# On Categorical Models of Gol Lecture 1 

## Esfandiar Haghverdi

School of Informatics and Computing Indiana University Bloomington USA

## August 24, 2009

## In this lecture

- We shall talk about the first categorical model of Gol.
- We will consider Gol 1 (Girard 1989) for MELL.
- I shall follow the paper: Haghverdi \& Scott, A Categorical Model for Gol, ICALP 2004 and TCS 2006.
- We emphasize the notion of categorical trace.


## Sense/Denotation

A critique of reductionism
G. Frege (1848-1925): In Function und Begriff, 1891.

- Sinn/Bedeutung sense/denotation
- The sense constitutes the particular way in which its denotation (reference) is given to one who grasps the thought.
- $2+3=5$
- sense/denotation dynamic/static


## Example

$\frac{A \vdash A \quad A \vdash A}{A \vdash A}$

$$
\succ \quad A \vdash A
$$

$-i d_{A} \circ i d_{A}=i d_{A}$

- More generally, $\Pi, \Pi^{\prime}$ proofs of $\Gamma \vdash A, \Pi \succ \Pi^{\prime}$.
- Then

$$
\llbracket \Pi \rrbracket=\llbracket \Pi^{\prime} \rrbracket: \llbracket \Gamma \rrbracket \longrightarrow \llbracket A \rrbracket .
$$

- A static view!
- Gol offers a dynamic semantics.
- Syntax carries irrelevant information.


## Dynamics

- Where is this dynamics to be found?


## Dynamics

- Where is this dynamics to be found?
- Gentzen's cut elimination theorem


## Dynamics

- Where is this dynamics to be found?
- Gentzen's cut elimination theorem
- Theorem (Cut Elimination (Hauptsatz))
(Gentzen, 1934)
If $\Pi$ is a proof of a sequent $\Gamma \vdash A$, then there is a proof $\Pi^{\prime}$ of the same sequent which does not use the cut rule.
$\frac{\Gamma \vdash A \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B}$ (cut rule)


## Girard's Implementation (System $\mathcal{F}$ )

$$
\begin{gathered}
\Pi \\
\text { a proof of } \\
\text { second order LL } \\
\text { (no additives) }
\end{gathered}
$$

- Dynamics $=$ elimination of cuts $(\sigma)$ using

$$
E X(u, \sigma)=\left(1-\sigma^{2}\right) \sum_{n \geq 0} u(\sigma u)^{n}\left(1-\sigma^{2}\right)
$$

- Theorem (Girard, 1987)
(i) If $(u, \sigma)$ is the interpretation of a proof $\Pi$ of a sequent $\vdash[\Delta]$, $\Gamma$ then $\sigma u$ is nilpotent.
(ii) if $\Gamma$ does not use the symbols "?" or " $\exists$ ", then the interpretation is sound.
- strong normalisation $\leftrightarrow$ nilpotency


## Back to our example

$$
\frac{\vdash A, A^{\perp} \vdash A, A^{\perp}}{\vdash\left[A^{\perp}, A\right], A, A^{\perp}} \quad \succ \quad \vdash A, A^{\perp}
$$

- proofs as matrices on $\mathcal{M}_{2 m+n}\left(\mathbb{B}\left(\ell^{2}\right)\right)$
- $u=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right] \quad \sigma=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
- Dynamics: $E X(u, \sigma)=\left(1-\sigma^{2}\right)(u+u \sigma u)\left(1-\sigma^{2}\right)=$

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

## A Brief History, with apologies

- Gol 2 (1988): Deadlock-free algorithms, Recursion
- Gol 3 (1995): Additives
- Gol 4 (2003): The feedback equation
- Gol 5 (2008): The hyperfinite factor
- Danos (1990): Untyped Lambda Calculus
- Danos, Regnier, Malacaria, Mackie : Path-based Semantics
- Logical complexity related work, optimal lambda reduction, etc


## History, cont'd

- Abramsky \& Jagadeesan (1994): Categorical interpretation using Domain Theory, Feedback in dataflow networks
- Abramsky (1997): Gol Situation, Abramsky's Program
- Haghverdi (PhD, 2000): UDC based (particle style) Gol Situation and more, including path-based semantics
- Abramsky, Haghverdi and Scott (2002): Gol Situation to CA
- Haghverdi, Scott $(2004,2006)$ : Categorical models
- Haghverdi, Scott $(2005,2009)$ : Typed Gol
- Hines (1997): Self-similarity, inverse semigroups


## $\Sigma$-Monoids

## Definition (Kuros,Higgs,Manes,Arbib,Benson)

$(M, \Sigma)$, where $M$ is a nonempty set and $\Sigma$ is a partial operation on countable families in $M$. $\left\{x_{i}\right\}_{i \in I}$ is summable if $\Sigma_{i \in I} x_{i}$ is defined subject to:

- Partition-Associativity: $\left\{x_{i}\right\}_{i \in I}$ and $\left\{I_{j}\right\}_{j \in J}$ a countable partition of $I$

$$
\Sigma_{i \in I} x_{i}=\Sigma_{j \in J}\left(\Sigma_{i \in I_{j}} x_{i}\right)
$$

- Unary sum: $\Sigma_{i \in\{j\}} x_{i}=x_{j}$.


## Facts about $\sum$-Monoids

- $\sum_{i \in \emptyset} x_{i}$ exists and is denoted by 0 . It is a countable additive identity.
- Sum is commutative and associative whenever defined.
- $\sum_{i \in I X_{\varphi(i)}}$ is defined for any permutation $\varphi$ of $I$, whenever $\sum_{i \in I x_{i}}$ exits.
- There are no additive inverses: $x+y=0$ implies $x=y=0$.


## Examples

- $M=\operatorname{Plnj}(X, Y)$, the set of partial injective functions.


## Examples

- $M=\operatorname{PInj}(X, Y)$, the set of partial injective functions.
- $\left\{f_{i}\right\}$ is summbale if $f_{i}$ and $f_{j}$ have disjoint domains and codomains for all $i \neq j$.


## Examples

- $M=\operatorname{PInj}(X, Y)$, the set of partial injective functions.
- $\left\{f_{i}\right\}$ is summbale if $f_{i}$ and $f_{j}$ have disjoint domains and codomains for all $i \neq j$.
- $\left(\Sigma_{l} f_{i}\right)(x)= \begin{cases}f_{j}(x) & \text { if } x \in \operatorname{Dom}\left(f_{j}\right) \text { for some } j \in I \\ \text { undefined } & \text { otherwise. }\end{cases}$


## Examples

- $M=\operatorname{PInj}(X, Y)$, the set of partial injective functions.
- $\left\{f_{i}\right\}$ is summbale if $f_{i}$ and $f_{j}$ have disjoint domains and codomains for all $i \neq j$.
- $\left(\Sigma_{I} f_{i}\right)(x)= \begin{cases}f_{j}(x) & \text { if } x \in \operatorname{Dom}\left(f_{j}\right) \text { for some } j \in I \\ \text { undefined } & \text { otherwise. }\end{cases}$
- $M=P f n(X, Y)$, the set of partial functions.


## Examples

- $M=\operatorname{PInj}(X, Y)$, the set of partial injective functions.
- $\left\{f_{i}\right\}$ is summbale if $f_{i}$ and $f_{j}$ have disjoint domains and codomains for all $i \neq j$.
- $\left(\Sigma_{I} f_{i}\right)(x)= \begin{cases}f_{j}(x) & \text { if } x \in \operatorname{Dom}\left(f_{j}\right) \text { for some } j \in I \\ \text { undefined } & \text { otherwise. }\end{cases}$
- $M=P f n(X, Y)$, the set of partial functions.
- $\left\{f_{i}\right\}$ is summable if $f_{i}$ and $f_{j}$ have disjoint domains for all $i \neq j$.


## Examples

- $M=\operatorname{Plnj}(X, Y)$, the set of partial injective functions.
- $\left\{f_{i}\right\}$ is summbale if $f_{i}$ and $f_{j}$ have disjoint domains and codomains for all $i \neq j$.
- $\left(\Sigma_{l} f_{i}\right)(x)= \begin{cases}f_{j}(x) & \text { if } x \in \operatorname{Dom}\left(f_{j}\right) \text { for some } j \in I \\ \text { undefined } & \text { otherwise. }\end{cases}$
- $M=P f n(X, Y)$, the set of partial functions.
- $\left\{f_{i}\right\}$ is summable if $f_{i}$ and $f_{j}$ have disjoint domains for all $i \neq j$.
- $\left(\Sigma_{l} f_{i}\right)(x)$ as above.


## More examples

- $M=\operatorname{Rel}(X, Y)$, the set of binary relations from $X$ to $Y$,


## More examples

- $M=\operatorname{Rel}(X, Y)$, the set of binary relations from $X$ to $Y$,
- All families are summable,


## More examples

- $M=\operatorname{Rel}(X, Y)$, the set of binary relations from $X$ to $Y$,
- All families are summable,
- $\Sigma_{i} R_{i}=\bigcup_{i} R_{i}$.


## More examples

- $M=\operatorname{Rel}(X, Y)$, the set of binary relations from $X$ to $Y$,
- All families are summable,
- $\Sigma_{i} R_{i}=\bigcup_{i} R_{i}$.
- $M=$ countably complete poset, $\Sigma=$ sup.


## A Non-example

- $M=\omega$-complete poset,


## A Non-example

- $M=\omega$-complete poset,
- $\left\{x_{i}\right\}$ is summable if it is a countable chain,


## A Non-example

- $M=\omega$-complete poset,
- $\left\{x_{i}\right\}$ is summable if it is a countable chain,
- $\Sigma_{i \in I} x_{i}=\sup _{i \in I} x_{i}$,


## A Non-example

- $M=\omega$-complete poset,
- $\left\{x_{i}\right\}$ is summable if it is a countable chain,
- $\Sigma_{i \in I} x_{i}=\sup _{i \in I} x_{i}$,
- Suppose $x, y, z$ are in this family, with $x \leq z, y \leq z$ and $x, y$ incomparable, then


## A Non-example

- $M=\omega$-complete poset,
- $\left\{x_{i}\right\}$ is summable if it is a countable chain,
- $\sum_{i \in I} x_{i}=\sup _{i \in I} x_{i}$,
- Suppose $x, y, z$ are in this family, with $x \leq z, y \leq z$ and $x, y$ incomparable, then
- $x+(y+z)$ is defined but $(x+y)+z$ is not defined.


## Unique Decomposition Categories (UDCs)

## Definition

A unique decomposition category $\mathbb{C}$ is a symmetric monoidal category where:

- Every homset is a $\sum$-Monoid
- Composition distributes over sum (careful!)
satisfying the axiom:
(A) For all $j \in I$
- quasi injection: $\iota_{j}: X_{j} \longrightarrow \otimes_{1} X_{i}$,
- quasi projection: $\rho_{j}: \otimes_{I} X_{i} \longrightarrow X_{j}$,
such that
- $\rho_{k} \iota_{j}=1_{X_{j}}$ if $j=k$ and $0_{X_{j} X_{k}}$ otherwise.
- $\sum_{i \in I} \iota_{i} \rho_{i}=1_{\otimes_{1} x_{i}}$.


## A Proposition

## Proposition (Matricial Representation)

For $f: \otimes_{J} X_{j} \longrightarrow \otimes_{I} Y_{i}$, there exists a unique family $\left\{f_{i j}\right\}_{i \in I, j \in J}: X_{j} \longrightarrow Y_{i}$ with $f=\sum_{i \in I, j \in J} \iota_{i} f_{i j} \rho_{j}$, namely, $f_{i j}=\rho_{i} f \iota_{j}$.

In particular, for $|I|=m,|J|=n$

$$
f=\left[\begin{array}{ccc}
f_{11} & \ldots & f_{1 n} \\
\vdots & \vdots & \vdots \\
f_{m 1} & \ldots & f_{m n}
\end{array}\right]
$$

## Example 1

Plnj, the category of sets and partial injective functions.

- $X \otimes Y=X \uplus Y$, Not a coproduct.


## Example 1

Plnj, the category of sets and partial injective functions.

- $X \otimes Y=X \uplus Y$, Not a coproduct.
- $\rho_{j}: \otimes_{i \in I} X_{i} \longrightarrow X_{j}$,
$\rho_{j}(x, i)$ is undefined for $i \neq j$ and $\rho_{j}(x, j)=x$,


## Example 1

Plnj, the category of sets and partial injective functions.

- $X \otimes Y=X \uplus Y$, Not a coproduct.
- $\rho_{j}: \otimes_{i \in I} X_{i} \longrightarrow X_{j}$,
$\rho_{j}(x, i)$ is undefined for $i \neq j$ and $\rho_{j}(x, j)=x$,
- $\iota_{j}: X_{j} \longrightarrow \otimes_{i \in I} X_{i}$ by $\iota_{j}(x)=(x, j)$.


## Example 2

Rel: The category of sets and binary relations.

- $X \otimes Y=X \uplus Y$, a biproduct,


## Example 2

Rel: The category of sets and binary relations.

- $X \otimes Y=X \uplus Y$, a biproduct,
- $\rho_{j}: \otimes_{i \in I} X_{i} \longrightarrow X_{j}$, $\rho_{j}=\left\{((x, j), x) \mid x \in X_{j}\right\}$


## Example 2

Rel: The category of sets and binary relations.

- $X \otimes Y=X \uplus Y$, a biproduct,
- $\rho_{j}: \otimes_{i \in I} X_{i} \longrightarrow X_{j}$,

$$
\rho_{j}=\left\{((x, j), x) \mid x \in X_{j}\right\}
$$

- $\iota_{j}: X_{j} \longrightarrow \otimes_{i \in I} X_{i}$, $\iota_{j}=\left\{(x,(x, j)) \mid x \in X_{j}\right\}=\rho_{j}^{o p}$.


## Example 3: $\mathrm{Hilb}_{2}$

- Given a set $X$,


## Example 3: $\mathrm{Hilb}_{2}$

- Given a set $X$,
- $\ell_{2}(X)$ : the set of all complex valued functions a on $X$ for which the (unordered) sum $\sum_{x \in X}|a(x)|^{2}$ is finite.


## Example 3: $\mathrm{Hilb}_{2}$

- Given a set $X$,
- $\ell_{2}(X)$ : the set of all complex valued functions a on $X$ for which the (unordered) sum $\sum_{x \in X}|a(x)|^{2}$ is finite.
- $\ell_{2}(X)$ is a Hilbert space
- $\|a\|=\left(\sum_{x \in X}|a(x)|^{2}\right)^{1 / 2}$
- $<a, b>=\sum_{x \in X} a(x) \overline{b(x)}$ for $a, b \in \ell_{2}(X)$
- Barr's $\ell_{2}$ functor: contravariant faithful functor

$$
\ell_{2}: P I n j^{o p} \longrightarrow H i l b
$$

where Hilb is the category of Hilbert spaces and linear contractions (norm $\leq 1$ ).

- Barr's $\ell_{2}$ functor: contravariant faithful functor

$$
\ell_{2}: P I n j^{o p} \longrightarrow H i l b
$$

where Hilb is the category of Hilbert spaces and linear contractions (norm $\leq 1$ ).

1. For a set $X, \ell_{2}(X)$ is defined as above

- Barr's $\ell_{2}$ functor: contravariant faithful functor

$$
\ell_{2}: P I n j^{o p} \longrightarrow H i l b
$$

where Hilb is the category of Hilbert spaces and linear contractions (norm $\leq 1$ ).

1. For a set $X, \ell_{2}(X)$ is defined as above
2. Given $f: X \longrightarrow Y$ in Plnj, $\ell_{2}(f): \ell_{2}(Y) \longrightarrow \ell_{2}(X)$ is defined by

$$
\ell_{2}(f)(b)(x)= \begin{cases}b(f(x)) & \text { if } x \in \operatorname{Dom}(f) \\ 0 & \text { otherwise }\end{cases}
$$

- Barr's $\ell_{2}$ functor: contravariant faithful functor

$$
\ell_{2}: \text { Plnjop } \longrightarrow \text { Hilb }
$$

where Hilb is the category of Hilbert spaces and linear contractions (norm $\leq 1$ ).

1. For a set $X, \ell_{2}(X)$ is defined as above
2. Given $f: X \longrightarrow Y$ in Plnj, $\ell_{2}(f): \ell_{2}(Y) \longrightarrow \ell_{2}(X)$ is defined by

$$
\ell_{2}(f)(b)(x)= \begin{cases}b(f(x)) & \text { if } x \in \operatorname{Dom}(f) \\ 0 & \text { otherwise }\end{cases}
$$

- $\ell_{2}(X \times Y) \cong \ell_{2}(X) \otimes \ell_{2}(Y)$
- Barr's $\ell_{2}$ functor: contravariant faithful functor

$$
\ell_{2}: \text { Plnjop } \longrightarrow \text { Hilb }
$$

where Hilb is the category of Hilbert spaces and linear contractions (norm $\leq 1$ ).

1. For a set $X, \ell_{2}(X)$ is defined as above
2. Given $f: X \longrightarrow Y$ in Plnj, $\ell_{2}(f): \ell_{2}(Y) \longrightarrow \ell_{2}(X)$ is defined by

$$
\ell_{2}(f)(b)(x)= \begin{cases}b(f(x)) & \text { if } x \in \operatorname{Dom}(f) \\ 0 & \text { otherwise }\end{cases}
$$

- $\ell_{2}(X \times Y) \cong \ell_{2}(X) \otimes \ell_{2}(Y)$
- $\ell_{2}(X \uplus Y) \cong \ell_{2}(X) \oplus \ell_{2}(Y)$


## Example cont'd: Defining Hilb 2

- Objects: $\ell_{2}(X)$ for a set $X$


## Example cont'd: Defining Hilb 2

- Objects: $\ell_{2}(X)$ for a set $X$
- Arrows: $u: \ell_{2}(X) \longrightarrow \ell_{2}(Y)$ is of the form $\ell_{2}(f)$ for some partial injective function $f: Y \longrightarrow X$


## Example cont'd: Defining Hilb 2

- Objects: $\ell_{2}(X)$ for a set $X$
- Arrows: $u: \ell_{2}(X) \longrightarrow \ell_{2}(Y)$ is of the form $\ell_{2}(f)$ for some partial injective function $f: Y \longrightarrow X$
- For $\ell_{2}(X)$ and $\ell_{2}(Y)$ in Hilb ${ }_{2}$, the Hilbert space tensor product $\ell_{2}(X) \otimes \ell_{2}(Y)$ yields a tensor product in Hilb ${ }_{2}$.


## Example cont'd: Defining Hilb ${ }_{2}$

- Objects: $\ell_{2}(X)$ for a set $X$
- Arrows: $u: \ell_{2}(X) \longrightarrow \ell_{2}(Y)$ is of the form $\ell_{2}(f)$ for some partial injective function $f: Y \longrightarrow X$
- For $\ell_{2}(X)$ and $\ell_{2}(Y)$ in Hilb ${ }_{2}$, the Hilbert space tensor product $\ell_{2}(X) \otimes \ell_{2}(Y)$ yields a tensor product in Hilb ${ }_{2}$.
- Similarly for $\ell_{2}(X)$ and $\ell_{2}(Y)$ in Hilb $_{2}$, the direct sum $\ell_{2}(X) \oplus \ell_{2}(Y)$ yields a tensor product (not a coproduct) in $\mathrm{Hilb}_{2}$.

The structure on Plnj makes Hilb ${ }_{2}$ into a UDC.

- $\left\{\ell_{2}\left(f_{i}\right)\right\}_{ı} \in \operatorname{Hilb}_{2}\left(\ell_{2}(X), \ell_{2}(Y)\right),\left\{f_{i}\right\} \in \operatorname{PInj}(Y, X),\left\{\ell_{2}\left(f_{i}\right)\right\}$ is summable if $\left\{f_{i}\right\}$ is summable in PInj
- $\sum_{i} \ell_{2}\left(f_{i}\right) \stackrel{\text { def }}{=} \ell_{2}\left(\sum_{i} f_{i}\right)$.


## Categorical trace (JSV 96)

## Definition

A traced symmetric monoidal category is a symmetric monoidal category $(\mathbb{C}, \otimes, I, s)$ with a family of functions $\operatorname{Tr}_{X, Y}^{U}: \mathbb{C}(X \otimes U, Y \otimes U) \longrightarrow \mathbb{C}(X, Y)$ called a trace, subject to the following axioms:

- Natural in $X, \operatorname{Tr}_{X, Y}^{U}(f) g=\operatorname{Tr}_{X^{\prime}, Y}^{U}\left(f\left(g \otimes 1_{U}\right)\right)$ where $f: X \otimes U \longrightarrow Y \otimes U, g: X^{\prime} \longrightarrow X$,
- Natural in $Y, g \operatorname{Tr}_{X, Y}^{U}(f)=\operatorname{Tr}_{X, Y^{\prime}}^{U}\left(\left(g \otimes 1_{U}\right) f\right)$ where $f: X \otimes U \longrightarrow Y \otimes U, g: Y \longrightarrow Y^{\prime}$,
- Dinatural in $U, \operatorname{Tr}_{X, Y}^{U}\left(\left(1_{Y} \otimes g\right) f\right)=\operatorname{Tr}_{X, Y}^{U}\left(f\left(1_{X} \otimes g\right)\right)$ where $f: X \otimes U \longrightarrow Y \otimes U^{\prime}, g: U^{\prime} \longrightarrow U$,
- Vanishing (I,II), $\operatorname{Tr}_{X, Y}^{\prime}(f)=f$ and $\operatorname{Tr}_{X, Y}^{U \otimes V}(g)=\operatorname{Tr}_{X, Y}^{U}\left(\operatorname{Tr}_{X \otimes U, Y \otimes U}^{V}(g)\right)$ for $f: X \otimes I \longrightarrow Y \otimes I$ and $g: X \otimes U \otimes V \longrightarrow Y \otimes U \otimes V$,
- Superposing,
$\operatorname{Tr}_{X, Y}^{U}(f) \otimes g=\operatorname{Tr}_{X \otimes W, Y \otimes Z}^{U}\left(\left(1_{Y} \otimes s_{U, Z}\right)(f \otimes g)\left(1_{X} \otimes s_{W, U}\right)\right)$ for $f: X \otimes U \longrightarrow Y \otimes U$ and $g: W \longrightarrow Z$,
- Yanking, $\operatorname{Tr}_{U, U}^{U}\left(s_{U, U}\right)=1_{U}$.


## Graphical Representation







## Examples

- Consider the category FDVect ${ }_{k}$ of finite dimensional vector spaces and linear transformations


## Examples

- Consider the category FDVect ${ }_{k}$ of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U,\left\{v_{i}\right\},\left\{u_{j}\right\},\left\{w_{k}\right\}$ bases for $V, U, W$ respectively.


## Examples

- Consider the category FDVect ${ }_{k}$ of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U,\left\{v_{i}\right\},\left\{u_{j}\right\},\left\{w_{k}\right\}$ bases for $V, U, W$ respectively.
- $f\left(v_{i} \otimes u_{j}\right)=\sum_{k, m} a_{i j}^{k m} w_{k} \otimes u_{m}$,


## Examples

- Consider the category FDVect ${ }_{k}$ of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U,\left\{v_{i}\right\},\left\{u_{j}\right\},\left\{w_{k}\right\}$ bases for $V, U, W$ respectively.
- $f\left(v_{i} \otimes u_{j}\right)=\sum_{k, m} a_{i j}^{k m} w_{k} \otimes u_{m}$,
- $\operatorname{Tr}_{V, W}^{U}(f)\left(v_{i}\right)=\sum_{j, k} a_{i j}^{k j} w_{k}$


## Examples

- Consider the category FDVect ${ }_{k}$ of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U,\left\{v_{i}\right\},\left\{u_{j}\right\},\left\{w_{k}\right\}$ bases for $V, U, W$ respectively.
- $f\left(v_{i} \otimes u_{j}\right)=\sum_{k, m} a_{i j}^{k m} w_{k} \otimes u_{m}$,
- $\operatorname{Tr}_{V, W}^{U}(f)\left(v_{i}\right)=\sum_{j, k} a_{i j}^{k j} w_{k}$
- This is just summing $\operatorname{dim}(U)$ many diagonal blocks, each of size $\operatorname{dim}(W) \times \operatorname{dim}(V)$


## Examples

- Consider the category FDVect ${ }_{k}$ of finite dimensional vector spaces and linear transformations
- Given $f: V \otimes U \longrightarrow W \otimes U,\left\{v_{i}\right\},\left\{u_{j}\right\},\left\{w_{k}\right\}$ bases for $V, U, W$ respectively.
- $f\left(v_{i} \otimes u_{j}\right)=\sum_{k, m} a_{i j}^{k m} w_{k} \otimes u_{m}$,
- $\operatorname{Tr}_{V, W}^{U}(f)\left(v_{i}\right)=\sum_{j, k} a_{i j}^{k j} w_{k}$
- This is just summing $\operatorname{dim}(U)$ many diagonal blocks, each of size $\operatorname{dim}(W) \times \operatorname{dim}(V)$
- See what happens when $\operatorname{dim}(V)=\operatorname{dim}(W)=1$, that is when $V \cong W \cong k$


## Examples, cont'd

- Consider the category Rel but with $X \otimes Y=X \times Y$


## Examples, cont'd

- Consider the category Rel but with $X \otimes Y=X \times Y$
- This is not a product, nor a coproduct.


## Examples, cont'd

- Consider the category Rel but with $X \otimes Y=X \times Y$
- This is not a product, nor a coproduct.
- Given $R: X \otimes U \longrightarrow Y \otimes U$, $\operatorname{Tr}_{X, Y}^{U}(R): X \longrightarrow Y$ is defined by

$$
(x, y) \in \operatorname{Tr}(R) \text { iff } \exists u .(x, u, y, u) \in R
$$

## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose


## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter


## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- Dimension theory of $C^{*}$-categories: Longo, Roberts


## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- Dimension theory of $C^{*}$-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud


## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- Dimension theory of $C^{*}$-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi


## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- Dimension theory of $C^{*}$-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi
- Cyclic Lambda Calculus: Hasegawa


## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- Dimension theory of $C^{*}$-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi
- Cyclic Lambda Calculus: Hasegawa
- Asynchrony, Data flow networks: Selinger, Panangaden


## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- Dimension theory of $C^{*}$-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi
- Cyclic Lambda Calculus: Hasegawa
- Asynchrony, Data flow networks: Selinger, Panangaden
- Geometry of Interaction: Abramsky, Haghverdi


## On Ubiquity of Trace

- Functional analysis and operator theory: Kadison \& Ringrose
- Knot Theory: Jones, Joyal, Street, Freyd, Yetter
- Dimension theory of $C^{*}$-categories: Longo, Roberts
- Action Calculi: Milner and Mifsud
- Fixed Point and Iteration theory: Hasegawa, Haghverdi
- Cyclic Lambda Calculus: Hasegawa
- Asynchrony, Data flow networks: Selinger, Panangaden
- Geometry of Interaction: Abramsky, Haghverdi
- Models of MLL: Haghverdi


## Traced UDCs

## Proposition (Standard Trace Formula)

Let $\mathbb{C}$ be a unique decomposition category such that for every $X, Y, U$ and $f: X \otimes U \longrightarrow Y \otimes U$, the sum $f_{11}+\sum_{n=0}^{\infty} f_{12} f_{22}^{n} f_{21}$ exists, where $f_{i j}$ are the components of $f$. Then, $\mathbb{C}$ is traced and

$$
\operatorname{Tr}_{X, Y}^{U}(f)=f_{11}+\sum_{n=0}^{\infty} f_{12} f_{22}^{n} f_{21}
$$

- Note that a UDC can be traced with a trace different from the standard one.


## Traced UDCs

## Proposition (Standard Trace Formula)

Let $\mathbb{C}$ be a unique decomposition category such that for every $X, Y, U$ and $f: X \otimes U \longrightarrow Y \otimes U$, the sum $f_{11}+\sum_{n=0}^{\infty} f_{12} f_{22}^{n} f_{21}$ exists, where $f_{i j}$ are the components of $f$. Then, $\mathbb{C}$ is traced and

$$
\operatorname{Tr}_{X, Y}^{U}(f)=f_{11}+\sum_{n=0}^{\infty} f_{12} f_{22}^{n} f_{21}
$$

- Note that a UDC can be traced with a trace different from the standard one.
- In all my work, all traced UDCs are the ones with the standard trace.


## Examples: calculating traces

Let $\mathbb{C}$ be a traced UDC. Then given any $f: X \otimes U \longrightarrow Y \otimes U$, $\operatorname{Tr}_{X, Y}^{U}(f)$ exists.

- Let $f: X \otimes U \longrightarrow Y \otimes U$ be given by $\left[\begin{array}{ll}g & 0 \\ h & 0\end{array}\right]$. Then $\operatorname{Tr}_{X, Y}^{U}(f)=\operatorname{Tr}_{X, Y}^{U}\left(\left[\begin{array}{ll}g & 0 \\ h & 0\end{array}\right]\right)=g+\sum_{n} 00^{n} h=g+0 h=$ $g+0=g$.
- Let $f: X \otimes U \longrightarrow Y \otimes U$ be given by $\left[\begin{array}{ll}g & 0 \\ 0 & h\end{array}\right]$. Then

$$
\operatorname{Tr}_{X, Y}^{U}(f)=\operatorname{Tr}_{X, Y}^{U}\left(\left[\begin{array}{ll}
g & 0 \\
0 & h
\end{array}\right]\right)=g+\sum_{n} 0 h^{n} 0=g+0=g
$$

## Gol Situation

## Definition

A Gol Situation is a triple $(\mathbb{C}, T, U)$ where:

- $\mathbb{C}$ is a TSMC, Not necessarily a traced UDC!


## Gol Situation

## Definition

A Gol Situation is a triple $(\mathbb{C}, T, U)$ where:

- $\mathbb{C}$ is a TSMC, Not necessarily a traced UDC!
- $T: \mathbb{C} \longrightarrow \mathbb{C}$ is a traced symmetric monoidal functor with the following retractions:

1. $T T \triangleleft T\left(e, e^{\prime}\right)$ (Comultiplication)
2. Id $\triangleleft T\left(d, d^{\prime}\right)$ (Dereliction)
3. $T \otimes T \triangleleft T\left(c, c^{\prime}\right)$ (Contraction)
4. $\mathcal{K}_{I} \triangleleft T$ ( $w, w^{\prime}$ ) (Weakening).

## Gol Situation

## Definition

A Gol Situation is a triple $(\mathbb{C}, T, U)$ where:

- $\mathbb{C}$ is a TSMC, Not necessarily a traced UDC!
- $T: \mathbb{C} \longrightarrow \mathbb{C}$ is a traced symmetric monoidal functor with the following retractions:

1. $T T \triangleleft T\left(e, e^{\prime}\right)$ (Comultiplication)
2. Id $\triangleleft T$ ( $d, d^{\prime}$ ) (Dereliction)
3. $T \otimes T \triangleleft T\left(c, c^{\prime}\right)$ (Contraction)
4. $\mathcal{K}_{I} \triangleleft T$ ( $w, w^{\prime}$ ) (Weakening).

- $U$ a reflexive object of $\mathbb{C}$ :

1. $U \otimes U \triangleleft U(j, k)$
2. $I \triangleleft U$
3. $T U \triangleleft U(u, v)$

## Example: Plnj

- In Plnj we let $\otimes=\uplus$,
- The tensor unit is the empty set $\emptyset$.
- $T=\mathbb{N} \times-$, with $T=\left(T, \psi, \psi_{l}\right)$ :
$\psi_{X, Y}: \mathbb{N} \times X \uplus \mathbb{N} \times Y \longrightarrow \mathbb{N} \times(X \uplus Y)$ given by $(1,(n, x)) \mapsto(n,(1, x))$ and $(2,(n, y)) \mapsto(n,(2, y))$. $\psi$ has an inverse defined by: $(n,(1, x)) \mapsto(1,(n, x))$ and $(n,(2, y)) \mapsto(2,(n, y))$. $\psi_{I}: \emptyset \longrightarrow \mathbb{N} \times \emptyset$ given by $1_{\emptyset}$.
- $T$ is additive, and thus it is also traced:

Given $f: X \uplus U \longrightarrow Y \uplus U$ :
$1_{\mathbb{N}} \times \operatorname{Tr}_{X, Y}^{U}(f)=\operatorname{Tr}_{\mathbb{N} \times X, \mathbb{N} \times Y}^{\mathbb{N} \times U}\left(\psi^{-1}\left(1_{\mathbb{N}} \times f\right) \psi\right)$.

- $\mathbb{N}$ is a reflexive object.

1. $\mathbb{N} \uplus \mathbb{N} \triangleleft \mathbb{N}(j, k)$ is given as follows:
$j: \mathbb{N} \uplus \mathbb{N} \longrightarrow \mathbb{N}, j(1, n)=2 n, j(2, n)=2 n+1$ and $k: \mathbb{N} \longrightarrow \mathbb{N} \uplus \mathbb{N}, k(n)=(1, n / 2)$ for $n$ even, and $(2,(n-1) / 2)$ for $n$ odd.

- $T$ is additive, and thus it is also traced:

Given $f: X \uplus U \longrightarrow Y \uplus U$ :
$1_{\mathbb{N}} \times \operatorname{Tr}_{X, Y}^{U}(f)=\operatorname{Tr}_{\mathbb{N} \times X, \mathbb{N} \times Y}^{\mathbb{N} \times U}\left(\psi^{-1}\left(1_{\mathbb{N}} \times f\right) \psi\right)$.

- $\mathbb{N}$ is a reflexive object.

1. $\mathbb{N} \uplus \mathbb{N} \triangleleft \mathbb{N}(j, k)$ is given as follows:
$j: \mathbb{N} \uplus \mathbb{N} \longrightarrow \mathbb{N}, j(1, n)=2 n, j(2, n)=2 n+1$ and $k: \mathbb{N} \longrightarrow \mathbb{N} \uplus \mathbb{N}, k(n)=(1, n / 2)$ for $n$ even, and $(2,(n-1) / 2)$ for $n$ odd.
2. $\emptyset \triangleleft \mathbb{N}$ using the empty partial function as the retract morphisms.

- $T$ is additive, and thus it is also traced:

Given $f: X \uplus U \longrightarrow Y \uplus U$ :
$1_{\mathbb{N}} \times \operatorname{Tr}_{X, Y}^{U}(f)=\operatorname{Tr}_{\mathbb{N} \times X, \mathbb{N} \times Y}^{\mathbb{N} \times U}\left(\psi^{-1}\left(1_{\mathbb{N}} \times f\right) \psi\right)$.

- $\mathbb{N}$ is a reflexive object.

1. $\mathbb{N} \uplus \mathbb{N} \triangleleft \mathbb{N}(j, k)$ is given as follows:
$j: \mathbb{N} \uplus \mathbb{N} \longrightarrow \mathbb{N}, j(1, n)=2 n, j(2, n)=2 n+1$ and $k: \mathbb{N} \longrightarrow \mathbb{N} \uplus \mathbb{N}, k(n)=(1, n / 2)$ for $n$ even, and $(2,(n-1) / 2)$ for $n$ odd.
2. $\emptyset \triangleleft \mathbb{N}$ using the empty partial function as the retract morphisms.
3. $\mathbb{N} \times \mathbb{N} \triangleleft \mathbb{N}(u, v)$ is defined as:
$u(m, n)=\left\langle m, n>=\frac{(m+n+1)(m+n)}{2}+n\right.$ (Cantor surjective pairing) and $v$ as its inverse, $v(n)=\left(n_{1}, n_{2}\right)$ with $<n_{1}, n_{2}>=n$.

## PInj cont'd

We next define the necessary monoidal natural transformations.
$-\mathbb{N} \times(\mathbb{N} \times X) \xrightarrow{e_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{e_{X}^{\prime}} \mathbb{N} \times(\mathbb{N} \times X)$

## Plnj cont'd

We next define the necessary monoidal natural transformations.
$-\mathbb{N} \times(\mathbb{N} \times X) \xrightarrow{e_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{e_{X}^{\prime}} \mathbb{N} \times(\mathbb{N} \times X)$

- $\mathbb{N} \times(\mathbb{N} \times X) \xrightarrow{e_{X}} \mathbb{N} \times X$ is defined by, $e_{X}\left(n_{1},\left(n_{2}, x\right)\right)=\left(<n_{1}, n_{2}>, x\right)$.


## PInj cont'd

We next define the necessary monoidal natural transformations.
$-\mathbb{N} \times(\mathbb{N} \times X) \xrightarrow{e_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{e_{X}^{\prime}} \mathbb{N} \times(\mathbb{N} \times X)$

- $\mathbb{N} \times(\mathbb{N} \times X) \xrightarrow{e_{X}} \mathbb{N} \times X$ is defined by, $e_{X}\left(n_{1},\left(n_{2}, x\right)\right)=\left(<n_{1}, n_{2}>, x\right)$.
- $X \xrightarrow{d_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{d_{X}^{\prime}} X$
$d_{X}(x)=\left(n_{0}, x\right)$ for a fixed $n_{0} \in \mathbb{N}$.


## PInj cont'd

We next define the necessary monoidal natural transformations.
$-\mathbb{N} \times(\mathbb{N} \times X) \xrightarrow{e_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{e_{X}^{\prime}} \mathbb{N} \times(\mathbb{N} \times X)$

- $\mathbb{N} \times(\mathbb{N} \times X) \xrightarrow{e_{X}} \mathbb{N} \times X$ is defined by, $e_{X}\left(n_{1},\left(n_{2}, x\right)\right)=\left(<n_{1}, n_{2}>, x\right)$.
- $X \xrightarrow{d_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{d_{X}^{\prime}} X$
$d_{X}(x)=\left(n_{0}, x\right)$ for a fixed $n_{0} \in \mathbb{N}$.

$$
d_{X}^{\prime}(n, x)= \begin{cases}x, & \text { if } n=n_{0} \\ \text { undefined, } & \text { else }\end{cases}
$$

- $(\mathbb{N} \times X) \uplus(\mathbb{N} \times X) \xrightarrow{c_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{c_{X}^{\prime}}(\mathbb{N} \times X) \uplus(\mathbb{N} \times X)$.

$$
\begin{aligned}
c_{X} & = \begin{cases}(1,(n, x)) \mapsto(2 n, x) \\
(2,(n, x)) \mapsto(2 n+1, x)\end{cases} \\
c_{X}^{\prime}(n, x) & = \begin{cases}(1,(n / 2, x)), & \text { if } n \text { is even; } \\
(2,((n-1) / 2, x)), & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

- $(\mathbb{N} \times X) \uplus(\mathbb{N} \times X) \xrightarrow{c_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{c_{X}^{\prime}}(\mathbb{N} \times X) \uplus(\mathbb{N} \times X)$.

$$
\begin{aligned}
c_{X} & = \begin{cases}(1,(n, x)) \mapsto(2 n, x) \\
(2,(n, x)) \mapsto(2 n+1, x)\end{cases} \\
c_{X}^{\prime}(n, x) & = \begin{cases}(1,(n / 2, x)), & \text { if } n \text { is even; } \\
(2,((n-1) / 2, x)), & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

- $\emptyset \xrightarrow{w_{X}} \mathbb{N} \times X$ and $\mathbb{N} \times X \xrightarrow{w_{X}^{\prime}} \emptyset$.


## Example: Traced UDC based

- (Plnj, $\mathbb{N} \times-, \mathbb{N})$
- $\left(\right.$ Hilb $\left._{2}, \ell^{2} \otimes-, \ell^{2}\right)$
- $\left(\operatorname{Re}_{\oplus}, \mathbb{N} \times-, \mathbb{N}\right)$
- $(P f n, \mathbb{N} \times-, \mathbb{N})$


## Gol Interpretation

Recall that in categorical denotational semantics:

- We are given a logical system $\mathcal{L}$ to model, e.g. IL
- We are given a model category $\mathbb{C}$ with enough structure, e.g. a CCC,
- Formulas are interpreted as objects
- Proofs are intepreted as morphisms, indeed morphisms are equivalence classes of proofs
- Cut-elimination (proof transformation) is interpreted by provable equality.
- One proves a soundness theorem:

Theorem
Given a sequent $\Gamma \vdash A$ and proofs $\Pi$ and $\Pi^{\prime}$ such that $\Pi \succ \Pi^{\prime}$, then $\llbracket \Pi \rrbracket=\llbracket \Pi^{\prime} \rrbracket: \llbracket \Gamma \rrbracket \longrightarrow \llbracket A \rrbracket$.

## Gol interpretation

In Gol interpretation:

- We are given a logical system $\mathcal{L}$ to model, e.g. MLL,
- We are given a Gol Situation ( $\mathbb{C}, T, U$ ), e.g. (PInj, $\mathbb{N} \times-, \mathbb{N}$ ),
- Formulas are interpreted as types (see below),
- Proofs are interpreted as morphisms in $\mathbb{C}(U, U)$,
- Cut-elimination (proof transformation) is interpreted by the execution formula
- One proves a finiteness theorem

Theorem
Given a sequent $\Gamma \vdash A$ with a proof $\Pi$ and cut formulas represented by $\sigma$, then $E X(\theta(\Pi), \sigma)$ exists.

- One proves a finiteness theorem

Theorem
Given a sequent $\Gamma \vdash A$ with a proof $\Pi$ and cut formulas represented by $\sigma$, then $E X(\theta(\Pi), \sigma)$ exists.

- And a soundness theorem

Theorem
Given a sequent $\Gamma \vdash A$ and proofs $\Pi$ and $\Pi^{\prime}$ such that $\Pi \succ \Pi^{\prime}$, then $\operatorname{EX}(\theta(\Pi), \sigma)=E X\left(\theta\left(\Pi^{\prime}\right), \tau\right)$ where $\sigma$ and $\tau$ represent the cut formulas in $\Pi$ and $\Pi^{\prime}$ respectively (see below).

## Gol Interpretation: proofs

Hereafter we shall be working with traced UDCs.

- $\Pi$ a proof of $\vdash[\Delta], \Gamma,|\Delta|=2 m$ and $|\Gamma|=n$.
- $\Delta$ keeps track of the cut formulas, e.g., $\Delta=A, A^{\perp}, B, B^{\perp}$,

$$
\begin{aligned}
& \theta(\Pi): U^{n+2 m} \longrightarrow U^{n+2 m} \\
& \sigma: U^{2 m} \longrightarrow U^{2 m}=s_{U, U}^{\otimes m}
\end{aligned}
$$



## Gol Int, cont'd

$$
\begin{aligned}
& \text { axiom: } \vdash A, A^{\perp}, \quad m=0, n=2 . \\
& \theta(\Pi)=s_{U}, U
\end{aligned}
$$



## cut:

$$
\vdash\left[\Delta^{\prime}\right], \Gamma^{\prime}, A \quad \vdash\left[\Delta^{\prime \prime}\right], A^{\perp}, \Gamma^{\prime \prime}
$$

$$
\begin{equation*}
\vdash\left[\Delta^{\prime}, \Delta^{\prime \prime}, A, A^{\perp}\right], \Gamma^{\prime}, \Gamma^{\prime \prime} \tag{cut}
\end{equation*}
$$


times: Recall $U \otimes U \triangleleft U(j, k)$

$$
\begin{array}{cc}
\Pi^{\prime} & \Pi^{\prime \prime} \\
\vdots & \vdots \\
\vdash\left[\Delta^{\prime}\right], \Gamma^{\prime}, A & \vdash\left[\Delta^{\prime \prime}\right], \Gamma^{\prime \prime}, B \\
\hline & \vdash\left[\Delta^{\prime}, \Delta^{\prime \prime}\right], \Gamma^{\prime}, \Gamma^{\prime \prime}, A \otimes B
\end{array}
$$


of course: Recall $T U \triangleleft U(u, v)$ and $T T \triangleleft T\left(e, e^{\prime}\right)$
$\Pi^{\prime}$

$$
\frac{\vdash[\Delta], ? \Gamma^{\prime}, A}{\vdash[\Delta], ? \Gamma^{\prime},!A} \text { (ofcourse) }
$$


contraction: Recall $T U \triangleleft U(u, v)$ and $T \otimes T \triangleleft T\left(c, c^{\prime}\right)$.
$\frac{\vdash[\Delta], \Gamma^{\prime}, ? A, ? A}{\vdash[\Delta], \Gamma^{\prime}, ? A}$ (contraction)


## Examples

Let $\Pi$ be the following proof:

$$
\frac{\vdash A, A^{\perp} \quad \vdash A, A^{\perp}}{\vdash\left[A^{\perp}, A\right], A, A^{\perp}}(c u t)
$$

Then the Gol semantics of this proof is given by

$$
\theta(\Pi)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Now consider the following proof

$$
\frac{\stackrel{\vdash B, B^{\perp} \quad \vdash C, C^{\perp}}{\vdash B, C, B^{\perp} \otimes C^{\perp}}}{\frac{\vdash B, B^{\perp} \otimes C^{\perp}, C}{\vdash B^{\perp} \otimes C^{\perp}, B, C}} \stackrel{\vdash B^{\perp} \otimes C^{\perp}, B \geqslant C}{ } .
$$

Its denotation is given by

$$
\left[\begin{array}{cc}
0 & j_{1} k_{1}+j_{2} k_{2} \\
j_{1} k_{1}+j_{2} k_{2} & 0
\end{array}\right] .
$$

## Orthogonality \& Types

- $f, g \in \mathbb{C}(U, U)$


## Orthogonality \& Types

- $f, g \in \mathbb{C}(U, U)$
- $f$ is nilpotent if $\exists k \geq 1 . f^{k}=0$.


## Orthogonality \& Types

- $f, g \in \mathbb{C}(U, U)$
- $f$ is nilpotent if $\exists k \geq 1 . f^{k}=0$.
- $f \perp g$ if $g f$ is nilpotent.


## Orthogonality \& Types

- $f, g \in \mathbb{C}(U, U)$
- $f$ is nilpotent if $\exists k \geq 1 . f^{k}=0$.
- $f \perp g$ if $g f$ is nilpotent.
- $0 \perp f$ for all $f \in \mathbb{C}(U, U)$.


## Orthogonality \& Types

- $f, g \in \mathbb{C}(U, U)$
- $f$ is nilpotent if $\exists k \geq 1 . f^{k}=0$.
- $f \perp g$ if $g f$ is nilpotent.
- $0 \perp f$ for all $f \in \mathbb{C}(U, U)$.
- $X \subseteq \mathbb{C}(U, U)$,

$$
X^{\perp}=\{f \in \mathbb{C}(U, U) \mid \forall g(g \in X \Rightarrow f \perp g)\}
$$

## Orthogonality \& Types

- $f, g \in \mathbb{C}(U, U)$
- $f$ is nilpotent if $\exists k \geq 1 . f^{k}=0$.
- $f \perp g$ if $g f$ is nilpotent.
- $0 \perp f$ for all $f \in \mathbb{C}(U, U)$.
- $X \subseteq \mathbb{C}(U, U)$,

$$
X^{\perp}=\{f \in \mathbb{C}(U, U) \mid \forall g(g \in X \Rightarrow f \perp g)\}
$$

- Definition

A type: $X \subseteq \mathbb{C}(U, U), X=X^{\perp \perp}$.

- $0 u u$ belongs to every type.


## Gol Int, formulas

- Gol situation ( $\mathbb{C}, T, U$ ). $j_{1}, j_{2}, k_{1}, k_{2}$ components of $U \otimes U \triangleleft U(j, k)$.
- $\theta(\alpha)=X$, for $\alpha$ atomic,
- $\theta\left(\alpha^{\perp}\right)=(\theta \alpha)^{\perp}$, for $\alpha$ atomic,
- $\theta(A \otimes B)=\left\{j_{1} a k_{1}+j_{2} b k_{2} \mid a \in \theta A, b \in \theta B\right\}^{\perp \perp}$
- $\theta(A>B)=\left\{j_{1} a k_{1}+j_{2} b k_{2} \mid a \in(\theta A)^{\perp}, b \in(\theta B)^{\perp}\right\}^{\perp}$
- $\theta(!A)=\{u T(a) v \mid a \in \theta A\}^{\perp \perp}$
- $\theta(? A)=\left\{u T(a) v \mid a \in(\theta A)^{\perp}\right\}^{\perp}$


## Gol Int, cut-elimination

- $\Pi$ a proof of $\vdash[\Delta]$, $\Gamma$ with cut formulas in $\Delta$

$$
\Pi \quad \leadsto \quad(\theta(\Pi), \sigma)
$$

a proof of pair of morphisms MELL on the object $U$

- execution formula $=$ standard trace formula
$\theta(\Pi): U^{n+2 m} \longrightarrow U^{n+2 m}$ and $\sigma: U^{2 m} \longrightarrow U^{2 m}$
The dynamics is given by

$$
E X(\theta(\Pi), \sigma)=\operatorname{Tr}_{U^{n}, U^{n}}^{U^{2 m}}\left(\left(1_{U^{n}} \otimes \sigma\right) \theta(\Pi)\right)
$$

normalisation $\leftrightarrow$ finite sum


Which in a traced UDC is:

$$
E X(\theta(\Pi), \sigma)=\pi_{11}+\sum_{n \geq 0} \pi_{12}\left(\sigma \pi_{22}\right)^{n}\left(\sigma \pi_{21}\right)
$$

where $\theta(\Pi)=\left[\begin{array}{ll}\pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22}\end{array}\right]$.

## Example, again!

$$
\begin{aligned}
& \frac{\vdash A, A^{\perp} \vdash A, A^{\perp}}{\vdash\left[A^{\perp}, A\right], A, A^{\perp}} \\
& E X(\theta(\Pi), \sigma)=\operatorname{Tr}\left(\left[\begin{array}{llll}
\sigma & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\right) \\
& =\operatorname{Tr}\left(\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]+\sum_{n \geq 0}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]^{n}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

## Associativity of cut

## Lemma

Let $\Pi$ be a proof of $\vdash[\Gamma, \Delta], \wedge$ and $\sigma$ and $\tau$ be the morphisms representing the cut-formulas in $\Gamma$ and $\Delta$ respectively. Then

$$
\begin{array}{r}
E X(\theta(\Pi), \sigma \otimes \tau)=E X(E X(\theta(\Pi), \tau), \sigma) \\
\quad=E X(E X((1 \otimes s) \theta(\Pi)(1 \otimes s), \sigma), \tau)
\end{array}
$$

Proof.
$E X(E X(\theta(\Pi), \tau), \sigma)$
$=\operatorname{Tr}((1 \otimes \sigma) \operatorname{Tr}((1 \otimes \tau) \theta(\Pi)))$
$=\operatorname{Tr}_{r} U^{2}\left(\operatorname{Tr}^{U^{2}}[(1 \otimes \sigma \otimes 1)(1 \otimes \tau) \theta(\Pi)]\right)$
$=\operatorname{Tr}^{U^{4}}((1 \otimes \sigma \otimes \tau) \theta(\Pi))$
$=E X(\theta(П), \sigma \otimes \tau)$

## The big picture

$$
\text { proof } \leadsto \text { algorithm }
$$

cut-elim. $\downarrow \quad \downarrow$ computation
cut-free proof $\sim$ datum

$$
\Pi \leadsto \theta(\Pi)
$$

cut-elim. $\downarrow \quad \downarrow$ computation

$$
\Pi^{\prime} \leadsto \theta\left(\Pi^{\prime}\right)=E X(\theta(\Pi), \sigma)
$$

## Towards the theorems

$-\Gamma=A_{1}, \cdots, A_{n}$.

- A datum of type $\theta$ Г:
$M: U^{n} \longrightarrow U^{n}$, for any $\beta_{1} \in \theta\left(A_{1}^{\perp}\right), \cdots, \beta_{n} \in \theta\left(A_{n}^{\perp}\right)$,

$$
\left(\beta_{1} \otimes \cdots \otimes \beta_{n}\right) \perp M
$$

## Towards the theorems

$-\Gamma=A_{1}, \cdots, A_{n}$.

- A datum of type $\theta \Gamma$ :
$M: U^{n} \longrightarrow U^{n}$, for any $\beta_{1} \in \theta\left(A_{1}^{\perp}\right), \cdots, \beta_{n} \in \theta\left(A_{n}^{\perp}\right)$,

$$
\left(\beta_{1} \otimes \cdots \otimes \beta_{n}\right) \perp M
$$

- An algorithm of type $\theta \Gamma$ : $M: U^{n+2 m} \longrightarrow U^{n+2 m}$ for some non-negative integer $m$, for $\sigma: U^{2 m} \longrightarrow U^{2 m}=s^{\otimes m}$,

$$
E X(M, \sigma)=\operatorname{Tr}((1 \otimes \sigma) M)
$$

is a finite sum and a datum of type $\theta \Gamma$.

## A Lemma

## Lemma

Let $M: U^{n} \longrightarrow U^{n}$ and $a: U \longrightarrow U$. Define $\operatorname{CUT}(a, M)=\left(a \otimes 1_{U^{n-1}}\right) M: U^{n} \longrightarrow U^{n}$.
Then $M=\left[m_{i j}\right]$ is a datum of type $\theta(A, \Gamma)$ iff

- for any $a \in \theta A^{\perp}, a \perp m_{11}$, and
- the morphism ex $(\operatorname{CUT}(a, M))=\operatorname{Tr}^{A}\left(s_{\Gamma, A}^{-1} \operatorname{CUT}(a, M) s_{\Gamma, A}\right)$ is in $\theta(\Gamma)$.


## Main Theorems

Theorem (Convergence or Finiteness)
Let $\Pi$ be a proof of $\vdash[\Delta], \Gamma$. Then $\theta(\Pi)$ is an algorithm of type $\theta \Gamma$.

## Proof.

A taster!
$\Pi$ is an axiom, where $\Gamma=A, A^{\perp}$, then we need to prove that $E X(\theta(\Pi), 0)=\theta(\Pi)$ is a datum of type $\theta \Gamma$. That is, for all $a \in \theta A^{\perp}$ and $b \in \theta A, M=(a \otimes b) \theta(\Pi)=\left[\begin{array}{ll}0 & a \\ b & 0\end{array}\right]$ must be nilpotent.
Observe that $M^{n}=\left[\begin{array}{cc}(a b)^{n / 2} & 0 \\ 0 & (b a)^{n / 2}\end{array}\right]$ for $n$ even and
$M^{n}=\left[\begin{array}{cc}0 & (a b)^{(n-1) / 2} a \\ (b a)^{(n-1) / 2} b & 0\end{array}\right]$ for $n$ odd. But $a \perp b$ and hence $a b$ and $b a$ are nilpotent. Therefore $M$ is nilpotent.

## Invariance

Theorem (Soundness)
Let $\Pi$ be a proof of a sequent $\vdash[\Delta]$, $\Gamma$ in MELL. Then
(i) $E X(\theta(\Pi), \sigma)$ is a finite sum.
(ii) If $\Pi$ reduces to $\Pi^{\prime}$ by any sequence of cut-elimination steps and $\Gamma$ does not contain any formulas of the form ? $A$, then $E X(\theta(\Pi), \sigma)=E X\left(\theta\left(\Pi^{\prime}\right), \tau\right)$. So $E X(\theta(\Pi), \sigma)$ is an invariant of reduction. In particular, if $\Pi^{\prime}$ is any cut-free proof obtained from $\Pi$ by cut-elimination, then $E X(\theta(\Pi), \sigma)=\theta\left(\Pi^{\prime}\right)$.

Proof.
A taster Part (i) is an easy corollary of Convergence Theorem. We proceed to the proof of part (ii).
Suppose $\Pi^{\prime}$ is a cut-free proof of $\vdash \Gamma, A$ and $\Pi$ is obtained by applying the cut rule to $\Pi^{\prime}$ and the axiom $\vdash A^{\perp}, A$. Then
$\operatorname{EX}(\theta(\square), \sigma)=$
$\operatorname{Tr}\left((1 \otimes \sigma)\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccc}\pi_{11}^{\prime} & \pi_{12}^{\prime} & 0 & 0 \\ \pi_{21}^{\prime} & \pi_{22}^{\prime} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]\right)$
$=\operatorname{Tr}\left(\left[\begin{array}{cccc}\pi_{11}^{\prime} & 0 & \pi_{12}^{\prime} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \pi_{21}^{\prime} & 0 & \pi_{22}^{\prime} & 0\end{array}\right]\right)=\left[\begin{array}{ll}\pi_{11}^{\prime} & \pi_{12}^{\prime} \\ \pi_{21}^{\prime} & \pi_{22}^{\prime}\end{array}\right]=\theta\left(\Pi^{\prime}\right)$

## Back to Girard

- ( $\mathbf{P l n j}, \mathbb{N} \times-, \mathbb{N})$ is a Gol situation.
- Proposition
$\left(\mathbf{H i l b}_{2}, \ell^{2} \otimes-, \ell^{2}\right)$ is a Gol Situation which agrees with Girard's $C^{*}$-algebraic model, where $\ell^{2}=\ell_{2}(\mathbb{N})$. Its structure is induced via $\ell_{2}$ from Plnj.
- Proposition

Let $\Pi$ be a proof of $\vdash[\Delta], \Gamma$. Then in Girard's model $\mathbf{H i l b}_{2}$ above,

$$
\left(\left(1-\sigma^{2}\right) \sum_{n=0}^{\infty} \theta(\Pi)(\sigma \theta(\Pi))^{n}\left(1-\sigma^{2}\right)\right)_{n \times n}=\operatorname{Tr}((1 \otimes \tilde{\sigma}) \theta(\Pi))
$$

where $(A)_{n \times n}$ is the submatrix of $A$ consisting of the first $n$ rows and the first $n$ columns. $\tilde{\sigma}=s \otimes \cdots \otimes s$ (m-times.)

## The mistakes Gol makes ...

Consider the following situation:
$\vdash!A, ? A^{\perp} \vdash!A, ? A^{\perp}$
$\overline{\vdash\left[? A^{\perp},!A\right],!A, ? A^{\perp}} \succ \vdash!A, ? A^{\perp}$
Note that $\theta(\Pi)=\left[\begin{array}{ll}0 & \left(\left(T d^{\prime}\right) e^{\prime}\right)^{2} \\ (e(T d))^{2} & 0\end{array}\right]$
but $\theta\left(\Pi^{\prime}\right)=\left[\begin{array}{ll}0 & \left(T d^{\prime}\right) e^{\prime} \\ e(T d) & 0\end{array}\right]$

## Future Work

- Extension to additives
- Exploiting the Gol as a semantics: Lambda calculus, PCF etc.
- Gol 4: The Feedback Equation
- Gol 5: The Hyperfinite Factor
- Connecting to logical complexity

