# From asynchronous games to coherence spaces 

Paul-André Melliès<br>CNRS, Université Paris Denis Diderot

Workshop on
Geometry of Interaction, Traced Monoidal Categories, Implicit Complexity
Kyoto, Tuesday 25 August 2009

## An anomaly of the Geometry of Interaction



Very much studied in the field of game semantics

## Game semantics

Every proof of formula $A$ initiates a dialogue where

Proponent tries to convince Opponent

Opponent tries to refute Proponent

An interactive approach to logic and programming languages

# Four basic operations on logical games 

the negation<br>$\neg A$<br>the sum<br>$A \oplus B$<br>the tensor<br>$A \otimes B$<br>the exponential<br>! $A$<br>Algebraic structure similar to linear algebra!

## Negation



Negation permutes the rôles of Proponent and Opponent

## Negation



Negation permutes the rôles of Opponent and Proponent

## Sum



Proponent selects one component

## Tensor product




Opponent plays the two games in parallel

## Exponentials



Opponent opens as many copies as necessary to beat Proponent

## Policy of the talk

In order to clarify game semantics, compare it to relational semantics...

Key idea: the strategy $\sigma$ associated to a proof $\pi$ should contain its clique.

## Part I

# Additives in sequential games 

Sequential strategies at the leaves

## Sequential games



## Sequential games

A sequential game $(M, P, \lambda)$ consists of

$$
\begin{array}{cl}
M & \text { a set of moves, } \\
P \subseteq M^{*} & \text { a set of plays, } \\
\lambda: M \rightarrow\{-1,+1\} & \text { a polarity function on moves }
\end{array}
$$

such that every play is alternating and starts by Opponent.

Alternatively, a sequential game is an alternating decision tree.

## Sequential games

The boolean game $\mathbb{B}$ :

Player in red Opponent in blue

## Strategies

A strategy $\sigma$ is a set of alternating plays of even-length

$$
s=m_{1} \cdots m_{2 k}
$$

such that:

- $\sigma$ contains the empty play,
- $\sigma$ is closed by even-length prefix:

$$
\forall s, \forall m, n \in M, \quad s \cdot m \cdot n \in \sigma \Rightarrow s \in \sigma
$$

$-\sigma$ is deterministic:
$\forall s \in \sigma, \forall m, n_{1}, n_{2} \in M, \quad s \cdot m \cdot n_{1} \in \sigma$ and $s \cdot m \cdot n_{2} \in \sigma \Rightarrow n_{1}=n_{2}$.

## Three strategies on the boolean game $\mathbb{B}$



## Total strategies

A strategy $\sigma$ is total when
— for every play $s$ of the strategy $\sigma$,

- for every Opponent move $m$ such that $s \cdot m$ is a play,
there exists a Proponent move $n$ such that $s \cdot m \cdot n$ is a play of $\sigma$.


# Two total strategies on the boolean game $\mathbb{B}$ 



## From sequential games to coherence spaces

The diagram commutes

for every proof of a purely additive formula.

## From sequential games to coherence spaces

Let $\mathscr{G}$ denote the category

- with families of sequential games as objects,
- with families of sequential strategies as morphisms.

Proposition. The category $\mathscr{G}$ is the free category with sums, equipped with a contravariant functor

$$
\neg: \mathscr{G} \longrightarrow \mathscr{G}^{o p}
$$

and a bijection

$$
\varphi_{x, y}: \mathscr{G}(x, \neg y) \cong \mathscr{G}(y, \neg x)
$$

natural in $x$ and $y$.

## A theorem for free

There exists a functor

which preserves the sum, and transports the non-involutive negation of the category $\mathscr{G}$ into the involutive negation of the category Coh.

This functor collapses the dynamic semantics into a static one

## Part II (a)

# Multiplicatives in asynchronous games 

From trajectories to positions

## Sequential games: an interleaving semantics

The tensor product of two boolean games $\mathbb{B}_{1}$ et $\mathbb{B}_{2}$ :


A step towards true concurrency: bend the branches!


## True concurrency: tile the diagram!



## Asynchronous game semantics



The phenomenon refined: a truly concurrent semantics of proofs.

## Asynchronous games

An asynchronous game is an event structure equipped with a polarity function

$$
\lambda: \quad M \longrightarrow\{-1,+1\}
$$

indicating whether a move is Player ( +1 ) or Opponent ( -1 ).

## Legal plays

A legal play is a path

$$
* \xrightarrow{m_{1}} x_{1} \xrightarrow{m_{2}} x_{2} \xrightarrow{m_{3}} \cdots x_{k-1} \xrightarrow{m_{k}} x_{k}
$$

starting from the empty position $*$ of the transition space, and satisfying:

$$
\forall i \in[1, \ldots, k], \quad \lambda\left(m_{i}\right)=(-1)^{i} .
$$

So, a legal play is alternated and starts by an Opponent move.

## Strategies

A strategy is a set of legal plays of even length, such that:

- $\sigma$ contains the empty play,
$-\sigma$ is closed under even-length prefix

$$
s \cdot m \cdot n \in \sigma \Rightarrow s \in \sigma
$$

$-\sigma$ is deterministic

$$
s \cdot m \cdot n_{1} \in \sigma \quad \text { and } s \cdot m \cdot n_{2} \in \sigma \Rightarrow n_{1}=n_{2} .
$$

A strategy plays according to the current play.

## Innocence: strategies with partial information

Full abstraction result [Martin Hyland, Luke Ong, Hanno Nickau, 1994]
Innocence characterizes the interactive behaviour of $\lambda$-terms.

An innocent strategy plays according to the current view.

# Where are the pointers in asynchronous games? 



Play = sequence of moves with pointers

Event structure = generalized arena


Event structure = generalized arena


From this follows a reformulation of innocence...

## Backward innocence



Forward innocence


## Innocent strategies are positional

Definition. A strategy $\sigma$ is positional when for every two plays $s_{1}$ and $s_{2}$ with same target $x$ :

$$
s_{1} \in \sigma \quad \text { and } \quad s_{2} \in \sigma \quad \text { and } \quad s_{1} \cdot t \in \sigma \Rightarrow s_{2} \cdot t \in \sigma
$$

## Theorem (by an easy diagrammatic proof)

Every innocent strategy $\sigma$ is positional

More: An innocent strategy is characterized by the positions it reaches.

## An illustration: the strategy (true $\otimes$ false)



Strategies become closure operators on complete lattices as in Abramsky-M. concurrent games.

## From asynchronous games to coherence spaces

The diagram commutes

for every proof of a multiplicative additive formula.

## Part II (b)

# Multiplicatives in asynchronous games 

The free dialogue category

## Dialogue categories

A symmetric monoidal category $\mathscr{C}$ equipped with a functor

$$
\neg: \mathscr{C}^{o p} \longrightarrow \mathscr{C}
$$

and a natural bijection

$$
\varphi_{A, B, C} \quad: \quad \mathscr{C}(A \otimes B, \neg C) \cong \mathscr{C}(A, \neg(B \otimes C))
$$



## The free dialogue category

The objects of the category free-dialogue $(\mathscr{C})$ are families of dialogue games
constructed by the grammar

$$
A, B \quad:=X \quad|\quad A \oplus B \quad| \quad A \otimes B \quad|\quad \neg A \quad| \quad 1
$$

where $X$ is an object of the category $\mathscr{C}$.

The morphisms are total and innocent strategies on dialogue games.

As we will see: proofs are 3-dimensional variants of knots...

## A theorem for free

There exists a functor
leaves : free-dialogue $(\mathscr{C}) \longrightarrow$ Coh
which preserves the sum, the tensor, and transports the non-involutive negation of the category $\mathscr{G}$ into the involutive negation of the category Coh.

This functor collapses the dynamic semantics into a static one

## Tensor logic

$$
\begin{aligned}
\text { tensor logic } & =\text { a logic of tensor and negation } \\
& =\text { linear logic without } A \cong \neg \neg A \\
& =\text { the very essence of polarization }
\end{aligned}
$$

## Offers a synthesis of linear logic, games and continuations

Research program: recast every aspect of linear logic in this setting

## Part III

## Exponentials in orbital games

Uniformity formulated as interactive group invariance

## Exponentials

$$
!A=\bigotimes_{n \in \mathbb{N}} A
$$

## Justification vs. copy indexing

In the presence of repetition, the backtracking policy of arena games

may be alternatively formulated by indexing threads


## Justification vs. copy indexing

The justified play with copy indexing

may be then seen as a play in an asynchronous game

$$
\begin{aligned}
(m, 0) \cdot(n, 00) \cdot( & p, 000) \cdot(n, 01) \cdot(p, 010) \cdots \\
& \cdots(n, 02) \cdot(p, 001) \cdot(m, 1) \cdot(n, 10) \cdot(p, 011)
\end{aligned}
$$

## An associativity problem

The following diagram does not commute


Hence, comultiplication is not associative.

## Abramsky, Jagadeesan, Malacaria games (1994)

However, this diagram does commute... up to thread indexing!


So, the game ! $A$ defines a pseudo-comonoid instead of a comonoid...

## A main difficulty

The dereliction strategies $\varepsilon_{i}$ are equal up to reindexing


## A non uniform taster

The strategy taster defined as
$\left.\begin{array}{|llll|}\hline!\left(\begin{array}{llll} & \oplus & & X\end{array}\right) & \multimap & X\end{array}\right)$
$\left.\begin{array}{|llll|}\hline!\left(\begin{array}{llll}X & \oplus & X\end{array}\right) & - & X\end{array}\right)$
tastes the difference between $\varepsilon_{i}$ and $\varepsilon_{j}$ in the sense that

$$
\varepsilon_{i} \circ \text { taster } \neq \varepsilon_{j} \circ \text { taster. }
$$

## Orbital games

An asynchronous game equipped with

- two groups $G_{A}$ and $H_{A}$,
- a left group action on moves

$$
G_{A} \times M_{A} \longrightarrow M_{A}
$$

- a right group action on moves $\quad M_{A} \times H_{A} \longrightarrow M_{A}$
preserving the asynchronous structure, and such that the left and right actions commute:

$$
\forall m \in M_{A}, \forall g \in G_{A}, \forall h \in H_{A}, \quad(g \cdot m) \cdot h=g \cdot(m \cdot h) .
$$

## Alternatively

An orbital game is an asynchronous game $A$ equipped with

- a class $G_{A}$ of automorphisms of $A$ closed under composition,
- a class $H_{A}$ of automorphisms of $A$ closed under composition,
such that

$$
A \xrightarrow{g} A \xrightarrow{h} A=A \xrightarrow{h} A \xrightarrow{g} A
$$

The two definitions are essentially the same...

## An equivalence relation on plays

Two plays $s$ and $t$ are equal up to reindexing

$$
s \approx t
$$

when there exists $g \in G_{A}$ and $H_{A}$ such that

$$
t=g \cdot s \cdot h
$$

## A simulation preorder between strategies (AJM)

A strategy $\sigma$ is simulated by a strategy $\tau$ when for every pair of plays

$$
s \approx s^{\prime}
$$

and for all moves $m, n, m^{\prime}$ such that

$$
s \cdot m \cdot n \in \sigma \quad \text { and } \quad s^{\prime} \in \tau \text { and } s \cdot m \approx_{A} s^{\prime} \cdot m^{\prime}
$$

there exists a move $n^{\prime}$ such that

$$
\begin{gathered}
s \cdot m \cdot n \approx_{A} s^{\prime} \cdot m^{\prime} \cdot n^{\prime} \text { and } s^{\prime} \cdot m^{\prime} \cdot n^{\prime} \in \tau \\
\sigma \quad \precsim^{\operatorname{sim}} \tau
\end{gathered}
$$

## Interactive invariance

A strategy $\sigma$ is covered by a strategy $\tau$ when

$$
\begin{array}{r}
\forall s \in \sigma, \quad \forall h \in H_{T}, \quad \exists g \in G_{T}, \quad g: s: h \in \tau . \\
\quad \sigma \quad \begin{array}{|c}
\approx i n v \\
\end{array}
\end{array}
$$

## Proposition

Suppose that $\sigma$ and $\tau$ are strategies of an orbital game. Then,

$$
\sigma \precsim \varlimsup^{\operatorname{sim}} \tau \Longleftrightarrow \varlimsup^{\text {inv }} \tau
$$

This leads to a 2-category of orbital games and uniform strategies, where $!A$ is a pseudo-comonoid.

## Projection to coherence spaces

The functor

$$
\text { Orbital } \longrightarrow \text { Rel }
$$

projects a position to its orbit in the orbital game.
In particular, an indexed family of positions in the game

$$
!A=\bigotimes_{n \in \mathbb{N}} A
$$

is transported to a multiset of positions.

## The locative information is lost on the way...

## Interactive invariance on the syntax

Exponential boxes are replaced by «mille-feuilles» whose uniformity is captured by interactive reindexing.

$$
(\lambda x \cdot x(i)) \vec{P} \quad \mapsto \quad P_{i}
$$

Innocence precedes uniformity...

## A link to complexity

Construct the free dialogue category with pseudo-comonoids.

## Part IV

## A bialgebraic definition of traces

Towards a 2-dimensional approach to the Geometry of Interaction

## Traced monoidal categories

A trace in a balanced category $\mathscr{C}$ is an operator

$$
\operatorname{Tr}_{A, B}^{U} \quad \frac{A \otimes U \longrightarrow B \otimes U}{A \longrightarrow B}
$$

depicted as feedback in string diagrams:

Trace operator


## Sliding (naturality in $U$ )



Tightening (naturality in $A, B$ )


## Vanishing (monoidality in $U$ )



## Superposing



## Yanking



$$
\bar{p}
$$

