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An anomaly of the Geometry of Interaction

contraction

contraction

!A?(A⊥)

contraction

contraction

$? (A^{\bot})$1
$! A$1

Very much studied in the field of game semantics
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Game semantics

Every proof of formula A initiates a dialogue where

Proponent tries to convince Opponent

Opponent tries to refute Proponent

An interactive approach to logic and programming languages
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Four basic operations on logical games

the negation ¬ A

the sum A⊕B

the tensor A⊗B

the exponential ! A

Algebraic structure similar to linear algebra !
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Negation

Proponent
Program

plays the game

A

Opponent
Environment

plays the game

¬ A

Negation permutes the rôles of Proponent and Opponent
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Negation

Opponent
Environment

plays the game

¬ A

Proponent
Program

plays the game

A

Negation permutes the rôles of Opponent and Proponent
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Sum

⊕

Proponent selects one component
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Tensor product

⊗

Opponent plays the two games in parallel
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Exponentials

⊗ ⊗ ⊗ · · ·

Opponent opens as many copies as necessary to beat Proponent
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Policy of the talk

In order to clarify game semantics, compare it to relational semantics...

Key idea: the strategy σ associated to a proof π should contain its clique.
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Part I

Additives in sequential games

Sequential strategies at the leaves

11



Sequential games

A proof π alternating
sequences of moves A proof π
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Sequential games

A sequential game (M,P, λ) consists of

M a set of moves,
P ⊆M∗ a set of plays,

λ : M → {−1,+1} a polarity function on moves

such that every play is alternating and starts by Opponent.

Alternatively, a sequential game is an alternating decision tree.
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Sequential games

The boolean game B:

V F

q
true

__???????????????
false

??���������������

∗
question

OO

Player in red
Opponent in blue
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Strategies

A strategy σ is a set of alternating plays of even-length

s = m1 · · ·m2k

such that:

— σ contains the empty play,

— σ is closed by even-length prefix:

∀s, ∀m,n ∈M, s ·m · n ∈ σ ⇒ s ∈ σ

— σ is deterministic:

∀s ∈ σ,∀m,n1, n2 ∈M, s ·m · n1 ∈ σ and s ·m · n2 ∈ σ ⇒ n1 = n2.
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Three strategies on the boolean game B

V F

q
true

__???????????????
false

??���������������

∗
question

OO

Player in red
Opponent in blue
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Total strategies

A strategy σ is total when

— for every play s of the strategy σ,

— for every Opponent move m such that s ·m is a play,

there exists a Proponent move n such that s ·m · n is a play of σ.
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Two total strategies on the boolean game B

V F

q
true

__???????????????
false

??���������������

∗
question

OO

Player in red
Opponent in blue
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From sequential games to coherence spaces

The diagram commutes

strategy

leaves

��

proof

99sssssssssssssssssssss

%%KKKKKKKKKKKKKKKKKKKKK

clique

for every proof of a purely additive formula.
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From sequential games to coherence spaces

Let G denote the category

— with families of sequential games as objects,
— with families of sequential strategies as morphisms.

Proposition. The category G is the free category with sums, equipped
with a contravariant functor

¬ : G −→ G op

and a bijection

ϕx,y : G (x,¬y) ∼= G (y,¬x)
natural in x and y.
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A theorem for free

There exists a functor

leaves : G // Coh

which preserves the sum, and transports the non-involutive negation of the
category G into the involutive negation of the category Coh.

This functor collapses the dynamic semantics into a static one
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Part II (a)

Multiplicatives in asynchronous games

From trajectories to positions
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Sequential games: an interleaving semantics

The tensor product of two boolean games B1 et B2:

false2

WW//////////
true1

GG����������

q2

WW//////////
q1

GG����������

true1

WW//////////
false2

GG����������

q1

__????????????
q2

??������������
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A step towards true concurrency: bend the branches!

false2
77oooooooooooooooooo

true1
ggOOOOOOOOOOOOOOOOOO

q2
??�����������

q1
__???????????

true1

__??????????? false2

??�����������

q1

ggOOOOOOOOOOOOOOOOOO
q2

77oooooooooooooooooo
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True concurrency: tile the diagram!

V ⊗ F

V ⊗ q

false2

99ssssssssssssssss

∼ q ⊗ F

true1

eeKKKKKKKKKKKKKKKK

V ⊗ ∗

q2
99ssssssssssssssss

∼ q ⊗ q
true1KKKKKK

eeKKKKKK

false2ssssss

99ssssss

∼ ∗ ⊗ F

q1
eeJJJJJJJJJJJJJJJJ

q ⊗ ∗
true1

eeKKKKKKKKKKKKKKKK

q2ssssss

99ssssss

∼ ∗ ⊗ q
q1KKKKKK

eeKKKKKK

false2

99ssssssssssssssss

∗ ⊗ ∗
q1

eeLLLLLLLLLLLLLLLLL
q2

99rrrrrrrrrrrrrrrrr
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Asynchronous game semantics

A proof π trajectories in
asynchronous transition spaces A proof π

The phenomenon refined: a truly concurrent semantics of proofs.
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Asynchronous games

An asynchronous game is an event structure equipped with a polarity
function

λ : M −→ {−1,+1}

indicating whether a move is Player (+1) or Opponent (−1).
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Legal plays

A legal play is a path

∗ m1−→ x1
m2−→ x2

m3−→ · · ·xk−1
mk−→ xk

starting from the empty position ∗ of the transition space, and satisfying:

∀i ∈ [1, ..., k], λ(mi) = (−1)i.

So, a legal play is alternated and starts by an Opponent move.
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Strategies

A strategy is a set of legal plays of even length, such that:

— σ contains the empty play,

— σ is closed under even-length prefix

s ·m · n ∈ σ ⇒ s ∈ σ,

— σ is deterministic
s ·m · n1 ∈ σ and s ·m · n2 ∈ σ ⇒ n1 = n2.

A strategy plays according to the current play.
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Innocence: strategies with partial information

Full abstraction result [Martin Hyland, Luke Ong, Hanno Nickau, 1994]

Innocence characterizes the interactive behaviour of λ-terms.

An innocent strategy plays according to the current view.
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Where are the pointers in asynchronous games?

m · nWW · pVV · ntt · paa · nww · pgg · m · nWW · pww

Play = sequence of moves with pointers
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Event structure = generalized arena

E

L2

|||||||

R2

CCCCCCC

L1 R1

B

CCCCCCC

{{{{{{{

E

OO

R2
??�������� ∼
L2

__????????

R1
??�������� ∼

__????????

??�������� ∼
L1

__????????

L2

__????????

??�������� ∼

__???????? R2

??��������

L1

__???????? R1

??��������

B

OO

B · L1XX · L2ZZ
· R1

��

· R2
��

· E
��

XX
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Event structure = generalized arena

E

L2

|||||||

R2

CCCCCCC

L1 R1

B

CCCCCCC

{{{{{{{

E

OO

R2
??�������� ∼
L2

__????????

R1
??�������� ∼

__????????

??�������� ∼
L1

__????????

L2

__????????

??�������� ∼

__???????? R2

??��������

L1

__???????? R1

??��������

B

OO

B · L1XX · R1
		

· L2XX
· R2

��

· E
��

UU
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From this follows a reformulation of innocence...
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Backward innocence

σ 3

s2

OOOO

P
??����������

O
??���������� ∼

__??????????

P

__??????????

??���������� ∼

__??????????

O

__?????????? O

??����������

s1

OOOO

⇒

s2

OOOO

P
??���������� ∼

P
__??????????

O
??���������� ∼

__??????????

??���������� ∼
O

__??????????

P

__??????????

??���������� ∼

__?????????? P

??����������

O

__?????????? O

??����������

s1

OOOO

∈ σ
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Forward innocence

σ 3
O

??���������� ∼

__??????????

P

__??????????

??���������� ∼

__?????????? P

??����������

O

__?????????? O

??����������

s1

OOOO

∈ σ

⇒

σ 3

P
??���������� ∼

P
__??????????

O
??���������� ∼

__??????????

??���������� ∼
O

__??????????

P

__??????????

??���������� ∼

__?????????? P

??����������

O

__?????????? O

??����������

s1

OOOO

∈ σ
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Innocent strategies are positional

Definition. A strategy σ is positional when for every two plays s1 and s2
with same target x:

s1 ∈ σ and s2 ∈ σ and s1 · t ∈ σ ⇒ s2 · t ∈ σ

Theorem (by an easy diagrammatic proof)
Every innocent strategy σ is positional

More: An innocent strategy is characterized by the positions it reaches.
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An illustration: the strategy (true ⊗ false)

V ⊗ F

V ⊗ q

false2
99sssssssssssssss

∼ q ⊗ F

true1
eeKKKKKKKKKKKKKKK

V ⊗ ∗

q2
99tttttttttttttt

∼ q ⊗ q
true1KKKKKK

eeKKKKKK

false2ssssss

99ssssss

∼ ∗ ⊗ F

q1
eeJJJJJJJJJJJJJJ

q ⊗ ∗
true1

eeKKKKKKKKKKKKKK

q2ssssss

99ssssss

∼ ∗ ⊗ q
q1KKKKKK

eeKKKKKK

false2

99ssssssssssssss

∗ ⊗ ∗
q1

eeLLLLLLLLLLLLLLL q2

99sssssssssssssss

Strategies become
closure operators
on complete lattices
as in Abramsky-M.
concurrent games.
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From asynchronous games to coherence spaces

The diagram commutes

strategy

leaves

��

proof

99sssssssssssssssssssss

%%KKKKKKKKKKKKKKKKKKKKK

clique

for every proof of a multiplicative additive formula.
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Part II (b)

Multiplicatives in asynchronous games

The free dialogue category
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Dialogue categories

A symmetric monoidal category C equipped with a functor

¬ : C op −→ C

and a natural bijection

ϕA,B,C : C (A ⊗ B , ¬C) ∼= C (A , ¬ (B ⊗ C ) )

¬

CBA

⊗ ∼=

¬

CBA

⊗
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The free dialogue category

The objects of the category free-dialogue(C ) are families of dialogue
games
constructed by the grammar

A,B ::= X | A⊕B | A⊗B | ¬A | 1

where X is an object of the category C .

The morphisms are total and innocent strategies on dialogue games.

As we will see: proofs are 3-dimensional variants of knots...
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A theorem for free

There exists a functor

leaves : free-dialogue(C ) // Coh

which preserves the sum, the tensor, and transports the non-involutive
negation of the category G into the involutive negation of the category Coh.

This functor collapses the dynamic semantics into a static one
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Tensor logic

tensor logic = a logic of tensor and negation

= linear logic without A ∼= ¬¬A
= the very essence of polarization

Offers a synthesis of linear logic, games and continuations

Research program: recast every aspect of linear logic in this setting

44



Part III

Exponentials in orbital games

Uniformity formulated as interactive group invariance
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Exponentials

!A =
⊗
n∈N

A
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Justification vs. copy indexing

In the presence of repetition, the backtracking policy of arena games

m · nTT · pTT · n
ww · pZZ · n
yy · pdd · m · nTT · pvv

may be alternatively formulated by indexing threads

m · n

0

TT · p

0

TT · n
1

ww · p

0

ZZ · n

2

yy · p

1

dd · m · n

0

TT · p

1

vv
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Justification vs. copy indexing

The justified play with copy indexing

m · n

0

TT · p

0

TT · n
1

ww · p

0

ZZ · n

2

yy · p

1

dd · m · n

0

TT · p

1

vv

may be then seen as a play in an asynchronous game

(m,0) · (n,00) · (p,000) · (n,01) · (p,010) · · ·

· · · (n,02) · (p,001) · (m,1) · (n,10) · (p,011)
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An associativity problem

The following diagram does not commute

!A d //

d

��

!A⊗!A
d⊗!A // (!A⊗!A)⊗!A

α

��

!A⊗!A !A⊗d
// !A⊗ (!A⊗!A)

Hence, comultiplication is not associative.

49



Abramsky, Jagadeesan, Malacaria games (1994)

However, this diagram does commute... up to thread indexing !

!A d //

d

��

∼

!A⊗!A
d⊗!A // (!A⊗!A)⊗!A

α

��

!A⊗!A !A⊗d
// !A⊗ (!A⊗!A)

So, the game !A defines a pseudo-comonoid instead of a comonoid...
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A main difficulty

The dereliction strategies εi are equal up to reindexing

!((X ⊕ X) ( X) ( (X ⊕ X) ( X

∗
∗[i]

true[i]
true
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A non uniform taster

The strategy taster defined as

!((X ⊕ X) ( X)

∗[i]
true[i]

!((X ⊕ X) ( X)

∗[j]
false[j]

tastes the difference between εi and εj in the sense that

εi ◦ taster 6= εj ◦ taster.
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Orbital games

An asynchronous game equipped with

– two groups GA and HA,

– a left group action on moves GA ×MA −→MA

– a right group action on moves MA ×HA −→MA

preserving the asynchronous structure, and such that the left and right
actions commute:

∀m ∈MA, ∀g ∈ GA, ∀h ∈ HA, (g �m) � h = g � (m � h).
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Alternatively

An orbital game is an asynchronous game A equipped with

– a class GA of automorphisms of A closed under composition,

– a class HA of automorphisms of A closed under composition,

such that

A
g−→ A

h−→ A = A
h−→ A

g−→ A

The two definitions are essentially the same...
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An equivalence relation on plays

Two plays s and t are equal up to reindexing

s ≈ t

when there exists g ∈ GA and HA such that

t = g � s � h.
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A simulation preorder between strategies (AJM)

A strategy σ is simulated by a strategy τ when for every pair of plays

s ≈ s′

and for all moves m,n,m′ such that

s ·m · n ∈ σ and s′ ∈ τ and s ·m ≈A s′ ·m′

there exists a move n′ such that

s ·m · n ≈A s′ ·m′ · n′ and s′ ·m′ · n′ ∈ τ.

σ wsim τ
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Interactive invariance

A strategy σ is covered by a strategy τ when

∀s ∈ σ, ∀h ∈ HT , ∃g ∈ GT , g � s � h ∈ τ.

σ w inv τ
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Proposition

Suppose that σ and τ are strategies of an orbital game. Then,

σ wsim τ ⇐⇒ σ w inv τ

This leads to a 2-category of orbital games and uniform strategies, where
!A is a pseudo-comonoid.
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Projection to coherence spaces

The functor

Orbital −→ Rel

projects a position to its orbit in the orbital game.

In particular, an indexed family of positions in the game

!A =
⊗
n∈N

A

is transported to a multiset of positions.

The locative information is lost on the way...
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Interactive invariance on the syntax

Exponential boxes are replaced by «mille-feuilles» whose uniformity is cap-
tured by interactive reindexing.

(λx.x(i))~P 7→ Pi

Innocence precedes uniformity...
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A link to complexity

Construct the free dialogue category with pseudo-comonoids.
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Part IV

A bialgebraic definition of traces

Towards a 2-dimensional approach to the Geometry of Interaction
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Traced monoidal categories

A trace in a balanced category C is an operator

A⊗ U −→ B ⊗ U
TrUA,B

A −→ B

depicted as feedback in string diagrams:
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Trace operator

( ) ff =

AA

U

B BU

U

TrU
A,B
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Sliding (naturality in U )

u

u

ff =

AA

B B

V

U

U

V
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Tightening (naturality in A,B)

a

b

a

b

f f=
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Vanishing (monoidality in U )

f f=

U ⊗ V

V

U

f f=

I
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Superposing

gff gf g ==
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Yanking

UUU

= =
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Trace

C

C

C

C

trace
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