× dim(V )

I See what happens when dim(V ) = dim(W ) = 1, that is when
V ∼= W ∼= k
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Examples, cont’d

I Consider the category Rel but with X ⊗ Y = X × Y

I This is not a product, nor a coproduct.

I Given R : X ⊗ U −→ Y ⊗ U,
TrU

X ,Y (R) : X −→ Y is defined by

(x , y) ∈ Tr(R) iff ∃u.(x , u, y , u) ∈ R.
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On Ubiquity of Trace

I Functional analysis and operator theory: Kadison & Ringrose

I Knot Theory: Jones, Joyal, Street, Freyd, Yetter

I Dimension theory of C ∗-categories: Longo, Roberts

I Action Calculi: Milner and Mifsud

I Fixed Point and Iteration theory: Hasegawa, Haghverdi

I Cyclic Lambda Calculus: Hasegawa

I Asynchrony, Data flow networks: Selinger, Panangaden

I Geometry of Interaction: Abramsky, Haghverdi

I Models of MLL: Haghverdi
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Traced UDCs

Proposition (Standard Trace Formula)

Let C be a unique decomposition category such that for every
X ,Y ,U and f : X ⊗ U −→ Y ⊗ U, the sum f11 +

∑∞
n=0 f12f

n
22f21

exists, where fij are the components of f . Then, C is traced and

TrU
X ,Y (f ) = f11 +

∞∑
n=0

f12f
n
22f21.

I Note that a UDC can be traced with a trace different from
the standard one.

I In all my work, all traced UDCs are the ones with the
standard trace.
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Examples: calculating traces

Let C be a traced UDC. Then given any f : X ⊗ U −→ Y ⊗ U,
TrU

X ,Y (f ) exists.

I Let f : X ⊗ U −→ Y ⊗ U be given by

[
g 0
h 0

]
. Then

TrU
X ,Y (f ) = TrU

X ,Y

([
g 0
h 0

])
= g +

∑
n 00nh = g + 0h =

g + 0 = g .

I Let f : X ⊗ U −→ Y ⊗ U be given by

[
g 0
0 h

]
. Then

TrU
X ,Y (f ) = TrU

X ,Y

([
g 0
0 h

])
= g +

∑
n 0hn0 = g + 0 = g .
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GoI Situation

Definition
A GoI Situation is a triple (C,T ,U) where:

I C is a TSMC, Not necessarily a traced UDC!

I T : C −→ C is a traced symmetric monoidal functor with the
following retractions:

1. TT � T (e, e′) (Comultiplication)
2. Id � T (d , d ′) (Dereliction)
3. T ⊗ T � T (c , c ′) (Contraction)
4. KI � T (w ,w ′) (Weakening).

I U a reflexive object of C:

1. U ⊗ U � U (j , k)
2. I � U
3. TU � U (u, v)
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Example: PInj

I In PInj we let ⊗ = ],

I The tensor unit is the empty set ∅.
I T = N×−, with T = (T , ψ, ψI ):
ψX ,Y : N× X ] N× Y −→ N× (X ] Y ) given by
(1, (n, x)) 7→ (n, (1, x)) and (2, (n, y)) 7→ (n, (2, y)).
ψ has an inverse defined by: (n, (1, x)) 7→ (1, (n, x)) and
(n, (2, y)) 7→ (2, (n, y)).
ψI : ∅ −→ N× ∅ given by 1∅.
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I T is additive, and thus it is also traced:
Given f : X ] U −→ Y ] U:
1N × TrU

X ,Y (f ) = TrN×U
N×X ,N×Y (ψ−1(1N × f )ψ).

I N is a reflexive object.

1. N ] N � N(j , k) is given as follows:
j : N ] N −→ N, j(1, n) = 2n, j(2, n) = 2n + 1 and
k : N −→ N]N, k(n) = (1, n/2) for n even, and (2, (n− 1)/2)
for n odd.

2. ∅� N using the empty partial function as the retract
morphisms.

3. N× N � N(u, v) is defined as:

u(m, n) =<m, n>= (m+n+1)(m+n)
2 + n (Cantor surjective

pairing) and v as its inverse, v(n) = (n1, n2) with
<n1, n2>= n.
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PInj cont’d

We next define the necessary monoidal natural transformations.

I N× (N× X )
eX−→ N× X and N× X

e′X−→ N× (N× X )

I N× (N× X )
eX−→ N× X is defined by,

eX (n1, (n2, x)) = (<n1, n2>, x).

I X
dX−→ N× X and N× X

d ′X−→ X
dX (x) = (n0, x) for a fixed n0 ∈ N.

I

d ′X (n, x) =

{
x , if n = n0;

undefined, else.
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I (N× X ) ] (N× X )
cX−→ N× X and

N× X
c ′X−→ (N× X ) ] (N× X ).

cX =

{
(1, (n, x)) 7→ (2n, x)

(2, (n, x)) 7→ (2n + 1, x)

c ′X (n, x) =

{
(1, (n/2, x)), if n is even;

(2, ((n − 1)/2, x)), if n is odd.

I ∅ wX−→ N× X and N× X
w ′

X−→ ∅.
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Example: Traced UDC based

I (PInj ,N×−,N)

I (Hilb2, `
2 ⊗−, `2)

I (Rel⊕,N×−,N)

I (Pfn,N×−,N)
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GoI Interpretation

Recall that in categorical denotational semantics:

I We are given a logical system L to model, e.g. IL

I We are given a model category C with enough structure, e.g.
a CCC,

I Formulas are interpreted as objects

I Proofs are intepreted as morphisms, indeed morphisms are
equivalence classes of proofs

I Cut-elimination (proof transformation) is interpreted by
provable equality.

I One proves a soundness theorem:

Theorem
Given a sequent Γ ` A and proofs Π and Π′ such that Π � Π′,
then Π = Π′ : Γ −→ A .

Esfandiar Haghverdi On Categorical Models of GoILecture 1



GoI interpretation

In GoI interpretation:

I We are given a logical system L to model, e.g. MLL,

I We are given a GoI Situation (C,T ,U), e.g. (PInj ,N×−,N),

I Formulas are interpreted as types (see below),

I Proofs are interpreted as morphisms in C(U,U),

I Cut-elimination (proof transformation) is interpreted by the
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I One proves a finiteness theorem

Theorem
Given a sequent Γ ` A with a proof Π and cut formulas
represented by σ, then EX (θ(Π), σ) exists.

I And a soundness theorem

Theorem
Given a sequent Γ ` A and proofs Π and Π′ such that Π � Π′,
then EX (θ(Π), σ) = EX (θ(Π′), τ) where σ and τ represent the cut
formulas in Π and Π′ respectively (see below).
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GoI Interpretation: proofs

Hereafter we shall be working with traced UDCs.

I Π a proof of ` [∆], Γ, |∆| = 2m and |Γ| = n.
I ∆ keeps track of the cut formulas, e.g., ∆ = A,A⊥,B,B⊥,
I

θ(Π) : Un+2m −→ Un+2m

I

σ : U2m −→ U2m = s⊗m
U,U

Γ
∆

Γ
∆θ(Π)
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GoI Int, cont’d

axiom: ` A,A⊥, m = 0, n = 2.
θ(Π) = sU,U .

A A

A A
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cut:
Π′ Π′′

...
...

` [∆′], Γ′,A ` [∆′′],A⊥, Γ′′

` [∆′,∆′′,A,A⊥], Γ′, Γ′′
(cut)

θ(Π’)

θ(Π’’)

τ τ −1
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times: Recall U ⊗ U � U (j , k)

Π′ Π′′

...
...

` [∆′], Γ′,A ` [∆′′], Γ′′,B

` [∆′,∆′′], Γ′, Γ′′,A⊗ B
(times)

θ(Π’)

θ(Π’’)

τ τ −1

k1

k2

j1

j2

f g
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of course: Recall TU � U (u, v) and TT � T (e, e ′)

Π′

...
` [∆], ?Γ′,A

` [∆], ?Γ′, !A
(ofcourse)

u

u

uv

ue’U

v

v eUv

θ(Π’)

T
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contraction: Recall TU � U (u, v) and T ⊗ T � T (c , c ′).

Π′

...
` [∆], Γ′, ?A, ?A

` [∆], Γ′, ?A
(contraction)

v
v

c
Uθ(Π’)

c’
U u

uv u
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Examples

Let Π be the following proof:

` A,A⊥ ` A,A⊥

` [A⊥,A],A,A⊥
(cut)

Then the GoI semantics of this proof is given by

θ(Π) =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
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Now consider the following proof

` B,B⊥ ` C ,C⊥

` B,C ,B⊥ ⊗ C⊥

` B,B⊥ ⊗ C⊥,C

` B⊥ ⊗ C⊥,B,C

` B⊥ ⊗ C⊥,B
.................................................

............
.................................. C .

Its denotation is given by[
0 j1k1 + j2k2

j1k1 + j2k2 0

]
.
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Orthogonality & Types

I f , g ∈ C(U,U)

I f is nilpotent if ∃k ≥ 1. f k = 0.

I f ⊥ g if gf is nilpotent.

I 0 ⊥ f for all f ∈ C(U,U).

I X ⊆ C(U,U),

X⊥ = {f ∈ C(U,U)|∀g(g ∈ X ⇒ f ⊥ g)}

I Definition
A type: X ⊆ C(U,U), X = X⊥⊥.

I 0UU belongs to every type.
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GoI Int, formulas

I GoI situation (C,T ,U). j1, j2, k1, k2 components of
U ⊗ U � U(j , k).

I θ(α) = X , for α atomic,

I θ(α⊥) = (θα)⊥, for α atomic,

I θ(A⊗ B) = {j1ak1 + j2bk2|a ∈ θA, b ∈ θB}⊥⊥

I θ(A
.................................................

............
.................................. B) = {j1ak1 + j2bk2|a ∈ (θA)⊥, b ∈ (θB)⊥}⊥

I θ(!A) = {uT (a)v |a ∈ θA}⊥⊥

I θ(?A) = {uT (a)v |a ∈ (θA)⊥}⊥
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GoI Int, cut-elimination

I Π a proof of ` [∆], Γ with cut formulas in ∆

Π ; (θ(Π), σ)

a proof of pair of morphisms
MELL on the object U

I execution formula = standard trace formula
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θ(Π) : Un+2m −→ Un+2m and σ : U2m −→ U2m

The dynamics is given by

EX (θ(Π), σ) = TrU2m

Un,Un((1Un ⊗ σ)θ(Π))

normalisation ↔ finite sum

U
2m

U
2m

U
n

U
n

σ
[Π]
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Which in a traced UDC is:

EX (θ(Π), σ) = π11 +
∑
n≥0

π12(σπ22)
n(σπ21)

where θ(Π) =

[
π11 π12

π21 π22

]
.

Esfandiar Haghverdi On Categorical Models of GoILecture 1



Example, again!

` A,A⊥ ` A,A⊥

` [A⊥,A],A,A⊥ σ = s

EX (θ(Π), σ) = Tr




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




= Tr




0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0




=

[
0 0
0 0

]
+

∑
n≥0

[
1 0
0 1

] [
0 0
0 0

]n [
0 1
1 0

]

=

[
0 1
1 0

]
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Associativity of cut

Lemma
Let Π be a proof of ` [Γ,∆],Λ and σ and τ be the morphisms
representing the cut-formulas in Γ and ∆ respectively. Then

EX (θ(Π), σ ⊗ τ) = EX (EX (θ(Π), τ), σ)

= EX (EX ((1⊗ s)θ(Π)(1⊗ s), σ), τ)

Proof.
EX (EX (θ(Π), τ), σ)

= Tr((1⊗ σ)Tr((1⊗ τ)θ(Π)))

= TrU2
(TrU2

[(1⊗ σ ⊗ 1)(1⊗ τ)θ(Π)])

= TrU4
((1⊗ σ ⊗ τ)θ(Π))

= EX (θ(Π), σ ⊗ τ)
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The big picture

proof ; algorithm

cut-elim. ↓ ↓ computation

cut-free proof ; datum

Π ; θ(Π)

cut-elim. ↓ ↓ computation

Π′ ; θ(Π′) = EX (θ(Π), σ)
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Towards the theorems

I Γ = A1, · · · ,An.

I A datum of type θΓ:
M : Un −→ Un, for any β1 ∈ θ(A⊥1 ), · · · , βn ∈ θ(A⊥n ),

(β1 ⊗ · · · ⊗ βn) ⊥ M

I An algorithm of type θΓ:
M : Un+2m −→ Un+2m for some non-negative integer m, for
σ : U2m −→ U2m = s⊗m,

EX (M, σ) = Tr((1⊗ σ)M)

is a finite sum and a datum of type θΓ.

Esfandiar Haghverdi On Categorical Models of GoILecture 1



Towards the theorems

I Γ = A1, · · · ,An.

I A datum of type θΓ:
M : Un −→ Un, for any β1 ∈ θ(A⊥1 ), · · · , βn ∈ θ(A⊥n ),

(β1 ⊗ · · · ⊗ βn) ⊥ M

I An algorithm of type θΓ:
M : Un+2m −→ Un+2m for some non-negative integer m, for
σ : U2m −→ U2m = s⊗m,

EX (M, σ) = Tr((1⊗ σ)M)

is a finite sum and a datum of type θΓ.

Esfandiar Haghverdi On Categorical Models of GoILecture 1



A Lemma

Lemma
Let M : Un −→ Un and a : U −→ U. Define
CUT (a,M) = (a⊗ 1Un−1)M : Un −→ Un.
Then M = [mij ] is a datum of type θ(A, Γ) iff

I for any a ∈ θA⊥, a ⊥ m11, and

I the morphism ex(CUT (a,M)) = TrA(s−1
Γ,ACUT (a,M)sΓ,A) is

in θ(Γ).
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Main Theorems

Theorem (Convergence or Finiteness)

Let Π be a proof of ` [∆], Γ. Then θ(Π) is an algorithm of type θΓ.
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Proof.
A taster!
Π is an axiom, where Γ = A,A⊥, then we need to prove that
EX (θ(Π), 0) = θ(Π) is a datum of type θΓ. That is, for all a ∈ θA⊥

and b ∈ θA, M = (a⊗ b)θ(Π) =

[
0 a
b 0

]
must be nilpotent.

Observe that Mn =

[
(ab)n/2 0

0 (ba)n/2

]
for n even and

Mn =

[
0 (ab)(n−1)/2a

(ba)(n−1)/2b 0

]
for n odd. But a ⊥ b and

hence ab and ba are nilpotent. Therefore M is nilpotent.
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Invariance

Theorem (Soundness)

Let Π be a proof of a sequent ` [∆], Γ in MELL. Then

(i) EX (θ(Π), σ) is a finite sum.

(ii) If Π reduces to Π′ by any sequence of cut-elimination steps
and Γ does not contain any formulas of the form ?A, then
EX (θ(Π), σ) = EX (θ(Π′), τ). So EX (θ(Π), σ) is an invariant
of reduction. In particular, if Π′ is any cut-free proof obtained
from Π by cut-elimination, then EX (θ(Π), σ) = θ(Π′).
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Proof.
A taster Part (i) is an easy corollary of Convergence Theorem. We
proceed to the proof of part (ii).
Suppose Π′ is a cut-free proof of ` Γ,A and Π is obtained by
applying the cut rule to Π′ and the axiom ` A⊥,A. Then
EX (θ(Π), σ) =

Tr

(1⊗ σ)


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0



π′11 π′12 0 0
π′21 π′22 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0




= Tr



π′11 0 π′12 0
0 0 0 1
0 1 0 0
π′21 0 π′22 0


 =

[
π′11 π′12
π′21 π′22

]
= θ(Π′)
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Back to Girard

I (PInj,N×−,N) is a GoI situation.

I Proposition

(Hilb2, `
2 ⊗−, `2) is a GoI Situation which agrees with Girard’s

C ∗-algebraic model, where `2 = `2(N). Its structure is induced via
`2 from PInj.

I Proposition

Let Π be a proof of ` [∆], Γ. Then in Girard’s model Hilb2 above,

((1− σ2)
∞∑

n=0

θ(Π)(σθ(Π))n(1− σ2))n×n = Tr((1⊗ σ̃)θ(Π))

where (A)n×n is the submatrix of A consisting of the first n rows
and the first n columns. σ̃ = s ⊗ · · · ⊗ s (m-times.)
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The mistakes GoI makes ...

Consider the following situation:

`!A, ?A⊥ `!A, ?A⊥

` [?A⊥, !A], !A, ?A⊥ � `!A, ?A⊥

Note that θ(Π) =

[
0 ((Td ′)e ′)2

(e(Td))2 0

]

but θ(Π′) =

[
0 (Td ′)e ′

e(Td) 0

]
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Future Work

I Extension to additives

I Exploiting the GoI as a semantics: Lambda calculus, PCF etc.

I GoI 4: The Feedback Equation

I GoI 5: The Hyperfinite Factor

I Connecting to logical complexity
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