From asynchronous games to coherence spaces

Paul-André Melliès

CNRS, Université Paris Denis Diderot

Workshop on

Geometry of Interaction, Traced Monoidal Categories, Implicit Complexity Kyoto, Tuesday 25 August 2009

An anomaly of the Geometry of Interaction

Very much studied in the field of game semantics

Game semantics

Every proof of formula A initiates a dialogue where

Proponent tries to convince Opponent

Opponent tries to refute **Proponent**

An interactive approach to logic and programming languages

Four basic operations on logical games

the negation	$\neg A$
the sum	$A\oplus B$
the tensor	$A\otimes B$
the exponential	! A

Algebraic structure similar to linear algebra !

Negation

Proponent Program plays the game A

Opponent Environment

plays the game

 $\neg A$

Negation permutes the rôles of Proponent and Opponent

Negation

Opponent Environment plays the game

 $\neg A$

Proponent Program

plays the game

A

Negation permutes the rôles of Opponent and Proponent

Sum

Proponent selects one component

Tensor product

Opponent plays the two games in parallel

Exponentials

Opponent opens as many copies as necessary to beat Proponent

Policy of the talk

In order to clarify game semantics, compare it to relational semantics...

Key idea: the strategy σ associated to a proof π should contain its clique.

Part I

Additives in sequential games

Sequential strategies at the leaves

Sequential games

A proof π

alternating sequences of moves

A proof π

Sequential games

A sequential game (M, P, λ) consists of

 $\begin{array}{ll} M & \text{a set of moves,} \\ P \subseteq M^* & \text{a set of plays,} \\ \lambda: M \to \{-1, +1\} & \text{a polarity function on moves} \end{array}$

such that every play is alternating and starts by Opponent.

Alternatively, a sequential game is an alternating decision tree.

Sequential games

The boolean game \mathbb{B} :

Strategies

A strategy σ is a set of alternating plays of even-length

 $s = m_1 \cdots m_{2k}$

such that:

— σ contains the empty play,

— σ is closed by even-length prefix:

 $\forall s, \forall m, n \in M, \qquad s \cdot m \cdot n \in \sigma \implies s \in \sigma$

 $-\sigma$ is deterministic:

 $\forall s \in \sigma, \forall m, n_1, n_2 \in M, \qquad s \cdot m \cdot n_1 \in \sigma \text{ and } s \cdot m \cdot n_2 \in \sigma \implies n_1 = n_2.$

Three strategies on the boolean game $\mathbb B$

Total strategies

A strategy σ is **total** when

— for every play s of the strategy σ ,

— for every Opponent move m such that $s \cdot m$ is a play,

there exists a Proponent move *n* such that $s \cdot m \cdot n$ is a play of σ .

Two total strategies on the boolean game ${\mathbb B}$

From sequential games to coherence spaces

The diagram commutes

for every proof of a purely additive formula.

From sequential games to coherence spaces

Let \mathscr{G} denote the category

- with families of sequential games as objects,

— with families of sequential strategies as morphisms.

Proposition. The category \mathscr{G} is the **free category** with sums, equipped with a contravariant functor

$$\neg \quad : \quad \mathscr{G} \quad \longrightarrow \quad \mathscr{G}^{op}$$

and a bijection

$$\varphi_{x,y}$$
 : $\mathscr{G}(x,\neg y)$ \cong $\mathscr{G}(y,\neg x)$

natural in x and y.

A theorem for free

There exists a functor

leaves : $\mathscr{G} \longrightarrow \operatorname{Coh}$

which preserves the sum, and transports the non-involutive negation of the category \mathscr{G} into the involutive negation of the category Coh.

This functor collapses the dynamic semantics into a static one

Part II (a)

Multiplicatives in asynchronous games

From trajectories to positions

Sequential games: an interleaving semantics

The tensor product of two boolean games \mathbb{B}_1 et \mathbb{B}_2 :

A step towards true concurrency: bend the branches!

True concurrency: tile the diagram!

25

Asynchronous game semantics

The phenomenon refined: a truly concurrent semantics of proofs.

Asynchronous games

An **asynchronous game** is an event structure equipped with a **polarity** function

 λ : $M \longrightarrow \{-1, +1\}$

indicating whether a move is Player (+1) or Opponent (-1).

Legal plays

A legal play is a path

$$* \xrightarrow{m_1} x_1 \xrightarrow{m_2} x_2 \xrightarrow{m_3} \cdots x_{k-1} \xrightarrow{m_k} x_k$$

starting from the empty position * of the transition space, and satisfying:

$$\forall i \in [1, ..., k], \qquad \lambda(m_i) = (-1)^i.$$

So, a legal play is **alternated** and starts by an **Opponent move.**

Strategies

A strategy is a set of legal plays of even length, such that:

- $-\sigma$ contains the empty play,
- σ is closed under even-length prefix

 $s \cdot m \cdot n \in \sigma \implies s \in \sigma,$

 $-\sigma$ is deterministic

 $s \cdot m \cdot n_1 \in \sigma$ and $s \cdot m \cdot n_2 \in \sigma \Rightarrow n_1 = n_2$.

A strategy plays according to the current play.

Innocence: strategies with partial information

Full abstraction result [Martin Hyland, Luke Ong, Hanno Nickau, 1994]

Innocence characterizes the interactive behaviour of λ -terms.

An innocent strategy plays according to the current view.

Where are the pointers in asynchronous games?

 $m \stackrel{*}{\leftarrow} n \stackrel{\cdot}{\cdot} p \stackrel{\cdot}{\cdot} n \stackrel{\cdot}{\cdot} p \stackrel{\cdot}{\cdot} n \stackrel{\cdot}{\cdot} p \cdot m \stackrel{\cdot}{\cdot} p \stackrel{\cdot}{\cdot} n \stackrel{\cdot}{\cdot} p$

Play = sequence of moves with pointers

From this follows a reformulation of innocence...

Forward innocence

36

Innocent strategies are positional

Definition. A strategy σ is **positional** when for every two plays s_1 and s_2 with same target x:

 $s_1 \in \sigma$ and $s_2 \in \sigma$ and $s_1 \cdot t \in \sigma \implies s_2 \cdot t \in \sigma$

Theorem (by an easy diagrammatic proof) Every innocent strategy σ is positional

More: An innocent strategy is characterized by the positions it reaches.

An illustration: the strategy (true \otimes false)

Strategies become closure operators on complete lattices as in Abramsky-M. concurrent games.

From asynchronous games to coherence spaces

The diagram commutes

for every proof of a multiplicative additive formula.

Part II (b)

Multiplicatives in asynchronous games

The free dialogue category

Dialogue categories

A symmetric monoidal category % equipped with a functor

$$\neg \quad : \quad \mathscr{C}^{op} \quad \longrightarrow \quad \mathscr{C}$$

and a natural bijection

 $\varphi_{A,B,C}$: $\mathscr{C}(A \otimes B, \neg C) \cong \mathscr{C}(A, \neg (B \otimes C))$

The free dialogue category

The objects of the category **free-dialogue**(%) are families of **dialogue games**

constructed by the grammar

 $A,B \quad ::= \quad X \quad | \quad A \oplus B \quad | \quad A \otimes B \quad | \quad \neg A \quad | \quad \mathbf{1}$

where X is an object of the category \mathscr{C} .

The morphisms are total and innocent strategies on dialogue games.

As we will see: proofs are 3-dimensional variants of knots...

A theorem for free

There exists a functor

leaves : free-dialogue(\mathscr{C}) \longrightarrow Coh

which preserves the sum, the tensor, and transports the non-involutive negation of the category \mathscr{G} into the involutive negation of the category Coh.

This functor collapses the dynamic semantics into a static one

Tensor logic

- tensor logic = a logic of tensor and negation
 - = linear logic without $A \cong \neg \neg A$
 - = the very essence of polarization

Offers a synthesis of linear logic, games and continuations

Research program: recast every aspect of linear logic in this setting

Part III

Exponentials in orbital games

Uniformity formulated as interactive group invariance

Exponentials

Justification vs. copy indexing

In the presence of repetition, the backtracking policy of arena games

may be alternatively formulated by indexing threads

47

Justification vs. copy indexing

The justified play with copy indexing

may be then seen as a play in an asynchronous game

 $(m,0) \cdot (n,00) \cdot (p,000) \cdot (n,01) \cdot (p,010) \cdots$ $\cdots (n,02) \cdot (p,001) \cdot (m,1) \cdot (n,10) \cdot (p,011)$

An associativity problem

The following diagram does not commute

Hence, comultiplication is not associative.

Abramsky, Jagadeesan, Malacaria games (1994)

However, this diagram does commute... up to thread indexing !

So, the game !A defines a pseudo-comonoid instead of a comonoid...

A main difficulty

The dereliction strategies ε_i are equal up to reindexing

A non uniform taster

The strategy taster defined as

tastes the difference between ε_i and ε_j in the sense that

$$\varepsilon_i \circ \texttt{taster} \neq \varepsilon_j \circ \texttt{taster}.$$

Orbital games

An asynchronous game equipped with

- two groups G_A and H_A ,
- a left group action on moves $G_A \times M_A \longrightarrow M_A$
- a right group action on moves $M_A \times H_A \longrightarrow M_A$

preserving the asynchronous structure, and such that the left and right actions commute:

 $\forall m \in M_A, \forall g \in G_A, \forall h \in H_A, \qquad (g \cdot m) \cdot h = g \cdot (m \cdot h).$

Alternatively

An orbital game is an asynchronous game A equipped with

- a class G_A of automorphisms of A closed under composition,

- a class H_A of automorphisms of A closed under composition,

such that

$$A \xrightarrow{g} A \xrightarrow{h} A \longrightarrow = A \xrightarrow{h} A \xrightarrow{g} A$$

The two definitions are essentially the same...

An equivalence relation on plays

Two plays s and t are equal up to reindexing

 $s \approx t$

when there exists $g \in G_A$ and H_A such that

 $t = g \cdot s \cdot h.$

A simulation preorder between strategies (AJM)

A strategy σ is simulated by a strategy τ when for every pair of plays

$$s \approx s'$$

and for all moves m, n, m' such that

$$s \cdot m \cdot n \in \sigma$$
 and $s' \in \tau$ and $s \cdot m pprox_A s' \cdot m'$

there exists a move n' such that

$$s \cdot m \cdot n \approx_A s' \cdot m' \cdot n'$$
 and $s' \cdot m' \cdot n' \in \tau$.

$$\sigma \stackrel{\prec}{\approx} \overset{sim}{\sim} au$$

Interactive invariance

A strategy σ is covered by a strategy τ when

$$\forall s \in \sigma, \quad \forall h \in H_T, \quad \exists g \in G_T, \qquad g \, . \, s \, . \, h \in \tau.$$

$$\sigma \stackrel{\prec}{\approx} \operatorname{inv} \tau$$

Proposition

Suppose that σ and τ are strategies of an orbital game. Then,

$$\sigma \stackrel{\scriptstyle \prec}{\underset{\scriptstyle \sim}{\underset{\scriptstyle \sim}{\overset{\scriptstyle \min}}} } \tau \iff \sigma \stackrel{\scriptstyle \prec}{\underset{\scriptstyle \sim}{\underset{\scriptstyle \sim}{\overset{\scriptstyle \min}}} } \tau$$

This leads to a 2-category of orbital games and uniform strategies, where !A is a pseudo-comonoid.

Projection to coherence spaces

The functor

 $\mathbf{Orbital} \quad \longrightarrow \quad \mathbf{Rel}$

projects a position to its orbit in the orbital game.

In particular, an indexed family of positions in the game

 $!A = \bigotimes_{n \in \mathbb{N}} A$

is transported to a multiset of positions.

The locative information is lost on the way...

Interactive invariance on the syntax

Exponential boxes are replaced by «mille-feuilles» whose uniformity is captured by interactive reindexing.

$$(\lambda x.x(i))\vec{P} \mapsto P_i$$

Innocence precedes uniformity...

A link to complexity

Construct the free dialogue category with pseudo-comonoids.

Part IV

A bialgebraic definition of traces

Towards a 2-dimensional approach to the Geometry of Interaction

Traced monoidal categories

A trace in a balanced category ${\mathscr C}$ is an operator

$$\mathbf{Tr}_{A,B}^U \qquad \frac{A \otimes U \longrightarrow B \otimes U}{A \longrightarrow B}$$

depicted as feedback in string diagrams:

Sliding (naturality in U)

Tightening (naturality in A, B)

Vanishing (monoidality in U)

Superposing

