Why is GoI relevant for ICC?

Kazushige Terui

terui@kurims.kyoto-u.ac.jp

RIMS, Kyoto University

- Interactive computation in complexity
- Gol as abstract machine
- Girard's conjecture
- A logspace Gol algorithm for atomic MLL

An origin of interactive computation

- Composition of two logspace Turing machines:
- Sequential composition

$$\longrightarrow [M_1] \longrightarrow [M_2] \longrightarrow$$

does not work (due to large intermediate values)

One has to compose them interatoively:

$$\longrightarrow [M_1] \xrightarrow{\longleftarrow} [M_2] \longrightarrow$$

 Oracle Turing machies Oracle TMs work on k + 1 tapes (k work-tapes + 1 query-tape). 	• An oracle TM is (Σ, Q, δ) , where • $0, 1, b \in \Sigma$; $q_I, q_{F0}, q_{F1}, q_Q, q_{A0}, q_{A1} \in Q$ • $\delta : Q \setminus \{q_Q, q_{F0}, q_{F1}\} \times \Sigma^{k+1} \longrightarrow Q \times \Sigma^{k+1} \times \{l, c, r\}^{k+1}$	• Each word $w \in \{0, 1\}^*$ is identified with an oracle O_w (partial function):	$O_w: \mathbb{N} \to \{0, 1\}$ $i \mapsto \text{the } i \text{th bit of } w \text{ if } i \leq w $ undefined otherwise	
--	---	---	---	--

Oracle Turing machies

- Given $O : \mathbb{N} \rightarrow \{0,1\}$ and $n \in \mathbb{N}$, M works as follows:
- 1. Initialize all tapes
- 2. Write down n in binary on the query-tape
- 3. If state $\neq q_Q, q_{Fi}$, proceed as specified by δ
- 4. If state $= q_Q$, then
- let $i = O(\lceil query-tape \rceil)$ in state := q_{Ai}
- 5. If state $= q_{Fi}$ ($i \in \{0, 1\}$), output i and halt.
- 6. Goto 3

Properties of OTM

- Def: M is downward closed (d-closed) if for every $w \in \{0, 1\}^*$, $M(O_w, n)$ halts, $m \leq n \Longrightarrow M(O_w, m)$ halts.
- $max\{n: M(O_w, n) \text{ halts}\}$ (the output length) exists. Def: M is bounded if for every $w \in \{0,1\}^*$,
- Prop: Every bounded d-closed M computes a function

$$F: \{0,1\}^* \longrightarrow \{0,1\}^*$$

such that $M(O_w, n) = n$ th bit of F(w).

Properties of OTM

- Def: An OTM M works in space $f : \mathbb{N} \longrightarrow \mathbb{N}$ if for every $M(O_w, n)$ halts $\Longrightarrow \ddagger$ (used cells) $\leq f(|w|)$. $w \in \{0,1\}^*$,
- Fact: If M works in f, then

the output length $\leq 2^{f(n)}$

where n is the input length. In particular, if M works in $f(n) = k \log n$, then

the output length $\leq n^k$.

Prop: Logspace bounded d-closed OTMs compose.

TMs vs Functional Programs

- For TMs, there are two ways of composition:
- Sequential: time-efficient
- Interactive: space-efficient
- For functional programs, there are two ways of evaluation:
- Sequential (*B*-reduction): time-efficient
- Interactive (token machines): space-efficient

while there is only one canonical composition:

$$M_1 \circ M_2 = \lambda x. M_1(M_2 x)$$

The latter might shed a new light on time-space trade-off.

Gol as Abstract Machine

- Intaraction Abstract Machine (Danos, Regnier, ...)
- An exponential signature is a binary tree with leaves labeled by d, 0, 1.
- A configuration is (B, S), where
- B is a stack made of exponential signatures
- S is a stack made of exponential signatures, l and r
- Given a proof net, a run starts at a conclusion link s with initial conclusion link s' with (ϵ, S') (notation: $(s, \epsilon, S) \longrightarrow (s', \epsilon, S')$). configuration (ϵ, S) . It is successful if it returns back to a
- closed reduction. Then $(s, \epsilon, S) \longrightarrow (s', \epsilon, S')$ on π_0 iff the same Invariance: Suppose that an MELL proof π_0 reduces to π_1 by holds on π_1 .

Elementary (Multiplicative) Linear Logic

EMLL = 2nd order MLL + monoidal functorial !:

$$\frac{A_1, \dots, A_n \vdash B}{!A_1, \dots, !A_n \vdash !B} \quad \frac{!A, !A, \Gamma \vdash B}{!A, \Gamma \vdash B} \quad \frac{\Gamma \vdash B}{!A, \Gamma \vdash B}$$

- EMLL corresponds to the elementary recursive functions (Girard 98, Mairson-Terui 03).
- Gol studied by (Baillot-Pedicini 00).
- In EMLL proof nets, pax (auxiliary doors of !-boxes) can be replaced with dereliction.

Elementary (Multiplicative) Linear Logic

Example:

: B B m m ··· $!(A \multimap A) \multimap !(A \multimap A)$ $\lambda b\lambda x\otimes y.b(y\otimes x)$ $:= \alpha \otimes \alpha \multimap \alpha \otimes \alpha$ $\lambda x\otimes y.x\otimes y$ $\lambda x\otimes y.y\otimes x$ || ••• !! || !! true negр false \mathbf{N}_A

 $: \mathbf{N}_{\mathbf{B}} \to \mathbf{B}$

even := $\lambda n.n$!neg true

	Gol for MLL proof nets
● Girê (var	 Girard's conjecture: MLL proof nets are normalizable via (variant of) Gol in Logspace.
Neç con	Negative solution (Terui, Mairson 02): The following question is complete for P :
-	Given two proof nets π_1, π_2 , does $\pi_1 =_{\beta} \pi_2$ hold?
SINC	since doolean circuits are encogadie in MLL.
	$T := true \otimes false F := false \otimes true$
	$NEG \;:=\; \lambda b \otimes \overline{b}.\overline{b} \otimes b$
C	$CNTR \;:=\; \lambda b \otimes \overline{b}.b({\sf true} \otimes {\sf false}) \otimes \overline{b}({\sf false} \otimes {\sf true})$
C	$CONJ \; := \; \lambda b \otimes \overline{b}. \lambda c \otimes \overline{c}.$
	$let \ u \otimes v = b(c \otimes false), \ \overline{u} \otimes \overline{v} = \overline{b}(true \otimes \overline{c}) \ in$
	$u \otimes (\overline{u} \circ v \circ \overline{v} \circ {\sf false})$ 24/08/09, Kansai Seminar House – p.12/14

Conclusion	Gol is implicit in composition of logspace TMs (will be further discussed in Ulrich's talk).	Gol leads to a space-efficient abstract machine.	MLL is complete for P, whereas atomic MLL is complete for Logspace; stack-free Gol works for the latter.	Work not mentioned:	 (Dal Lago 05) uses context semantics for verification of time complexity of programs. 	 (Schöpp 06, 07) combine Gol with Hofmann realizability to show logspace completeness of subsystems of LFPL and 	Bounded Affine Logic.