
Kazushige Terui
terui@kurims.kyoto-u.ac.jp
RIMS, Kyoto University
Interactive computation in complexity

Girard's conjecture
A logspace Gol algorithm for atomic MLL

\qquad

SəIЧગBU КІUIINL
ӘГDEIO
where

$q_{Q}, q_{A 0}, q_{A 1} \in Q$
$\Sigma^{k+1} \longrightarrow Q \times \Sigma^{k+1} \times\{l, c, r\}^{k+1}$
identified with an oracle O_{w} (partial

(k work-tapes + 1
tapes
TM work on k
Oracle

Oracle Turing machies
Given $O: \mathbf{N} \rightharpoonup\{0,1\}$ and $n \in \mathbf{N}, M$ works as follows:

1. Initialize all tapes
2. Write down n in binary on the query-tape
3. If state $\neq q_{Q}, q_{F i}$, proceed as specified by δ
4. If state $=q_{Q}$, then
let $i=O(\lceil$ query-tape $\rceil)$ in state $:=q_{A i}$
5. If state $=q_{F i}(i \in\{0,1\})$, output i and halt.
6. Goto 3

- Def: M is downward closed (d-closed) if for every $w \in\{0,1\}^{*}$,
$M\left(O_{w}, n\right)$ halts, $m \leq n \Longrightarrow M\left(O_{w}, m\right)$ halts.
- Def: M is bounded if for every $w \in\{0,1\}^{*}$,
max $\left\{n: M\left(O_{w}, n\right)\right.$ halts $\}$ (the output length) exists.
- Prop: Every bounded d-closed M computes a function

- Def: An OTM M works in space $f: \mathbf{N} \longrightarrow \mathbf{N}$ if for every

$w \in\{0,1\}^{*}$,

$M\left(O_{w}, n\right)$ halts $\Longrightarrow \sharp$ (used cells) $\leq f(|w|)$.

- Fact: If M works in f, then

$$
\text { the output length } \leq 2^{f(n)}
$$

$$
\begin{aligned}
& \text { where } n \text { is the input length. In particular, if } M \text { works in } \\
& f(n)=k \log n \text {, then }
\end{aligned}
$$

$$
\begin{gathered}
\text { the output length } \leq n^{k} \\
\text { Prop: Logspace bounded d-closed OTMs compose. }
\end{gathered}
$$

TMS VS Functional Programs

- For TMs, there are two ways of composition:
- Sequential: time-efficient
- Interactive: space-efficient
- For functional programs, there are two ways of evaluation:
- Sequential (β-reduction): time-efficient
- Interactive (token machines): space-efficient
while there is only one canonical composition:
- The latter might shed a new light on time-space trade-off.

- Theorem (Mairson): Normalization in Atomic MLL (where all
axioms are of atomic type) is complete for Logspace.
- For logspace computation, only a constant number of pointers
are available, since each pointer is already of logarithmetic
size.
- Stacks are not available for tall proof nets.
- Mairson's stack-free algorithm.

- (Dal Lago 05) uses context semantics for verification of time
complexity of programs.
- (Schöpp 06, 07) combine Gol with Hofmann realizability to
show logspace completeness of subsystems of LFPL and
Bounded Affine Logic.

