On Categorical Models of Gol Lecture 2

Esfandiar Haghverdi

School of Informatics and Computing Indiana University Bloomington USA

August 25, 2009

<回と < 目と < 目と

- ▶ We shall discuss constructions based on a Gol Situation.
- I shall follow the papers: Haghverdi (MSCS 2000), Abramsky, Haghverdi & Scott (MSCS 2002).

個 と く ヨ と く ヨ と …

Abramsky's Program:

Э

- $\mathbb{C} \rightsquigarrow \mathcal{G}(\mathbb{C})$
 - ▶ Objects: (A^+, A^-) where A^+ and A^- are objects of \mathbb{C} .

白 と く ヨ と く ヨ と …

 $\mathbb{C} \rightsquigarrow \mathcal{G}(\mathbb{C})$

- ▶ Objects: (A^+, A^-) where A^+ and A^- are objects of \mathbb{C} .
- Arrows: An arrow $f : (A^+, A^-) \longrightarrow (B^+, B^-)$ in $\mathcal{G}(\mathbb{C})$ is $f : A^+ \otimes B^- \longrightarrow A^- \otimes B^+$ in \mathbb{C} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\mathbb{C} \rightsquigarrow \mathcal{G}(\mathbb{C})$

- ▶ Objects: (A^+, A^-) where A^+ and A^- are objects of \mathbb{C} .
- Arrows: An arrow $f : (A^+, A^-) \longrightarrow (B^+, B^-)$ in $\mathcal{G}(\mathbb{C})$ is $f : A^+ \otimes B^- \longrightarrow A^- \otimes B^+$ in \mathbb{C} .
- Identity: $1_{(A^+,A^-)} = s_{A^+,A^-}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\mathbb{C} \rightsquigarrow \mathcal{G}(\mathbb{C})$

- ▶ Objects: (A^+, A^-) where A^+ and A^- are objects of \mathbb{C} .
- Arrows: An arrow $f : (A^+, A^-) \longrightarrow (B^+, B^-)$ in $\mathcal{G}(\mathbb{C})$ is $f : A^+ \otimes B^- \longrightarrow A^- \otimes B^+$ in \mathbb{C} .
- Identity: $1_{(A^+,A^-)} = s_{A^+,A^-}$.
- ▶ Composition: Composition is given by symmetric feedback. Given $f : (A^+, A^-) \longrightarrow (B^+, B^-)$ and $g : (B^+, B^-) \longrightarrow (C^+, C^-)$, $gf : (A^+, A^-) \longrightarrow (C^+, C^-)$ is given by:

$$gf = Tr^{B^- \otimes B^+}_{A^+ \otimes C^-, A^- \otimes C^+} (\beta(f \otimes g)\alpha)$$

where $\alpha = (1_{A^+} \otimes 1_{B^-} \otimes s_{C^-,B^+})(1_{A^+} \otimes s_{C^-,B^-} \otimes 1_{B^+})$ and $\beta = (1_{A^-} \otimes 1_{C^+} \otimes s_{B^+,B^-})(1_{A^-} \otimes s_{B^+,C^+} \otimes 1_{B^-})(1_{A^-} \otimes 1_{B^+} \otimes s_{B^-,C^+}).$

æ

æ

Proposition

Let \mathbb{C} be a traced symmetric monoidal category, $\mathcal{G}(\mathbb{C})$ defined as above is a compact closed category. Moreover, $F : \mathbb{C} \longrightarrow \mathcal{G}(\mathbb{C})$ with F(A) = (A, I) and F(f) = f is a full and faithful embedding. This says that any traced symmetric monoidal category \mathbb{C} arises as a monoidal subcategory of a compact closed cateorgy, namely $\mathcal{G}(\mathbb{C})$.

▶ For
$$(A^+, A^-)$$
 and (B^+, B^-) in $\mathcal{G}(\mathbb{C})$, we define
 $s_{(A^+, A^-), (B^+, B^-)} =_{def} (1_{A^-} \otimes s_{B^+, B^-} \otimes 1_{A^+})(s_{B^+, A^-} \otimes s_{A^+, B^-})(1_{B^+} \otimes s_{A^+, A^-} \otimes 1_{B^-})(s_{A^+, B^+} \otimes s_{B^-, A^-}).$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

► For
$$(A^+, A^-)$$
 and (B^+, B^-) in $\mathcal{G}(\mathbb{C})$, we define
 $s_{(A^+, A^-), (B^+, B^-)} =_{def} (1_{A^-} \otimes s_{B^+, B^-} \otimes 1_{A^+})(s_{B^+, A^-} \otimes s_{A^+, B^-})(1_{B^+} \otimes s_{A^+, A^-} \otimes 1_{B^-})(s_{A^+, B^+} \otimes s_{B^-, A^-}).$

▶ The dual of (A^+, A^-) is given by $(A^+, A^-)^* = (A^-, A^+)$

・回 ・ ・ ヨ ・ ・ ヨ ・ …

► For
$$(A^+, A^-)$$
 and (B^+, B^-) in $\mathcal{G}(\mathbb{C})$, we define
 $s_{(A^+, A^-), (B^+, B^-)} =_{def} (1_{A^-} \otimes s_{B^+, B^-} \otimes 1_{A^+})(s_{B^+, A^-} \otimes s_{A^+, B^-})(1_{B^+} \otimes s_{A^+, A^-} \otimes 1_{B^-})(s_{A^+, B^+} \otimes s_{B^-, A^-}).$

• The dual of (A^+, A^-) is given by $(A^+, A^-)^* = (A^-, A^+)$

▶ unit,
$$\eta: (I, I) \longrightarrow (A^+, A^-) \otimes (A^+, A^-)^* =_{def} s_{A^-, A^+}$$

▲御♪ ★注♪ ★注♪

- For (A⁺, A⁻) and (B⁺, B⁻) in G(ℂ), we define s(A⁺, A⁻), (B⁺, B⁻) = def (1_{A⁻} ⊗ s_{B⁺, B⁻} ⊗ 1_{A⁺})(s_{B⁺, A⁻} ⊗ s_{A⁺, B⁻})(1_{B⁺} ⊗ s_{A⁺, A⁻} ⊗ 1_{B⁻})(s_{A⁺, B⁺} ⊗ s_{B⁻, A⁻}).
 The dual of (A⁺, A⁻) is given by (A⁺, A⁻)* = (A⁻, A⁺)
 unit, η : (I, I) → (A⁺, A⁻) ⊗ (A⁺, A⁻)* = def s_{A⁻, A⁺}
- ▶ counit, $\epsilon : (A^+, A^-)^* \otimes (A^+, A^-) \longrightarrow (I, I) =_{def} s_{A^-, A^+}.$

伺 と く ヨ と く ヨ と

▶ counit,
$$\epsilon : (A^+, A^-)^* \otimes (A^+, A^-) \longrightarrow (I, I) =_{def} s_{A^-, A^+}.$$

The internal homs,

$$(A^+, A^-) \multimap (B^+, B^-) = (B^+ \otimes A^-, B^- \otimes A^+).$$

æ

- ▶ Let $A^+ \cong B^+$ and $A^- \cong B^-$ in \mathbb{C} , then $(A^+, A^-) \cong (B^+, B^-)$ in $\mathcal{G}(\mathbb{C})$.
- ▶ If $A^+ \lhd B^+(f_1, g_1)$ and $A^- \lhd B^-(f_2, g_2)$ in \mathbb{C} , then $(A^+, A^-) \lhd (B^+, B^-) (s_{B^+, A^-}(f_1 \otimes g_2), s_{A^+, B^-}(g_1 \otimes f_2))$ in $\mathcal{G}(\mathbb{C})$.

向下 イヨト イヨト

Definition

A Weak Linear Category (WLC) $(\mathbb{C}, !)$ consists of the following data:

- ► A symmetric monoidal closed category C,
- A symmetric monoidal functor $!: \mathbb{C} \longrightarrow \mathbb{C}$ (officially, $! = (!, \varphi, \varphi_I)$),
- ► The following monoidal pointwise natural transformations:
 - 1. der :! \Rightarrow *Id*
 - 2. $\delta :! \Rightarrow !!$
 - 3. con :! \Rightarrow ! \otimes !
 - 4. weak $:! \Rightarrow \mathcal{K}_I$. Here \mathcal{K}_I is the constant I functor.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Pointwise naturality: $\alpha : F \Rightarrow G$: For all $f : I \longrightarrow A$,

回 と く ヨ と く ヨ と …

æ

• Pointwise naturality: $\alpha : F \Rightarrow G$: For all $f : I \longrightarrow A$,

► In the Gol models we discuss the monoidal transformations der, δ, con, weak exist but are merely pointwise natural

• Pointwise naturality: $\alpha : F \Rightarrow G$: For all $f : I \longrightarrow A$,

- ► In the Gol models we discuss the monoidal transformations der, δ, con, weak exist but are merely pointwise natural
- Pointwise naturality suffices for the construction of linear combinatory algebras

¬<</p>

• Pointwise naturality: $\alpha : F \Rightarrow G$: For all $f : I \longrightarrow A$,

- ► In the Gol models we discuss the monoidal transformations der, δ, con, weak exist but are merely pointwise natural
- Pointwise naturality suffices for the construction of linear combinatory algebras
- We do not require $(!, der, \delta)$ to form a comonad,

• Pointwise naturality: $\alpha : F \Rightarrow G$: For all $f : I \longrightarrow A$,

- ► In the Gol models we discuss the monoidal transformations der, δ, con, weak exist but are merely pointwise natural
- Pointwise naturality suffices for the construction of linear combinatory algebras
- We do not require $(!, der, \delta)$ to form a comonad,
- We do not require $(!A, con_A, weak_A)$ to form a comonoid.

Definition

A *reflexive* object in a WLC (\mathbb{C} , !) is an object V in \mathbb{C} with the following retracts:

- $\blacktriangleright V \multimap V \lhd V$
- $V \triangleleft V$
- $\blacktriangleright I \lhd V$

回 と く ヨ と く ヨ と …

æ

Since CCCs are SMCCs, all the usual domain theoretic constructions of reflexive objects in CCCs also yield reflexive objects in the WLC-sense, as follows:

Proposition

Let \mathbb{C} be a CCC and V be a reflexive object in \mathbb{C} , i.e., $V^{V} \triangleleft V$. Then (\mathbb{C}, Id) is a WLC and V is a reflexive object in the WLC-sense.

高 とう モン・ く ヨ と

Any CCC is an SMCC. *Id* is a symmetric monoidal functor from \mathbb{C} to itself and the following are monoidal natural transformations:

- 1. $der_A = 1_A$
- 2. $\delta_A = 1_A$
- 3. $con_{\mathcal{A}} = \langle 1_{\mathcal{A}}, 1_{\mathcal{A}} \rangle$

4. weak_A = $f : A \longrightarrow T$; the unique map to the terminal object. It can be easily shown that $V^V \triangleleft V$ implies $T \triangleleft V$. Therefore $V \multimap V = V^V \triangleleft V$, $!V = Id(V) = V \triangleleft V$ and $I = T \triangleleft V$ and hence V is a reflexive object in the WLC-sense.

高 とう モン・ く ヨ と

Definition

A Linear Combinatory Algebra $(A, \cdot, !)$ consists of the following data:

- ► An applicative structure (A, .)
- A unary operator $\mathbf{!}: A \rightarrow A$
- ▶ Distinguished elements $B, C, I, K, W, D, \delta, F$ of A,

satisfying the following identities (we associate \cdot to the left and write xy for $x \cdot y$, $x!y = x \cdot (!(y))$, etc.) for all variables x, y, z ranging over A.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

1.
$$Bxyz = x(yz)$$
 Composition, Cut

・ロン ・四と ・ヨン ・ヨ

Bxyz = x(yz) Composition, Cut
 Cxyz = (xz)y Exchange

(本語) (本語) (本語) (語)

- 1. Bxyz = x(yz) Composition, Cut
- 2. Cxyz = (xz)y Exchange
- 3. lx = x Identity

(本部)) (本語)) (本語)) (語)

- 1. Bxyz = x(yz) Composition, Cut
- 2. Cxyz = (xz)y Exchange
- 3. lx = x Identity
- 4. Kx!y = x Weakening

(本部)) (本語)) (本語)) (語)

- 1. Bxyz = x(yz) Composition, Cut
- 2. Cxyz = (xz)y Exchange
- 3. lx = x Identity
- 4. Kx!y = x Weakening
- 5. Wx!y = x!y!y Contraction

・回 と く ヨ と ・ ヨ と

- 1. Bxyz = x(yz) Composition, Cut
- 2. Cxyz = (xz)y Exchange
- 3. lx = x Identity
- 4. Kx!y = x Weakening
- 5. Wx!y = x!y!y Contraction
- 6. D!x = x Dereliction

・回 ・ ・ ヨ ・ ・ ヨ ・ …

- 1. Bxyz = x(yz) Composition, Cut
- 2. Cxyz = (xz)y Exchange
- 3. lx = x Identity
- 4. Kx!y = x Weakening
- 5. Wx!y = x!y!y Contraction
- 6. D!x = x Dereliction
- 7. $\delta \mathbf{x} = \mathbf{y} \mathbf{x}$ Comultiplication

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

- 1. Bxyz = x(yz) Composition, Cut
- 2. Cxyz = (xz)y Exchange
- 3. lx = x Identity
- 4. Kx!y = x Weakening
- 5. Wx!y = x!y!y Contraction
- 6. D!x = x Dereliction
- 7. $\delta \mathbf{x} = \mathbf{y} \mathbf{x}$ Comultiplication
- 8. F!x!y = !(xy) Monoidal Functoriality

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

- ► The notion of LCA corresponds to a Hilbert style axiomatization of the {!, -∞} fragment of int. linear logic.
- The principal types of the combinators correspond to the axiom schemes which they name.

1.
$$B: (\beta \multimap \gamma) \multimap (\alpha \multimap \beta) \multimap \alpha \multimap \gamma$$

2. $C: (\alpha \multimap \beta \multimap \gamma) \multimap (\beta \multimap \alpha \multimap \gamma)$
3. $I: \alpha \multimap \alpha$
4. $K: \alpha \multimap !\beta \multimap \alpha$
5. $W: (!\alpha \multimap !\alpha \multimap \beta) \multimap !\alpha \multimap \beta$
6. $D: !\alpha \multimap \alpha$
7. $\delta: !\alpha \multimap !!\alpha$
8. $F: !(\alpha \multimap \beta) \multimap !\alpha \multimap !\beta$

・ロト ・回ト ・ヨト ・ヨト

Theorem

Let $(\mathbb{C}, !)$ be a WLC and V be a reflexive object in \mathbb{C} with retracts $V \multimap V \lhd V(r, s)$ and $!V \lhd V(p, q)$. Then $(\mathbb{C}(I, V), \cdot, !)$ with \cdot and ! defined below is a linear combinatory algebra.

Proof. Sketch

- Given $f,g \in \mathbb{C}(I,V)$, $f \cdot g = ev(sf \otimes g)$
- Given $f \in \mathbb{C}(I, V)$, $!f = p!f\varphi_I$ where $\varphi_I : I \longrightarrow !I$ and $! = (!, \varphi, \varphi_I)$.

向下 イヨト イヨト

Definition

A Standard Combinatory Algebra consists of a pair (A, \cdot_s) where A is a nonempty set and \cdot_s is a binary operation on A and B_s, C_s, I_s, K_s , and W_s are distinguished elements of A satisfying the following identities for all x, y, z variables ranging over A:

- 1. $B_{s \cdot s} x \cdot s y \cdot s z = x \cdot s (y \cdot s z)$ 2. $C_{s \cdot s} x \cdot s y \cdot s z = (x \cdot s z) \cdot s y$ 3. $I_{s \cdot s} x = x$ 4. $K_{s \cdot s} x \cdot s y = x$
- 5. $W_{s \cdot s} x \cdot s y = x \cdot s y \cdot s y$

伺 とう ヨン うちょう

• S_s can be defined from B_s , C_s , I_s and W_s .

▲□→ ▲圖→ ▲厘→ ▲厘→

æ

Let $(A, \cdot, !)$ be a linear combinatory algebra. We define a binary operation \cdot_s on A as follows: for $\alpha, \beta \in A$, $\alpha \cdot_s \beta =_{def} \alpha \cdot !\beta$. We define D' = C(BBI)(BDI). Note that

$$D'x$$
! $y = xy$.

Consider the following elements of A.

1.
$$B_s =_{def} C \cdot (B \cdot (B \cdot B \cdot B) \cdot (D' \cdot I)) \cdot (C \cdot ((B \cdot B) \cdot F) \cdot \delta)$$

2. $C_s =_{def} D' \cdot C$
3. $I_s =_{def} D' \cdot I$
4. $K_s =_{def} D' \cdot K$
5. $W_s =_{def} D' \cdot W$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Let $(A, \cdot, !)$ be a linear combinatory algebra. Then (A, \cdot_s) with \cdot_s and the elements B_s, C_s, I_s, K_s, W_s as defined above is a combinatory algebra.

In the case of WLCs coming from CCCs, the associated linear combinatory algebra agrees with the (standard) combinatory algebra structure, since

$$x \cdot _{s} y = x \cdot ! y = x \cdot y \; .$$

A Gol Situation is a triple (\mathbb{C}, T, U) where:

- \blacktriangleright $\mathbb C$ is a traced symmetric monoidal category
- T : C → C is a traced symmetric monoidal functor with the following retractions (which are monoidal natural transformations):
 - 1. $TT \lhd T(e, e')$ (Comultiplication)
 - 2. $Id \lhd T(d, d')$ (Dereliction)
 - 3. $T \otimes T \triangleleft T(c,c')$ (Contraction)
 - 4. $\mathcal{K}_{I} \lhd T(w, w')$ (Weakening), where \mathcal{K}_{I} is the constant I functor.
- U is an object of \mathbb{C} , called a *reflexive object*, with retractions:
 - 1. $U \otimes U \lhd U(j,k)$
 - 2. $I \lhd U$
 - 3. $TU \lhd U(u, v)$

・日・ ・ ヨ ・ ・ ヨ ・ ・

- G(ℂ) with the distinguished objects I = (I, I) and V = (U, U).
- Note that by definition (since we are in the strict case) G(ℂ)(I, V) = ℂ(U, U).
- ▶ We can define an endofunctor $!: \mathcal{G}(\mathbb{C}) \longrightarrow \mathcal{G}(\mathbb{C})$ as follows: $!(A^+, A^-) = (TA^+, TA^-)$ and given $f: (A^+, A^-) \longrightarrow (B^+, B^-),$ $!f =_{def} TA^+ \otimes TB^- \xrightarrow{\cong} T(A^+ \otimes B^-) \xrightarrow{Tf} T(A^- \otimes B^+) \xrightarrow{\cong} TA^- \otimes TB^+.$

(4月) (4日) (4日) 日

Proposition

Let (\mathbb{C}, T, U) be a Gol Situation. Then:

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

Sketch

Note that $\mathcal{G}(\mathbb{C})$ is a compact closed category and hence it is symmetric monoidal closed.

It can be easily shown that ! is a symmetric monoidal functor. Next we define the following maps:

▶ der_(A⁺,A⁻) : !(A⁺,A⁻)
$$\longrightarrow$$
 (A⁺,A⁻) =_{def}
 $s_{A^+,TA^-}(d'_{A^+} \otimes d_{A^-})$ where $A \triangleleft TA(d_A, d'_A)$,

→ ∃ →

A ₽

Sketch

Note that $\mathcal{G}(\mathbb{C})$ is a compact closed category and hence it is symmetric monoidal closed.

It can be easily shown that ! is a symmetric monoidal functor. Next we define the following maps:

▶ der_(A⁺,A⁻) : !(A⁺,A⁻)
$$\longrightarrow$$
 (A⁺,A⁻) =_{def}
 $s_{A^+,TA^-}(d'_{A^+} \otimes d_{A^-})$ where $A \triangleleft TA(d_A, d'_A)$,
▶ $\delta_{(A^+,A^-)}$: !(A⁺,A⁻) \longrightarrow !!(A⁺,A⁻) =_{def}
 $s_{T^2A^+,TA^-}(e'_{A^+} \otimes e_{A^-})$ where $T^2A \triangleleft TA(e_A, e'_A)$,

→ ∃ →

A ₽

Sketch

Note that $\mathcal{G}(\mathbb{C})$ is a compact closed category and hence it is symmetric monoidal closed.

It can be easily shown that ! is a symmetric monoidal functor. Next we define the following maps:

▶ der_(A⁺,A⁻) : !(A⁺, A⁻) → (A⁺, A⁻) =_{def}

$$s_{A^+,TA^-}(d'_{A^+} \otimes d_{A^-})$$
 where $A \lhd TA(d_A, d'_A)$,
▶ $\delta_{(A^+,A^-)}$: !(A⁺, A⁻) → !!(A⁺, A⁻) =_{def}
 $s_{T^2A^+,TA^-}(e'_{A^+} \otimes e_{A^-})$ where $T^2A \lhd TA(e_A, e'_A)$,
▶ $\operatorname{con}_{(A^+,A^-)}$: !(A⁺, A⁻) → !(A⁺, A⁻) ⊗ !(A⁺, A⁻) =_{def}
 $s_{TA^+ \otimes TA^+,TA^-}(e'_{A^+} \otimes e_{A^-})$ where $TA \otimes TA \lhd TA(e_A, e'_A)$,

向下 イヨト イヨト

Sketch

Note that $\mathcal{G}(\mathbb{C})$ is a compact closed category and hence it is symmetric monoidal closed.

It can be easily shown that ! is a symmetric monoidal functor. Next we define the following maps:

伺 とう ヨン うちょう

・ロン ・回と ・ヨン・

Э

 $B =_{def} \alpha \gamma \beta$, where

- 1. $\alpha = j(j \otimes 1_U)(j \otimes j \otimes j)$
- 2. $\beta = (k \otimes k \otimes k)(k \otimes 1_U)k$
- 3. γ see figure below.

<ロ> (四) (四) (注) (注) (三)

$C =_{def} \alpha \gamma \beta, \text{ where}$ 1. $\alpha = j(j \otimes j)(j \otimes 1_U \otimes j \otimes 1_U)$ 2. $\beta = (k \otimes 1_U \otimes k \otimes 1_U)(k \otimes k)k$

3. γ see figure below.

<ロ> (四) (四) (注) (注) (三)

- $$\begin{split} & \mathcal{K} =_{def} \alpha \gamma \beta, \text{ where} \\ & 1. \ \alpha = j(j \otimes 1) \\ & 2. \ \beta = (k \otimes 1)k \\ & 3. \ \gamma = \pi (\mathbf{1}_U \otimes f_K \otimes \mathbf{1}_U), \text{ where } f_K = u w_U w'_U v \text{ and } \pi \text{ as in figure} \end{split}$$
 - 3. $\gamma = \pi (1_U \otimes t_K \otimes 1_U)$, where $t_K = u w_U w'_U v$ and π as in figure below.

・ロン ・回 と ・ 回 と ・ 回 と

 $W =_{def} \alpha \gamma \beta, \text{ where}$ 1. $\alpha = j(1_U \otimes j)(j \otimes j \otimes 1_U)$ 2. $\beta = (k \otimes k \otimes 1_U)(1_U \otimes k)k$ 3. $\gamma = \pi(1_U \otimes g_W \otimes 1_U \otimes f_W)(1_U \otimes 1_U \otimes 1_U \otimes \sigma), \text{ where}$ $g_W = (u \otimes u)c'_U v, f_W = uc_U(v \otimes v), \text{ and } \pi \text{ is the}$ permutation in the figure below.

イロン イ部ン イヨン イヨン 三日

$D =_{def} \alpha \gamma \beta$, where

- 1. $\alpha = j(j \otimes j)$
- 2. $\beta = (k \otimes k)k$
- 3. $\gamma = \pi (1_U \otimes g_D \otimes 1_U \otimes f_D)$, where $f_D = ud_U$, $g_D = d'_U v$ and π as in the figure below.

イロン イ部ン イヨン イヨン 三日

- $\delta =_{def} \alpha \gamma \beta$, where 1. $\alpha = j$ 2. $\beta = k$
 - 3. $\gamma = \sigma_{U,U}(f_{\delta} \otimes g_{\delta})$, where $f_{\delta} = ue_U T(v)v$ and $g_{\delta} = uT(u)e'_U v$.

• 3 >

→ 注→ 注

イロト イポト イラト イラト 一日

Haghverdi, (MSCS 2000)

- \mathbb{C} a traced UDC, (\mathbb{C}, T, U) a Gol Situation.
- ► ($\mathbb{C}(U, U), \cdot, !$), $TU \lhd U(u, v)$, $U \otimes U \lhd U(j, k)$.
- $\ \, \alpha \cdot \beta = Tr^U_{U,U}((1_U \otimes \beta)(k\alpha j))$
- $!\alpha = uT(\alpha)v$.

伺 とう ヨン うちょう

In matricial form we have:

$$\alpha \cdot \beta = \operatorname{Tr}_{U,U}^{U} \left(\begin{bmatrix} 1 & 0 \\ 0 & \beta \end{bmatrix} \begin{bmatrix} k_1 \alpha j_1 & k_1 \alpha j_2 \\ k_2 \alpha j_1 & k_2 \alpha j_2 \end{bmatrix} \right)$$
$$j = \begin{bmatrix} j_1 & j_2 \end{bmatrix} \qquad \qquad k = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$B = j_2 j_1 k_1^3 + j_1^3 k_1 k_2 + j_2^2 k_1 k_2 k_1 + j_1 j_2 j_1 k_2^2 + j_1^2 j_2 k_2^2 k_1 + j_1 j_2^2 k_2 k_1^2$$

$$C = j_2 j_1^2 k_1^3 + j_1^3 k_1^2 k_2 + j_1 j_2 k_2 k_1 k_2 + j_2 j_1 j_2 k_2 k_1 + j_1^2 j_2 k_2^2 + j_2^2 k_2 k_1^2$$

$$D = j_2 j_1 k_1^2 + j_1^2 k_1 k_2 + j_1 j_2 f_D k_2^2 + j_2^2 g_D k_2 k_1,$$

$$\triangleright \ \delta = j_2 f_\delta k_1 + j_1 g_\delta k_2,$$

►
$$F = j_2 f_{F1} k_1^2 + j_1^2 g_{F1} k_2 + j_1 j_2 g_{F2} k_2 + j_2 f_{F2} k_2 k_1$$

Here $f_D = u l_U, g_D = l'_U v, f_\delta = u e_U T(v) v, g_\delta = u T(u) e'_U v,$
 $f_{F1} = u T(j) \varphi(v \otimes v) \iota_1, g_{F1} = \rho_1(u \otimes u) \varphi^{-1} T(k) v,$
 $f_{F2} = u T(j) \varphi(v \otimes v) \iota_2, g_{F2} = \rho_2(u \otimes u) \varphi^{-1} T(k) v,$ and φ is the component of the monoidal functor T .

・ロン ・四と ・ヨン ・ヨ