On Categorical Models of Gol Lecture 1

Esfandiar Haghverdi

School of Informatics and Computing Indiana University Bloomington USA

August 24, 2009

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ We shall talk about the first categorical model of Gol.
- ▶ We will consider Gol 1 (Girard 1989) for MELL.
- I shall follow the paper: Haghverdi & Scott, A Categorical Model for Gol, ICALP 2004 and TCS 2006.
- We emphasize the notion of categorical *trace*.

向下 イヨト イヨト

A critique of reductionism

G. Frege (1848-1925): In Function und Begriff, 1891.

- Sinn/Bedeutung sense/denotation
- The sense constitutes the particular way in which its denotation (reference) is given to one who grasps the thought.
- ► 2 + 3 = 5
- sense/denotation dynamic/static

向下 イヨト イヨト

Example

$$\frac{A \vdash A \quad A \vdash A}{A \vdash A} \qquad \succ \quad A \vdash A$$

- $\blacktriangleright \ id_A \circ id_A = id_A$
- More generally, Π , Π' proofs of $\Gamma \vdash A$, $\Pi \succ \Pi'$.
- Then

$$\llbracket \Pi \rrbracket = \llbracket \Pi' \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket A \rrbracket.$$

- ► A *static* view!
- Gol offers a dynamic semantics.
- Syntax carries irrelevant information.

個 と く ヨ と く ヨ と …

Where is this dynamics to be found?

▲御★ ▲注★ ▲注★

Where is this dynamics to be found?

Gentzen's cut elimination theorem

・ 回 と ・ ヨ と ・ ヨ と …

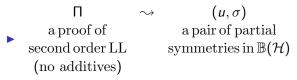
- Where is this dynamics to be found?
- Gentzen's cut elimination theorem
- ► Theorem (Cut Elimination (Hauptsatz))

(Gentzen, 1934) If Π is a proof of a sequent $\Gamma \vdash A$, then there is a proof Π' of the same sequent which does not use the cut rule.

$$\frac{\Gamma \vdash A \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \ (\textit{cut rule})$$

高 とう モン・ く ヨ と

Girard's Implementation (System \mathcal{F})



• Dynamics = elimination of cuts (σ) using

$$EX(u,\sigma) = (1-\sigma^2) \sum_{n\geq 0} u(\sigma u)^n (1-\sigma^2)$$

► Theorem (Girard, 1987)

(i) If (u, σ) is the interpretation of a proof Π of a sequent $\vdash [\Delta], \Gamma$ then σu is nilpotent.

(ii) if Γ does not use the symbols "?" or " \exists ", then the interpretation is sound.

• strong normalisation \leftrightarrow nilpotency

Back to our example

$$\frac{\vdash A, A^{\perp} \vdash A, A^{\perp}}{\vdash [A^{\perp}, A], A, A^{\perp}} \qquad \succ \qquad \vdash A, A^{\perp}$$

• Dynamics: $EX(u, \sigma) = (1 - \sigma^2)(u + u\sigma u)(1 - \sigma^2) =$

- ▶ Gol 2 (1988): Deadlock-free algorithms, Recursion
- Gol 3 (1995): Additives
- Gol 4 (2003): The feedback equation
- Gol 5 (2008): The hyperfinite factor
- Danos (1990): Untyped Lambda Calculus
- Danos, Regnier, Malacaria, Mackie : Path-based Semantics
- Logical complexity related work, optimal lambda reduction, etc

高 とう モン・ く ヨ と

- Abramsky & Jagadeesan (1994): Categorical interpretation using Domain Theory, Feedback in dataflow networks
- Abramsky (1997): Gol Situation, Abramsky's Program
- Haghverdi (PhD, 2000): UDC based (particle style) Gol Situation and more, including path-based semantics
- Abramsky, Haghverdi and Scott (2002): Gol Situation to CA
- Haghverdi, Scott (2004,2006): Categorical models
- Haghverdi, Scott (2005,2009): Typed Gol
- ▶ Hines (1997): Self-similarity, inverse semigroups

Definition (Kuros, Higgs, Manes, Arbib, Benson)

 (M, Σ) , where *M* is a nonempty set and Σ is a partial operation on countable families in *M*. $\{x_i\}_{i \in I}$ is *summable* if $\Sigma_{i \in I} x_i$ is defined subject to:

► Partition-Associativity: {x_i}_{i∈I} and {I_j}_{j∈J} a countable partition of I

$$\Sigma_{i\in I}x_i = \Sigma_{j\in J}(\Sigma_{i\in I_j}x_i).$$

• Unary sum: $\sum_{i \in \{j\}} x_i = x_j$.

伺 とう ヨン うちょう

- ► Σ_{i∈∅}x_i exists and is denoted by 0. It is a countable additive identity.
- Sum is commutative and associative whenever defined.
- ► $\sum_{i \in I} x_{\varphi(i)}$ is defined for any permutation φ of *I*, whenever $\sum_{i \in I} x_i$ exits.
- There are **no** additive inverses: x + y = 0 implies x = y = 0.

伺下 イヨト イヨト

• M = PInj(X, Y), the set of partial injective functions.

・ 回 ト ・ ヨ ト ・ ヨ ト

- M = PInj(X, Y), the set of partial injective functions.
- {f_i} is summbale if f_i and f_j have disjoint domains and codomains for all i ≠ j.

・ 回 と ・ ヨ と ・ ヨ と …

- M = PInj(X, Y), the set of partial injective functions.
- {f_i} is summbale if f_i and f_j have disjoint domains and codomains for all i ≠ j.

$$\blacktriangleright (\Sigma_I f_i)(x) = \begin{cases} f_j(x) & \text{if } x \in Dom(f_j) \text{ for some } j \in I \\ undefined & \text{otherwise.} \end{cases}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- M = PInj(X, Y), the set of partial injective functions.
- {f_i} is summbale if f_i and f_j have disjoint domains and codomains for all i ≠ j.

$$\blacktriangleright (\Sigma_I f_i)(x) = \begin{cases} f_j(x) & \text{if } x \in Dom(f_j) \text{ for some } j \in I \\ undefined & \text{otherwise.} \end{cases}$$

• M = Pfn(X, Y), the set of partial functions.

・吊り ・ヨト ・ヨト

- M = PInj(X, Y), the set of partial injective functions.
- {f_i} is summbale if f_i and f_j have disjoint domains and codomains for all i ≠ j.

$$\blacktriangleright (\Sigma_I f_i)(x) = \begin{cases} f_j(x) & \text{if } x \in Dom(f_j) \text{ for some } j \in I \\ undefined & \text{otherwise.} \end{cases}$$

- M = Pfn(X, Y), the set of partial functions.
- ▶ { f_i } is summable if f_i and f_j have disjoint domains for all $i \neq j$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- M = PInj(X, Y), the set of partial injective functions.
- {f_i} is summbale if f_i and f_j have disjoint domains and codomains for all i ≠ j.

$$\blacktriangleright (\Sigma_I f_i)(x) = \begin{cases} f_j(x) & \text{if } x \in Dom(f_j) \text{ for some } j \in I \\ undefined & \text{otherwise.} \end{cases}$$

- M = Pfn(X, Y), the set of partial functions.
- ▶ $\{f_i\}$ is summable if f_i and f_j have disjoint domains for all $i \neq j$.
- $(\Sigma_I f_i)(x)$ as above.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

• M = Rel(X, Y), the set of binary relations from X to Y,

・日本 ・日本 ・日本

- M = Rel(X, Y), the set of binary relations from X to Y,
- All families are summable,

▲圖▶ ★ 国▶ ★ 国▶

- M = Rel(X, Y), the set of binary relations from X to Y,
- All families are summable,
- $\triangleright \ \Sigma_i R_i = \bigcup_i R_i.$

(ロ) (同) (E) (E) (E)

- M = Rel(X, Y), the set of binary relations from X to Y,
- All families are summable,
- $\triangleright \ \Sigma_i R_i = \bigcup_i R_i.$
- $M = \text{countably complete poset}, \Sigma = sup.$

・ 回 と ・ ヨ と ・ ヨ と

2

▲圖> ▲屋> ▲屋>

- $M = \omega$ -complete poset,
- $\{x_i\}$ is summable if it is a countable chain,

・ 回 ト ・ ヨ ト ・ ヨ ト

- $M = \omega$ -complete poset,
- $\{x_i\}$ is summable if it is a countable chain,

$$\triangleright \ \Sigma_{i\in I} x_i = sup_{i\in I} x_i,$$

・ 回 ト ・ ヨ ト ・ ヨ ト

- $M = \omega$ -complete poset,
- {x_i} is summable if it is a countable chain,
- $\triangleright \ \Sigma_{i\in I} x_i = sup_{i\in I} x_i,$
- Suppose x, y, z are in this family, with x ≤ z, y ≤ z and x, y incomparable, then

同 と く ヨ と く ヨ と

- $M = \omega$ -complete poset,
- {x_i} is summable if it is a countable chain,
- $\triangleright \ \Sigma_{i\in I} x_i = sup_{i\in I} x_i,$
- Suppose x, y, z are in this family, with x ≤ z, y ≤ z and x, y incomparable, then
- x + (y + z) is defined but (x + y) + z is not defined.

伺下 イヨト イヨト

Definition

A unique decomposition category $\mathbb C$ is a symmetric monoidal category where:

- Every homset is a Σ -Monoid
- Composition distributes over sum (careful!)

satisfying the axiom:

(A) For all $j \in I$

- quasi injection: $\iota_j : X_j \longrightarrow \otimes_I X_i$,
- quasi projection: $\rho_j : \otimes_I X_i \longrightarrow X_j$,

such that

•
$$\rho_k \iota_j = 1_{X_j}$$
 if $j = k$ and $0_{X_j X_k}$ otherwise.

$$\blacktriangleright \sum_{i\in I} \iota_i \rho_i = \mathbf{1}_{\otimes_I X_i}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (Matricial Representation)

For $f : \otimes_J X_j \longrightarrow \otimes_I Y_i$, there exists a unique family $\{f_{ij}\}_{i \in I, j \in J} : X_j \longrightarrow Y_i$ with $f = \sum_{i \in I, j \in J} \iota_i f_{ij} \rho_j$, namely, $f_{ij} = \rho_i f \iota_j$.

In particular, for |I| = m, |J| = n

$$f = \left[\begin{array}{ccc} f_{11} & \dots & f_{1n} \\ \vdots & \vdots & \vdots \\ f_{m1} & \dots & f_{mn} \end{array} \right]$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

3

Plnj, the category of sets and partial injective functions.

•
$$X \otimes Y = X \uplus Y$$
, Not a coproduct.

・ 回 ト ・ ヨ ト ・ ヨ ト

Plnj, the category of sets and partial injective functions.

•
$$X \otimes Y = X \uplus Y$$
, Not a coproduct.

▶
$$\rho_j : \bigotimes_{i \in I} X_i \longrightarrow X_j$$
,
 $\rho_j(x, i)$ is undefined for $i \neq j$ and $\rho_j(x, j) = x$,

・ 回 ト ・ ヨ ト ・ ヨ ト

Plnj, the category of sets and partial injective functions.

•
$$X \otimes Y = X \uplus Y$$
, Not a coproduct.

$$\rho_j : \otimes_{i \in I} X_i \longrightarrow X_j, \\ \rho_j(x, i) \text{ is undefined for } i \neq j \text{ and } \rho_j(x, j) = x,$$

•
$$\iota_j : X_j \longrightarrow \bigotimes_{i \in I} X_i$$
 by $\iota_j(x) = (x, j)$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Rel: The category of sets and binary relations.

•
$$X \otimes Y = X \uplus Y$$
, a biproduct,

(1日) (日) (日)

Rel: The category of sets and binary relations.

•
$$X \otimes Y = X \uplus Y$$
, a biproduct,

$$\rho_j : \otimes_{i \in I} X_i \longrightarrow X_j, \\ \rho_j = \{((x, j), x) \mid x \in X_j\}$$

(1日) (日) (日)

Rel: The category of sets and binary relations.

•
$$X \otimes Y = X \uplus Y$$
, a biproduct,

$$\rho_j : \bigotimes_{i \in I} X_i \longrightarrow X_j, \rho_j = \{((x, j), x) \mid x \in X_j\}$$

$$\iota_j : X_j \longrightarrow \bigotimes_{i \in I} X_i, \iota_j = \{(x, (x, j)) \mid x \in X_j\} = \rho_j^{op}.$$

▲圖> ▲屋> ▲屋>

• Given a set X,

- ▶ Given a set X,
- ℓ₂(X): the set of all complex valued functions a on X for which the (unordered) sum ∑_{x∈X} |a(x)|² is finite.

▲圖 → ▲ 国 → ▲ 国 →

- ▶ Given a set X,
- ℓ₂(X): the set of all complex valued functions a on X for which the (unordered) sum ∑_{x∈X} |a(x)|² is finite.
- $\ell_2(X)$ is a Hilbert space

►
$$||a|| = (\sum_{x \in X} |a(x)|^2)^{1/2}$$

► < a, b >=
$$\sum_{x \in X} a(x)\overline{b(x)}$$
 for $a, b \in \ell_2(X)$

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

▶ Barr's ℓ_2 functor: contravariant faithful functor

$$\ell_2: \operatorname{PInj}^{\operatorname{op}} \longrightarrow \operatorname{Hilb}$$

where Hilb is the category of Hilbert spaces and linear contractions (norm \leq 1).

・日・ ・ ヨ・ ・ ヨ・

▶ Barr's ℓ_2 functor: contravariant faithful functor

$$\ell_2: \operatorname{PInj}^{\operatorname{op}} \longrightarrow \operatorname{Hilb}$$

where Hilb is the category of Hilbert spaces and linear contractions (norm \leq 1).

1. For a set X, $\ell_2(X)$ is defined as above

・ 同 ト ・ ヨ ト ・ ヨ ト

Barr's l₂ functor: contravariant faithful functor

$$\ell_2: PInj^{op} \longrightarrow Hilb$$

where Hilb is the category of Hilbert spaces and linear contractions (norm \leq 1).

For a set X, ℓ₂(X) is defined as above
 Given f : X → Y in Plnj, ℓ₂(f) : ℓ₂(Y) → ℓ₂(X) is defined by
 (b(f(x))) if x ∈ Dom(f)

$$\ell_2(f)(b)(x) = egin{cases} b(f(x)) & ext{if } x \in \textit{Dom}(f), \ 0 & ext{otherwise}. \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Barr's l₂ functor: contravariant faithful functor

$$\ell_2: PInj^{op} \longrightarrow Hilb$$

where Hilb is the category of Hilbert spaces and linear contractions (norm \leq 1).

For a set X, ℓ₂(X) is defined as above
 Given f : X → Y in Plnj, ℓ₂(f) : ℓ₂(Y) → ℓ₂(X) is defined by
 (b(f(x))) if x ∈ Dom(f)

$$\ell_2(f)(b)(x) = \begin{cases} b(f(x)) & \text{if } x \in Dom(f), \\ 0 & \text{otherwise.} \end{cases}$$

 $\blacktriangleright \ \ell_2(X \times Y) \cong \ell_2(X) \otimes \ell_2(Y)$

伺い イヨト イヨト ニヨ

Barr's l₂ functor: contravariant faithful functor

$$\ell_2: PInj^{op} \longrightarrow Hilb$$

where Hilb is the category of Hilbert spaces and linear contractions (norm \leq 1).

For a set X, ℓ₂(X) is defined as above
 Given f : X → Y in Plnj, ℓ₂(f) : ℓ₂(Y) → ℓ₂(X) is defined by

$$\ell_2(f)(b)(x) = egin{cases} b(f(x)) & ext{if } x \in \textit{Dom}(f), \ 0 & ext{otherwise}. \end{cases}$$

$$\ell_2(X \times Y) \cong \ell_2(X) \otimes \ell_2(Y)$$

$$\ell_2(X \uplus Y) \cong \ell_2(X) \oplus \ell_2(Y)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Objects: $\ell_2(X)$ for a set X

・ 回 ト ・ ヨ ト ・ ヨ ト

- Objects: $\ell_2(X)$ for a set X
- Arrows: u : ℓ₂(X) → ℓ₂(Y) is of the form ℓ₂(f) for some partial injective function f : Y → X

・回 ・ ・ ヨ ・ ・ ヨ ・

- Objects: $\ell_2(X)$ for a set X
- Arrows: u : ℓ₂(X) → ℓ₂(Y) is of the form ℓ₂(f) for some partial injective function f : Y → X
- For ℓ₂(X) and ℓ₂(Y) in Hilb₂, the Hilbert space tensor product ℓ₂(X) ⊗ ℓ₂(Y) yields a tensor product in Hilb₂.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Objects: $\ell_2(X)$ for a set X
- Arrows: u : ℓ₂(X) → ℓ₂(Y) is of the form ℓ₂(f) for some partial injective function f : Y → X
- For ℓ₂(X) and ℓ₂(Y) in Hilb₂, the Hilbert space tensor product ℓ₂(X) ⊗ ℓ₂(Y) yields a tensor product in Hilb₂.
- Similarly for $\ell_2(X)$ and $\ell_2(Y)$ in Hilb₂, the direct sum $\ell_2(X) \oplus \ell_2(Y)$ yields a tensor product (*not* a coproduct) in Hilb₂.

(四) (日) (日)

The structure on PInj makes $Hilb_2$ into a UDC.

▶ $\{\ell_2(f_i)\}_i \in \text{Hilb}_2(\ell_2(X), \ell_2(Y)), \{f_i\} \in \text{PInj}(Y, X), \{\ell_2(f_i)\} \text{ is summable if } \{f_i\} \text{ is summable in PInj}$

$$\blacktriangleright \sum_{i} \ell_2(f_i) \stackrel{\text{def}}{=} \ell_2(\sum_{i} f_i).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

A traced symmetric monoidal category is a symmetric monoidal category $(\mathbb{C}, \otimes, I, s)$ with a family of functions $Tr_{X,Y}^U : \mathbb{C}(X \otimes U, Y \otimes U) \longrightarrow \mathbb{C}(X, Y)$ called a *trace*, subject to the following axioms:

- ▶ Natural in X, $Tr_{X,Y}^U(f)g = Tr_{X',Y}^U(f(g \otimes 1_U))$ where $f : X \otimes U \longrightarrow Y \otimes U$, $g : X' \longrightarrow X$,
- ▶ Natural in Y, $gTr_{X,Y}^U(f) = Tr_{X,Y'}^U((g \otimes 1_U)f)$ where $f: X \otimes U \longrightarrow Y \otimes U$, $g: Y \longrightarrow Y'$,

・ 同 ト ・ ヨ ト ・ ヨ ト ・

▶ **Dinatural** in *U*, $Tr_{X,Y}^U((1_Y \otimes g)f) = Tr_{X,Y}^{U'}(f(1_X \otimes g))$ where $f: X \otimes U \longrightarrow Y \otimes U'$, $g: U' \longrightarrow U$,

► Vanishing (I,II), $Tr_{X,Y}^{I}(f) = f$ and $Tr_{X,Y}^{U \otimes V}(g) = Tr_{X,Y}^{U}(Tr_{X \otimes U,Y \otimes U}^{V}(g))$ for $f : X \otimes I \longrightarrow Y \otimes I$ and $g : X \otimes U \otimes V \longrightarrow Y \otimes U \otimes V$,

▶ Superposing, $Tr_{X,Y}^U(f) \otimes g = Tr_{X \otimes W,Y \otimes Z}^U((1_Y \otimes s_{U,Z})(f \otimes g)(1_X \otimes s_{W,U}))$ for $f: X \otimes U \longrightarrow Y \otimes U$ and $g: W \longrightarrow Z$,

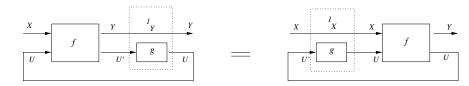
• Yanking,
$$Tr_{U,U}^U(s_{U,U}) = 1_U$$
.

伺下 イヨト イヨト

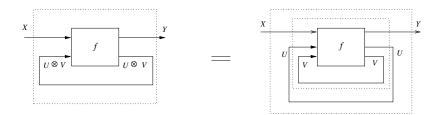
Graphical Representation

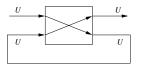
Esfandiar Haghverdi On Categorical Models of GolLecture 1

Э



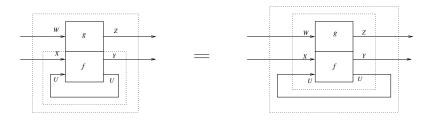
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで





・ロト・(四)・(日)・(日)・(日)・

Esfandiar Haghverdi On Categorical Models of GolLecture 1



◆□→ ◆□→ ◆注→ ◆注→ 注 のへぐ

 Consider the category FDVect_k of finite dimensional vector spaces and linear transformations

・ロト ・回ト ・ヨト ・ヨト

- Consider the category FDVect_k of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U$, $\{v_i\}, \{u_j\}, \{w_k\}$ bases for V, U, W respectively.

・ 回 と ・ ヨ と ・ ヨ と

- Consider the category FDVect_k of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U$, $\{v_i\}, \{u_j\}, \{w_k\}$ bases for V, U, W respectively.

•
$$f(v_i \otimes u_j) = \sum_{k,m} a_{ij}^{km} w_k \otimes u_m$$
,

・ 回 と ・ ヨ と ・ ヨ と

- Consider the category FDVect_k of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U$, $\{v_i\}, \{u_j\}, \{w_k\}$ bases for V, U, W respectively.

•
$$f(v_i \otimes u_j) = \sum_{k,m} a_{ij}^{km} w_k \otimes u_m$$

•
$$Tr_{V,W}^U(f)(v_i) = \sum_{j,k} a_{ij}^{kj} w_k$$

・ 回 と ・ ヨ と ・ ヨ と

- Consider the category FDVect_k of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U$, $\{v_i\}, \{u_j\}, \{w_k\}$ bases for V, U, W respectively.

$$\blacktriangleright f(v_i \otimes u_j) = \sum_{k,m} a_{ij}^{km} w_k \otimes u_m,$$

•
$$Tr_{V,W}^U(f)(v_i) = \sum_{j,k} a_{ij}^{kj} w_k$$

This is just summing dim(U) many diagonal blocks, each of size dim(W) × dim(V)

・ 回 と ・ ヨ と ・ ヨ と

- Consider the category FDVect_k of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U$, $\{v_i\}, \{u_j\}, \{w_k\}$ bases for V, U, W respectively.

$$\blacktriangleright f(v_i \otimes u_j) = \sum_{k,m} a_{ij}^{km} w_k \otimes u_m,$$

•
$$Tr_{V,W}^U(f)(v_i) = \sum_{j,k} a_{ij}^{kj} w_k$$

- ► This is just summing dim(U) many diagonal blocks, each of size dim(W) × dim(V)
- See what happens when dim(V) = dim(W) = 1, that is when V ≅ W ≅ k

- 사례가 사용가 사용가 구용

• Consider the category Rel but with $X \otimes Y = X \times Y$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

- Consider the category Rel but with $X \otimes Y = X \times Y$
- This is not a product, nor a coproduct.

回 と く ヨ と く ヨ と

- Consider the category Rel but with $X \otimes Y = X \times Y$
- This is not a product, nor a coproduct.
- Given $R: X \otimes U \longrightarrow Y \otimes U$, $Tr_{X,Y}^U(R): X \longrightarrow Y$ is defined by

 $(x, y) \in Tr(R)$ iff $\exists u.(x, u, y, u) \in R$.

伺 と く き と く き と

▶ Functional analysis and operator theory: Kadison & Ringrose

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

- ► Functional analysis and operator theory: Kadison & Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter

回 と く ヨ と く ヨ と

- ► Functional analysis and operator theory: Kadison & Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- ▶ Dimension theory of C*-categories: Longo, Roberts

高 とう モン・ く ヨ と

- ► Functional analysis and operator theory: Kadison & Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- ▶ Dimension theory of C*-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud

高 とう モン・ く ヨ と

- ► Functional analysis and operator theory: Kadison & Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- ▶ Dimension theory of C*-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi

高 とう モン・ く ヨ と

- ► Functional analysis and operator theory: Kadison & Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- ▶ Dimension theory of C*-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi
- Cyclic Lambda Calculus: Hasegawa

- ▶ Functional analysis and operator theory: Kadison & Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- ▶ Dimension theory of C*-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi
- Cyclic Lambda Calculus: Hasegawa
- Asynchrony, Data flow networks: Selinger, Panangaden

- ▶ Functional analysis and operator theory: Kadison & Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- ▶ Dimension theory of C*-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi
- Cyclic Lambda Calculus: Hasegawa
- Asynchrony, Data flow networks: Selinger, Panangaden
- Geometry of Interaction: Abramsky, Haghverdi

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ Functional analysis and operator theory: Kadison & Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- ▶ Dimension theory of C*-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi
- Cyclic Lambda Calculus: Hasegawa
- Asynchrony, Data flow networks: Selinger, Panangaden
- Geometry of Interaction: Abramsky, Haghverdi
- Models of MLL: Haghverdi

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (Standard Trace Formula)

Let \mathbb{C} be a unique decomposition category such that for every X, Y, U and $f : X \otimes U \longrightarrow Y \otimes U$, the sum $f_{11} + \sum_{n=0}^{\infty} f_{12} f_{21}^n f_{21}$ exists, where f_{ij} are the components of f. Then, \mathbb{C} is traced and

$$Tr_{X,Y}^{U}(f) = f_{11} + \sum_{n=0}^{\infty} f_{12}f_{22}^{n}f_{21}.$$

Note that a UDC can be traced with a trace different from the standard one.

Proposition (Standard Trace Formula)

Let \mathbb{C} be a unique decomposition category such that for every X, Y, U and $f : X \otimes U \longrightarrow Y \otimes U$, the sum $f_{11} + \sum_{n=0}^{\infty} f_{12} f_{21}^n f_{21}$ exists, where f_{ij} are the components of f. Then, \mathbb{C} is traced and

$$Tr_{X,Y}^{U}(f) = f_{11} + \sum_{n=0}^{\infty} f_{12}f_{22}^{n}f_{21}.$$

- Note that a UDC can be traced with a trace different from the standard one.
- In all my work, all traced UDCs are the ones with the standard trace.

Let \mathbb{C} be a traced UDC. Then given any $f : X \otimes U \longrightarrow Y \otimes U$, $Tr_{X,Y}^U(f)$ exists.

• Let
$$f: X \otimes U \longrightarrow Y \otimes U$$
 be given by $\begin{bmatrix} g & 0 \\ h & 0 \end{bmatrix}$. Then
 $Tr_{X,Y}^{U}(f) = Tr_{X,Y}^{U}\left(\begin{bmatrix} g & 0 \\ h & 0 \end{bmatrix}\right) = g + \sum_{n} 00^{n}h = g + 0h = g + 0 = g.$
• Let $f: X \otimes U \longrightarrow Y \otimes U$ be given by $\begin{bmatrix} g & 0 \\ 0 & h \end{bmatrix}$. Then
 $Tr_{X,Y}^{U}(f) = Tr_{X,Y}^{U}\left(\begin{bmatrix} g & 0 \\ 0 & h \end{bmatrix}\right) = g + \sum_{n} 0h^{n}0 = g + 0 = g.$

▲圖▶ ▲屋▶ ▲屋▶ ---

Definition

A Gol Situation is a triple (\mathbb{C}, T, U) where:

 \blacktriangleright $\mathbb C$ is a TSMC, Not necessarily a traced UDC!

白 ト イヨト イヨト

Definition

A Gol Situation is a triple (\mathbb{C}, T, U) where:

- \mathbb{C} is a TSMC, Not necessarily a traced UDC!
- *T* : C → C is a traced symmetric monoidal functor with the following retractions:
 - 1. $TT \lhd T(e, e')$ (Comultiplication)
 - 2. $Id \lhd T(d, d')$ (Dereliction)
 - 3. $T \otimes T \lhd T$ (c, c') (Contraction)
 - 4. $\mathcal{K}_I \lhd T(w, w')$ (Weakening).

伺下 イヨト イヨト

Definition

A Gol Situation is a triple (\mathbb{C}, T, U) where:

- \mathbb{C} is a TSMC, Not necessarily a traced UDC!
- T : C → C is a traced symmetric monoidal functor with the following retractions:
 - 1. $TT \lhd T$ (e, e') (Comultiplication)
 - 2. $Id \lhd T(d, d')$ (Dereliction)
 - 3. $T \otimes T \lhd T$ (c, c') (Contraction)
 - 4. $\mathcal{K}_I \lhd T(w, w')$ (Weakening).
- ► *U* a reflexive object of C:
 - 1. $U \otimes U \triangleleft U(j,k)$
 - 2. $I \lhd U$
 - 3. $TU \lhd U(u, v)$

高 とう モン・ く ヨ と

- ▶ In PInj we let $\otimes = \uplus$,
- The tensor unit is the empty set \emptyset .

►
$$T = \mathbb{N} \times -$$
, with $T = (T, \psi, \psi_I)$:
 $\psi_{X,Y} : \mathbb{N} \times X \boxplus \mathbb{N} \times Y \longrightarrow \mathbb{N} \times (X \boxplus Y)$ given by
 $(1, (n, x)) \mapsto (n, (1, x))$ and $(2, (n, y)) \mapsto (n, (2, y))$.
 ψ has an inverse defined by: $(n, (1, x)) \mapsto (1, (n, x))$ and
 $(n, (2, y)) \mapsto (2, (n, y))$.
 $\psi_I : \emptyset \longrightarrow \mathbb{N} \times \emptyset$ given by 1_{\emptyset} .

・ロン ・四マ ・ヨマ ・ヨマ

æ

- ► *T* is additive, and thus it is also traced: Given $f : X \uplus U \longrightarrow Y \uplus U$: $1_{\mathbb{N}} \times Tr_{X,Y}^{U}(f) = Tr_{\mathbb{N} \times X,\mathbb{N} \times Y}^{\mathbb{N} \times U}(\psi^{-1}(1_{\mathbb{N}} \times f)\psi).$
- \blacktriangleright \mathbb{N} is a reflexive object.

1.
$$\mathbb{N} \uplus \mathbb{N} \lhd \mathbb{N}(j, k)$$
 is given as follows:
 $j : \mathbb{N} \uplus \mathbb{N} \longrightarrow \mathbb{N}, j(1, n) = 2n, j(2, n) = 2n + 1$ and
 $k : \mathbb{N} \longrightarrow \mathbb{N} \uplus \mathbb{N}, k(n) = (1, n/2)$ for *n* even, and $(2, (n-1)/2)$ for *n* odd.

・回 ・ ・ ヨ ・ ・ ヨ ・

- ► *T* is additive, and thus it is also traced: Given $f : X \uplus U \longrightarrow Y \uplus U$: $1_{\mathbb{N}} \times Tr_{X,Y}^{U}(f) = Tr_{\mathbb{N} \times X,\mathbb{N} \times Y}^{\mathbb{N} \times U}(\psi^{-1}(1_{\mathbb{N}} \times f)\psi).$
- ▶ N is a reflexive object.
 - 1. $\mathbb{N} \uplus \mathbb{N} \lhd \mathbb{N}(j, k)$ is given as follows: $j : \mathbb{N} \uplus \mathbb{N} \longrightarrow \mathbb{N}, j(1, n) = 2n, j(2, n) = 2n + 1$ and $k : \mathbb{N} \longrightarrow \mathbb{N} \uplus \mathbb{N}, k(n) = (1, n/2)$ for *n* even, and (2, (n-1)/2) for *n* odd.
 - Ø ⊲ N using the empty partial function as the retract morphisms.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ► *T* is additive, and thus it is also traced: Given $f : X \uplus U \longrightarrow Y \uplus U$: $1_{\mathbb{N}} \times Tr_{X,Y}^{U}(f) = Tr_{\mathbb{N} \times X,\mathbb{N} \times Y}^{\mathbb{N} \times U}(\psi^{-1}(1_{\mathbb{N}} \times f)\psi).$
- N is a reflexive object.
 - 1. $\mathbb{N} \oplus \mathbb{N} \triangleleft \mathbb{N}(j, k)$ is given as follows: $j : \mathbb{N} \oplus \mathbb{N} \longrightarrow \mathbb{N}, j(1, n) = 2n, j(2, n) = 2n + 1$ and $k : \mathbb{N} \longrightarrow \mathbb{N} \oplus \mathbb{N}, k(n) = (1, n/2)$ for *n* even, and (2, (n-1)/2) for *n* odd.
 - Ø ⊲ N using the empty partial function as the retract morphisms.
 - 3. $\mathbb{N} \times \mathbb{N} \triangleleft \mathbb{N}(u, v)$ is defined as: $u(m, n) = \langle m, n \rangle = \frac{(m+n+1)(m+n)}{2} + n$ (Cantor surjective pairing) and v as its inverse, $v(n) = (n_1, n_2)$ with $\langle n_1, n_2 \rangle = n$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\blacktriangleright \mathbb{N} \times (\mathbb{N} \times X) \xrightarrow{e_X} \mathbb{N} \times X \text{ and } \mathbb{N} \times X \xrightarrow{e'_X} \mathbb{N} \times (\mathbb{N} \times X)$$

▲圖▶ ★ 国▶ ★ 国▶

$$\blacktriangleright \ \mathbb{N} \times (\mathbb{N} \times X) \xrightarrow{e_X} \mathbb{N} \times X \text{ and } \mathbb{N} \times X \xrightarrow{e'_X} \mathbb{N} \times (\mathbb{N} \times X)$$

$$\mathbb{N} \times (\mathbb{N} \times X) \xrightarrow{e_X} \mathbb{N} \times X \text{ is defined by,} \\ e_X(n_1, (n_2, x)) = (\langle n_1, n_2 \rangle, x).$$

▲圖▶ ★ 国▶ ★ 国▶

$$\blacktriangleright \ \mathbb{N} \times (\mathbb{N} \times X) \xrightarrow{e_X} \mathbb{N} \times X \text{ and } \mathbb{N} \times X \xrightarrow{e'_X} \mathbb{N} \times (\mathbb{N} \times X)$$

▶
$$\mathbb{N} \times (\mathbb{N} \times X) \xrightarrow{e_X} \mathbb{N} \times X$$
 is defined by,
 $e_X(n_1, (n_2, x)) = (\langle n_1, n_2 \rangle, x).$

•
$$X \xrightarrow{d_X} \mathbb{N} \times X$$
 and $\mathbb{N} \times X \xrightarrow{d'_X} X$
 $d_X(x) = (n_0, x)$ for a fixed $n_0 \in \mathbb{N}$.

▲圖▶ ★ 国▶ ★ 国▶

$$\blacktriangleright \ \mathbb{N} \times (\mathbb{N} \times X) \xrightarrow{e_X} \mathbb{N} \times X \text{ and } \mathbb{N} \times X \xrightarrow{e_X'} \mathbb{N} \times (\mathbb{N} \times X)$$

$$\mathbb{N} \times (\mathbb{N} \times X) \xrightarrow{e_X} \mathbb{N} \times X \text{ is defined by,} \\ e_X(n_1, (n_2, x)) = (\langle n_1, n_2 \rangle, x).$$

$$X \xrightarrow{d_X} \mathbb{N} \times X \text{ and } \mathbb{N} \times X \xrightarrow{d'_X} X \\ d_X(x) = (n_0, x) \text{ for a fixed } n_0 \in \mathbb{N}.$$

$$d'_X(n,x) = \begin{cases} x, & \text{if } n = n_0; \\ \text{undefined, else.} \end{cases}$$

▲圖▶ ★ 国▶ ★ 国▶

$$(\mathbb{N} \times X) \uplus (\mathbb{N} \times X) \xrightarrow{c_X} \mathbb{N} \times X \text{ and}$$
$$\mathbb{N} \times X \xrightarrow{c'_X} (\mathbb{N} \times X) \uplus (\mathbb{N} \times X).$$
$$c_X = \begin{cases} (1, (n, x)) \mapsto (2n, x) \\ (2, (n, x)) \mapsto (2n + 1, x) \end{cases}$$
$$c'_X(n, x) = \begin{cases} (1, (n/2, x)), & \text{if } n \text{ is even}; \\ (2, ((n - 1)/2, x)), & \text{if } n \text{ is odd.} \end{cases}$$

・ロト・(四ト・(川下・(日下・(日下)

$$(\mathbb{N} \times X) \uplus (\mathbb{N} \times X) \xrightarrow{c_X} \mathbb{N} \times X \text{ and} \\ \mathbb{N} \times X \xrightarrow{c'_X} (\mathbb{N} \times X) \uplus (\mathbb{N} \times X). \\ c_X = \begin{cases} (1, (n, x)) \mapsto (2n, x) \\ (2, (n, x)) \mapsto (2n + 1, x) \end{cases} \\ c'_X(n, x) = \begin{cases} (1, (n/2, x)), & \text{if } n \text{ is even;} \\ (2, ((n - 1)/2, x)), & \text{if } n \text{ is odd.} \end{cases} \\ \triangleright \emptyset \xrightarrow{w_X} \mathbb{N} \times X \text{ and } \mathbb{N} \times X \xrightarrow{w'_X} \emptyset. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$(Plnj, \mathbb{N} \times -, \mathbb{N})$$

$$(\operatorname{IIII}_{2}, \ell \otimes -, \ell)$$

$$\blacktriangleright (\mathit{Rel}_{\oplus}, \mathbb{N} \times -, \mathbb{N})$$

• (*Pfn*,
$$\mathbb{N} \times -, \mathbb{N}$$
)

▲圖> ▲注> ▲注>

æ

Recall that in categorical denotational semantics:

- \blacktriangleright We are given a logical system ${\cal L}$ to model, e.g. IL
- ▶ We are given a model category C with enough structure, e.g. a CCC,
- Formulas are interpreted as objects
- Proofs are intepreted as morphisms, indeed morphisms are equivalence classes of proofs
- Cut-elimination (proof transformation) is interpreted by provable equality.
- One proves a soundness theorem:

Theorem

Given a sequent $\Gamma \vdash A$ and proofs Π and Π' such that $\Pi \succ \Pi'$, then $\llbracket \Pi \rrbracket = \llbracket \Pi' \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket A \rrbracket$.

In Gol interpretation:

- \blacktriangleright We are given a logical system ${\cal L}$ to model, e.g. MLL,
- ▶ We are given a Gol Situation (\mathbb{C} , T, U), e.g. (*Plnj*, $\mathbb{N} \times -$, \mathbb{N}),
- Formulas are interpreted as types (see below),
- Proofs are interpreted as morphisms in $\mathbb{C}(U, U)$,
- Cut-elimination (proof transformation) is interpreted by the execution formula

・ 同 ト ・ ヨ ト ・ ヨ ト …

One proves a finiteness theorem

Theorem

Given a sequent $\Gamma \vdash A$ with a proof Π and cut formulas represented by σ , then $EX(\theta(\Pi), \sigma)$ exists.

伺下 イヨト イヨト

One proves a finiteness theorem

Theorem

Given a sequent $\Gamma \vdash A$ with a proof Π and cut formulas represented by σ , then $EX(\theta(\Pi), \sigma)$ exists.

And a soundness theorem

Theorem

Given a sequent $\Gamma \vdash A$ and proofs Π and Π' such that $\Pi \succ \Pi'$, then $EX(\theta(\Pi), \sigma) = EX(\theta(\Pi'), \tau)$ where σ and τ represent the cut formulas in Π and Π' respectively (see below).

高 とう モン・ く ヨ と

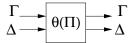
Gol Interpretation: proofs

Hereafter we shall be working with traced UDCs.

- Π a proof of $\vdash [\Delta], \Gamma, |\Delta| = 2m$ and $|\Gamma| = n$.
- Δ keeps track of the cut formulas, e.g., $\Delta = A, A^{\perp}, B, B^{\perp}$,

$$\theta(\Pi): U^{n+2m} \longrightarrow U^{n+2m}$$

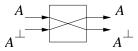
$$\sigma: U^{2m} \longrightarrow U^{2m} = \mathbf{s}_{U,U}^{\otimes m}$$



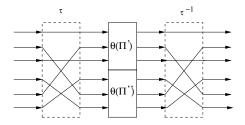
向下 イヨト イヨト

axiom:
$$\vdash A, A^{\perp}, m = 0, n = 2.$$

 $\theta(\Pi) = s_{U,U}.$

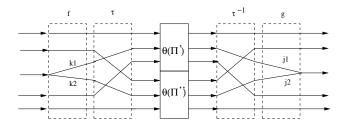


æ



◆□→ ◆□→ ◆注→ ◆注→ □注□

times: Recall $U \otimes U \triangleleft U(j, k)$ $\begin{array}{ccc} \Pi' & \Pi'' \\ \vdots & \vdots \\ \vdash [\Delta'], \Gamma', A & \vdash [\Delta''], \Gamma'', B \\ \hline \vdash [\Delta', \Delta''], \Gamma', \Gamma'', A \otimes B \end{array} (times)$



Esfandiar Haghverdi On Categorical Models of GolLecture 1

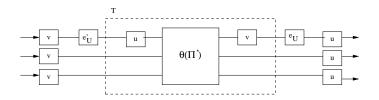
A (10) > (10)

< ≣⇒

æ

of course: Recall $TU \lhd U(u, v)$ and $TT \lhd T(e, e')$

$$\begin{array}{c} \Pi' \\ \vdots \\ \vdash [\Delta], ?\Gamma', A \\ \vdash [\Delta], ?\Gamma', !A \end{array} (of course) \end{array}$$



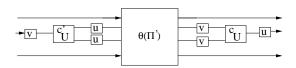
・ロト ・回ト ・ヨト

< 注 →

Э

contraction: Recall $TU \triangleleft U(u, v)$ and $T \otimes T \triangleleft T(c, c')$.

$$\begin{array}{c} \Pi' \\ \vdots \\ \vdash [\Delta], \Gamma', ?A, ?A \\ \vdash [\Delta], \Gamma', ?A \end{array} (contraction) \end{array}$$



Э

Let Π be the following proof:

$$\frac{\vdash A, A^{\perp} \quad \vdash A, A^{\perp}}{\vdash [A^{\perp}, A], A, A^{\perp}} (cut)$$

Then the Gol semantics of this proof is given by

$$\theta(\Pi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Now consider the following proof

$$\begin{array}{c|c} \vdash B, B^{\perp} & \vdash C, C^{\perp} \\ \hline B, C, B^{\perp} \otimes C^{\perp} \\ \hline B, B^{\perp} \otimes C^{\perp}, C \\ \hline B^{\perp} \otimes C^{\perp}, B, C \\ \hline B^{\perp} \otimes C^{\perp}, B, C \end{array}$$

Its denotation is given by

$$\left[\begin{array}{cc} 0 & j_1k_1+j_2k_2\\ j_1k_1+j_2k_2 & 0 \end{array}\right].$$

▲圖▶ ★ 国▶ ★ 国▶

æ

•

▶
$$f,g \in \mathbb{C}(U,U)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

•
$$f,g \in \mathbb{C}(U,U)$$

• f is nilpotent if
$$\exists k \ge 1$$
. $f^k = 0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

- ▶ $f,g \in \mathbb{C}(U,U)$
- f is nilpotent if $\exists k \ge 1$. $f^k = 0$.
- $f \perp g$ if gf is nilpotent.

・ 回 と ・ ヨ と ・ ヨ と

- ▶ $f,g \in \mathbb{C}(U,U)$
- f is nilpotent if $\exists k \ge 1$. $f^k = 0$.
- $f \perp g$ if gf is nilpotent.
- $0 \perp f$ for all $f \in \mathbb{C}(U, U)$.

(過) (目) (日)

- ▶ $f,g \in \mathbb{C}(U,U)$
- f is nilpotent if $\exists k \ge 1$. $f^k = 0$.
- $f \perp g$ if gf is nilpotent.
- $0 \perp f$ for all $f \in \mathbb{C}(U, U)$.
- $X \subseteq \mathbb{C}(U, U)$,

$$X^{\perp} = \{f \in \mathbb{C}(U, U) | \forall g(g \in X \Rightarrow f \perp g)\}$$

▲□→ ▲ 国→ ▲ 国→

Orthogonality & Types

- ▶ $f,g \in \mathbb{C}(U,U)$
- f is nilpotent if $\exists k \ge 1$. $f^k = 0$.
- $f \perp g$ if gf is nilpotent.
- $0 \perp f$ for all $f \in \mathbb{C}(U, U)$.
- $X \subseteq \mathbb{C}(U, U)$,

$$X^{\perp} = \{f \in \mathbb{C}(U, U) | \forall g(g \in X \Rightarrow f \perp g)\}$$

Definition

- A type: $X \subseteq \mathbb{C}(U, U)$, $X = X^{\perp \perp}$.
 - ▶ 0_{UU} belongs to every type.

▲圖▶ ▲屋▶ ▲屋▶ ---

Gol situation (C, T, U). j₁, j₂, k₁, k₂ components of U ⊗ U ⊲ U(j, k).

•
$$\theta(\alpha) = X$$
, for α atomic,

•
$$\theta(\alpha^{\perp}) = (\theta \alpha)^{\perp}$$
, for α atomic,

$$\blacktriangleright \ \theta(A \otimes B) = \{j_1 a k_1 + j_2 b k_2 | a \in \theta A, b \in \theta B\}^{\perp \perp}$$

$$\blacktriangleright \ \theta(A \ \mathfrak{B} \ B) = \{j_1 a k_1 + j_2 b k_2 | a \in (\theta A)^{\perp}, b \in (\theta B)^{\perp}\}^{\perp}$$

►
$$\theta(!A) = \{uT(a)v|a \in \theta A\}^{\perp\perp}$$

$$\bullet \ \theta(?A) = \{ uT(a)v | a \in (\theta A)^{\perp} \}^{\perp}$$

(日) (日) (日)

æ

▶ Π a proof of \vdash [Δ], Γ with cut formulas in Δ

 $\Pi \qquad \rightsquigarrow \qquad (\theta(\Pi), \sigma)$

a proof of
MELLpair of morphisms
on the object U

execution formula = standard trace formula

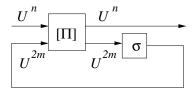
▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

æ

 $\theta(\Pi): U^{n+2m} \longrightarrow U^{n+2m}$ and $\sigma: U^{2m} \longrightarrow U^{2m}$ The dynamics is given by

$$\mathit{EX}(heta(\Pi),\sigma) = \mathit{Tr}^{U^{2m}}_{U^n,U^n}((1_{U^n}\otimes\sigma) heta(\Pi))$$

normalisation \leftrightarrow finite sum



白 と く ヨ と く ヨ と …

æ

Which in a traced UDC is:

$$EX(\theta(\Pi), \sigma) = \pi_{11} + \sum_{n \ge 0} \pi_{12} (\sigma \pi_{22})^n (\sigma \pi_{21})$$

where $\theta(\Pi) = \begin{bmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{bmatrix}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example, again!

$$\frac{\vdash A, A^{\perp} \vdash A, A^{\perp}}{\vdash [A^{\perp}, A], A, A^{\perp}} \qquad \sigma = s$$

$$EX(\theta(\Pi), \sigma) = Tr \left(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right)$$

$$= Tr \left(\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \sum_{n \ge 0} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}^{n} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

< ≣ > _ ≣

Associativity of cut

Lemma

Let Π be a proof of $\vdash [\Gamma, \Delta], \Lambda$ and σ and τ be the morphisms representing the cut-formulas in Γ and Δ respectively. Then

$$EX(\theta(\Pi), \sigma \otimes \tau) = EX(EX(\theta(\Pi), \tau), \sigma)$$
$$= EX(EX((1 \otimes s)\theta(\Pi)(1 \otimes s), \sigma), \tau)$$

Proof. $EX(EX(\theta(\Pi), \tau), \sigma)$

- $= \mathit{Tr}((1 \otimes \sigma) \mathit{Tr}((1 \otimes \tau) \theta(\Pi)))$
- $= \mathit{Tr}^{\mathit{U}^2}(\mathit{Tr}^{\mathit{U}^2}[(1\otimes \sigma\otimes 1)(1\otimes \tau)\theta(\mathsf{\Pi})])$
- $= \mathit{Tr}^{U^4}((1 \otimes \sigma \otimes \tau)\theta(\Pi))$

 $= EX(\theta(\Pi), \sigma \otimes \tau)$

(日本)(日本)(日本)

proof \rightsquigarrow algorithm

cut-elim. $\downarrow \qquad \qquad \downarrow$ computation

 $\mathsf{cut}\mathsf{-}\mathsf{free} \ \mathsf{proof} \quad \rightsquigarrow \quad \mathsf{datum}$

$\Pi \quad \rightsquigarrow \quad \theta(\Pi)$

cut-elim. $\downarrow \qquad \downarrow$ computation

$$\Pi' \quad \rightsquigarrow \quad \theta(\Pi') = EX(\theta(\Pi), \sigma)$$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Towards the theorems

$$\blacktriangleright \ \Gamma = A_1, \cdots, A_n.$$

• A datum of type
$$\theta \Gamma$$
:
 $M: U^n \longrightarrow U^n$, for any $\beta_1 \in \theta(A_1^{\perp}), \cdots, \beta_n \in \theta(A_n^{\perp})$,

 $(\beta_1 \otimes \cdots \otimes \beta_n) \perp M$

▲圖▶ ★ 国▶ ★ 国▶

Towards the theorems

$$\blacktriangleright \ \Gamma = A_1, \cdots, A_n.$$

• A datum of type
$$\theta \Gamma$$
:
 $M: U^n \longrightarrow U^n$, for any $\beta_1 \in \theta(A_1^{\perp}), \cdots, \beta_n \in \theta(A_n^{\perp})$,

$$(\beta_1 \otimes \cdots \otimes \beta_n) \perp M$$

• An algorithm of type $\theta \Gamma$: $M: U^{n+2m} \longrightarrow U^{n+2m}$ for some non-negative integer *m*, for $\sigma: U^{2m} \longrightarrow U^{2m} = s^{\otimes m}$,

$$EX(M,\sigma) = Tr((1 \otimes \sigma)M)$$

is a <u>finite sum</u> and a <u>datum</u> of type $\theta \Gamma$.

伺下 イヨト イヨト

Lemma

Let
$$M : U^n \longrightarrow U^n$$
 and $a : U \longrightarrow U$. Define
 $CUT(a, M) = (a \otimes 1_{U^{n-1}})M : U^n \longrightarrow U^n$.
Then $M = [m_{ij}]$ is a datum of type $\theta(A, \Gamma)$ iff

• for any
$$a \in \theta A^{\perp}$$
, $a \perp m_{11}$, and

• the morphism $ex(CUT(a, M)) = Tr^{A}(s_{\Gamma,A}^{-1}CUT(a, M)s_{\Gamma,A})$ is in $\theta(\Gamma)$.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Theorem (Convergence or Finiteness) Let Π be a proof of $\vdash [\Delta], \Gamma$. Then $\theta(\Pi)$ is an algorithm of type $\theta\Gamma$.

高 とう モン・ く ヨ と

Proof.

A taster!

 $\begin{array}{l} \Pi \text{ is an axiom, where } \Gamma = A, A^{\perp}, \text{ then we need to prove that} \\ EX(\theta(\Pi), 0) = \theta(\Pi) \text{ is a datum of type } \theta\Gamma. \text{ That is, for all } a \in \thetaA^{\perp} \\ \text{and } b \in \thetaA, \ M = (a \otimes b)\theta(\Pi) = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \text{ must be nilpotent.} \\ \text{Observe that } M^n = \begin{bmatrix} (ab)^{n/2} & 0 \\ 0 & (ba)^{n/2} \end{bmatrix} \text{ for } n \text{ even and} \\ M^n = \begin{bmatrix} 0 & (ab)^{(n-1)/2}a \\ (ba)^{(n-1)/2}b & 0 \end{bmatrix} \text{ for } n \text{ odd. But } a \perp b \text{ and} \\ \text{hence } ab \text{ and } ba \text{ are nilpotent.} \text{ Therefore } M \text{ is nilpotent.} \end{array}$

伺 とう ヨン うちょう

Theorem (Soundness)

Let Π be a proof of a sequent $\vdash [\Delta], \Gamma$ in MELL. Then

- (i) $EX(\theta(\Pi), \sigma)$ is a finite sum.
- (ii) If Π reduces to Π' by any sequence of cut-elimination steps and Γ does not contain any formulas of the form ?A, then $EX(\theta(\Pi), \sigma) = EX(\theta(\Pi'), \tau)$. So $EX(\theta(\Pi), \sigma)$ is an invariant of reduction. In particular, if Π' is any cut-free proof obtained from Π by cut-elimination, then $EX(\theta(\Pi), \sigma) = \theta(\Pi')$.

向下 イヨト イヨト

Proof.

A taster Part (i) is an easy corollary of Convergence Theorem. We proceed to the proof of part (ii).

Suppose Π' is a cut-free proof of $\vdash \Gamma, A$ and Π is obtained by applying the cut rule to Π' and the axiom $\vdash A^{\perp}, A$. Then $EX(\theta(\Pi), \sigma) =$

$$Tr\left((1\otimes\sigma)\begin{bmatrix}1&0&0&0\\0&0&0&1\\0&1&0&0\\0&0&1&0\end{bmatrix}\begin{bmatrix}\pi_{11}'&\pi_{12}'&0&0\\\pi_{21}'&\pi_{22}'&0&0\\0&0&0&1\\0&0&0&1\end{bmatrix}\begin{bmatrix}1&0&0&0\\0&0&0&1\\0&1&0&0\end{bmatrix}\right)$$
$$=Tr\left(\begin{bmatrix}\pi_{11}'&0&\pi_{12}'&0\\0&1&0&0\\\pi_{21}'&0&\pi_{22}'&0\end{bmatrix}\right)=\begin{bmatrix}\pi_{11}'&\pi_{12}'\\\pi_{21}'&\pi_{22}'\end{bmatrix}=\theta(\Pi')$$

• (**PInj**, $\mathbb{N} \times -, \mathbb{N}$) is a Gol situation.

Proposition

(Hilb₂, $\ell^2 \otimes -$, ℓ^2) is a Gol Situation which agrees with Girard's C^* -algebraic model, where $\ell^2 = \ell_2(\mathbb{N})$. Its structure is induced via ℓ_2 from Plnj.

Proposition

Let Π be a proof of $\vdash [\Delta], \Gamma$. Then in Girard's model **Hilb**₂ above,

$$((1-\sigma^2)\sum_{n=0}^{\infty}\theta(\Pi)(\sigma\theta(\Pi))^n(1-\sigma^2))_{n\times n}=Tr((1\otimes\tilde{\sigma})\theta(\Pi))$$

where $(A)_{n \times n}$ is the submatrix of A consisting of the first n rows and the first n columns. $\tilde{\sigma} = s \otimes \cdots \otimes s$ (m-times.)

医下颌 医下颌

Consider the following situation:

$$\frac{\vdash !A, ?A^{\perp} \vdash !A, ?A^{\perp}}{\vdash [?A^{\perp}, !A], !A, ?A^{\perp}} \succ \vdash !A, ?A^{\perp}$$

Note that
$$\theta(\Pi) = \begin{bmatrix} 0 & ((Td')e')^2 \\ (e(Td))^2 & 0 \end{bmatrix}$$

but $\theta(\Pi') = \begin{bmatrix} 0 & (Td')e' \\ e(Td) & 0 \end{bmatrix}$

・回 ・ ・ ヨ ・ ・ ヨ ・ …

- Extension to additives
- Exploiting the GoI as a semantics: Lambda calculus, PCF etc.
- Gol 4: The Feedback Equation
- ▶ Gol 5: The Hyperfinite Factor
- Connecting to logical complexity

高 とう モン・ く ヨ と