Initial Algebra Semantics for Cyclic Sharing Structures

1

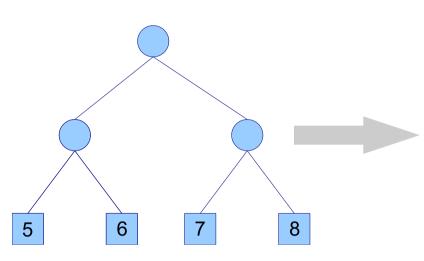
Makoto Hamana

Department of Computer Science, Gunma University, Japan

August 2009, GoI Workshop, Kyoto http://www.cs.gunma-u.ac.jp/~hamana/ ▷ How to inductively capture cylces and sharing

Intended to apply it to functional programming

▷ Terms are a representation of tree structures

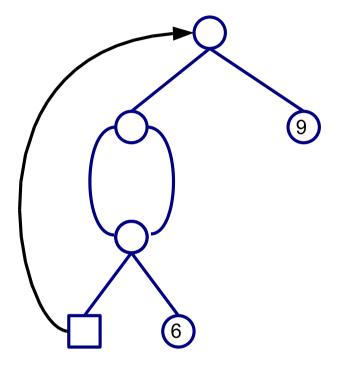


bin(bin(5,6),bin(7,8))

- (i) Reasoning: structural induction
- (ii) Functional programming:pattern matching, structural recursion
- (iii) Type: inductive type
- (iv) Initial algebra property

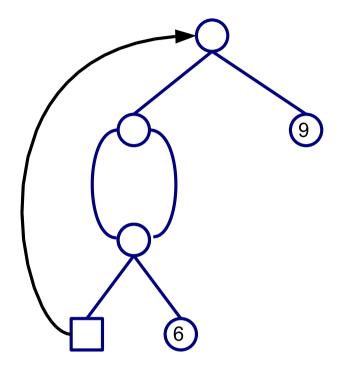
Introduction

▷ What about tree-like structures?



- ▷ How can we represent this data in functional programming?
- ▷ Maybe: vertices and edges set, adjacency lists, etc.
- ▷ Give up to use pattern matching, structural induction
- ▷ Not inductive

Introduction



Are really no inductive structures in tree-like structures?

Gives an initial algebra characterisation of cyclic sharing structures

Aim

- \triangleright To derive the following from \uparrow :
- [I] A simple term syntax that admits structural induction / recursion
- [II] To give an inductive type that represents cyclic sharing structures uniquely in functional languages and proof assistants

Variations of Initial Algebra Semantics

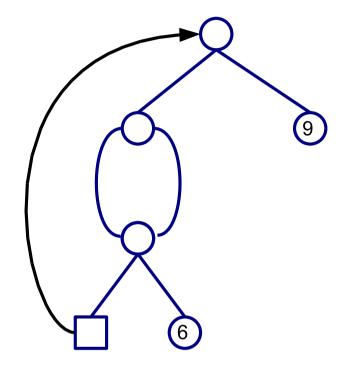
 Various computational structures are formulated as initial algebras by varying the base category

Abstract syntax	Set	ADJ	1975
$oldsymbol{S}$ -sorted abstract syntax	\mathbf{Set}^S	Robinson	1994
Abstract syntax with binding	$\mathbf{Set}^{\mathbb{F}}$	Fiore,Plotkin,Turi	1999
Recursive path ordring	LO	R. Hasegawa	2002
$m{S}$ -sorted 2nd-order abs. syn.	$(Set^{\mathbb{F} \downarrow S})^S$	Fiore	2003
2nd-order rewriting systems	$\mathbf{Pre}^{\mathbb{F}}$	Hamana	2005
Explicit substitutions	$[Set,Set]_f$	Ghani,Uustalu,Hamana	2006

Cyclic sharing structures

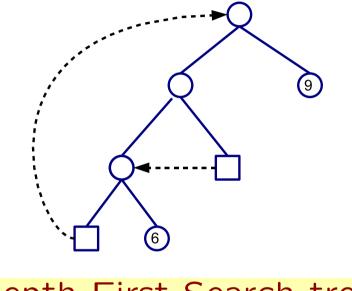
 $(\mathbf{Set}^{\mathbb{T}^*})^{\mathbb{T}}$ Hamana 2009

Basic Idea



Basic Idea: Graph Algorithmic View

▷ Traverse a graph in a depth-first search manner:



Depth-First Search tree

- \triangleright DFS tree consists of 3 kinds of edges:
 - (i) Tree edge (ii) Back edge
 - (iii) Right-to-left cross edge

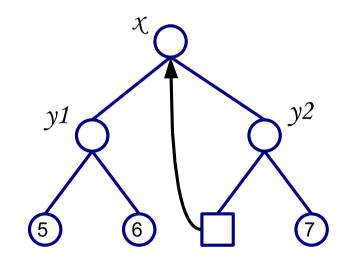
▷ Characterise pointers for back and cross edges

Formulation: Cycles by μ -terms

Idea

- ▷ Binders as pointers
- \triangleright Back edges = bound variables

Cycles

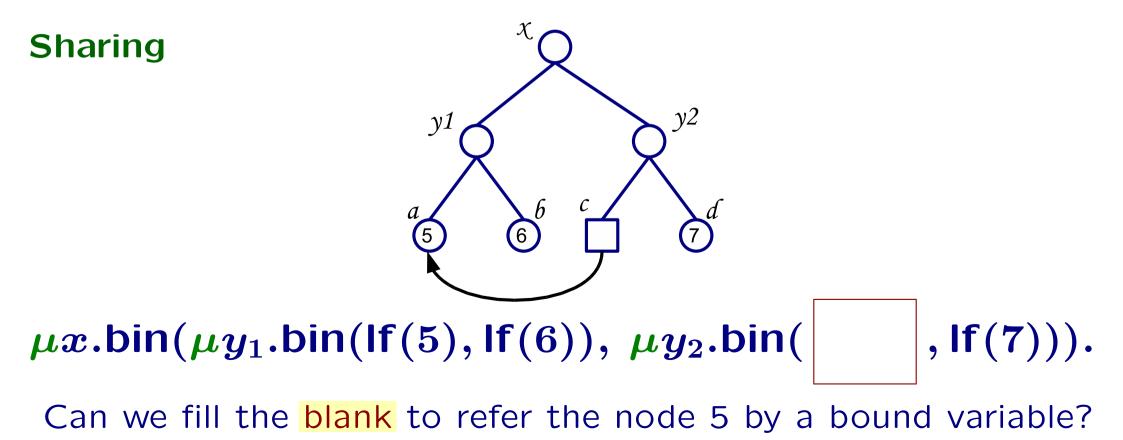


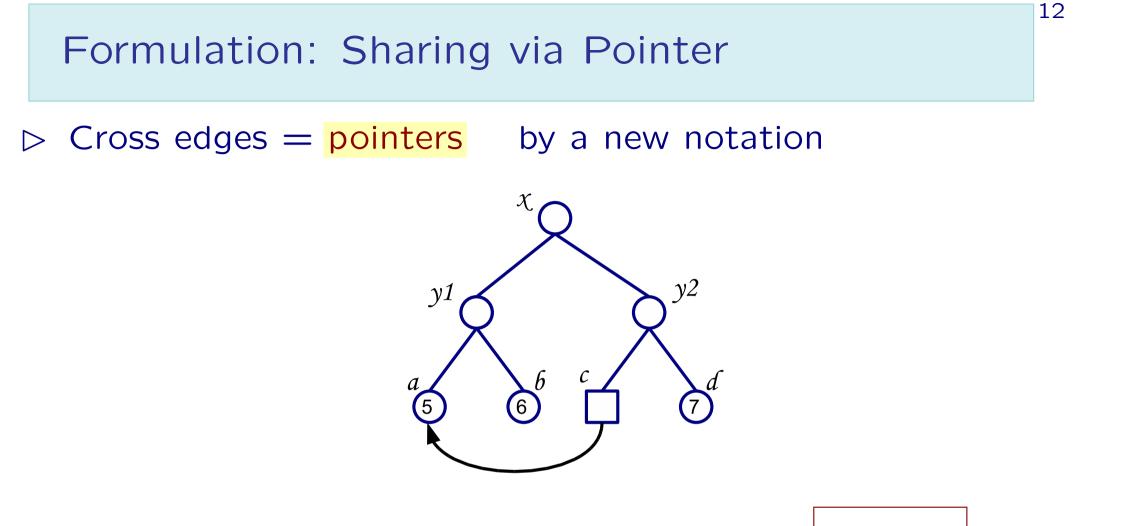
 $\mu x.bin(\mu y_1.bin(If(5), If(6)), \ \mu y_2.bin(x, If(7)))$

Formulation: Sharing via ?

Idea

- ▷ Binders as pointers
- \triangleright Back edges = bound variables
- Right-to-left Cross edges = ?

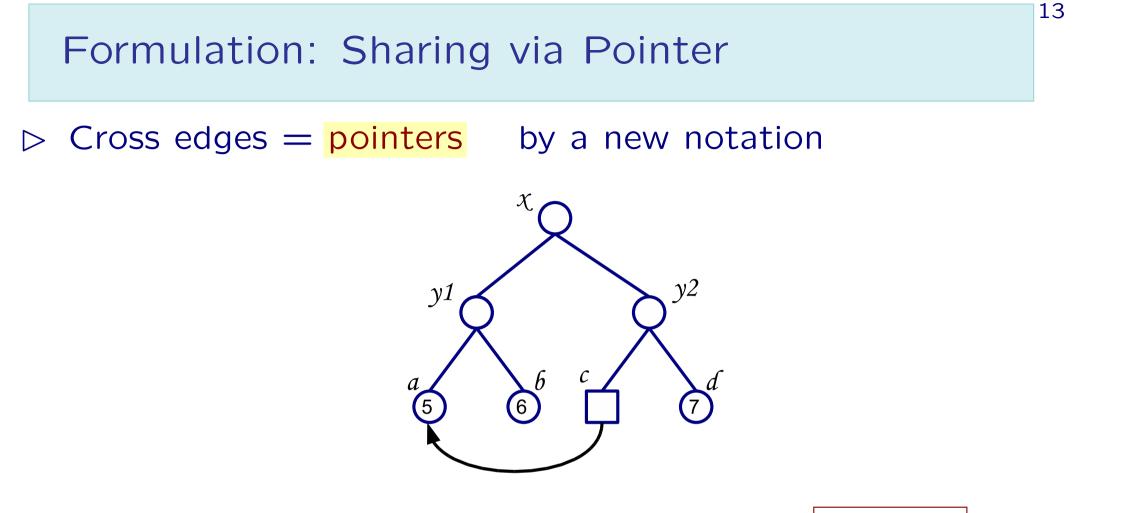




 $\mu x.\mathsf{bin}(\mu y_1.\mathsf{bin}(\mathsf{lf}(5),\mathsf{lf}(6)),\ \mu y_2.\mathsf{bin}(| \swarrow 11 \uparrow x |,\mathsf{lf}(7)))$

Pointer $\swarrow 11 \uparrow x$ means

- \triangleright going back to the node x, then
- \triangleright going down through the left child twice (by position 11)



 $\mu x.\mathsf{bin}(\mu y_1.\mathsf{bin}(\mathsf{lf}(5),\mathsf{lf}(6)),\ \mu y_2.\mathsf{bin}(| \swarrow 11 \uparrow x |,\mathsf{lf}(7)))$

Pointer $\swarrow 11 \uparrow x$ means Need to ensure a correct pointer only!!

- \triangleright going back to the node x, then
- \triangleright going down through the left child twice (by position 11)

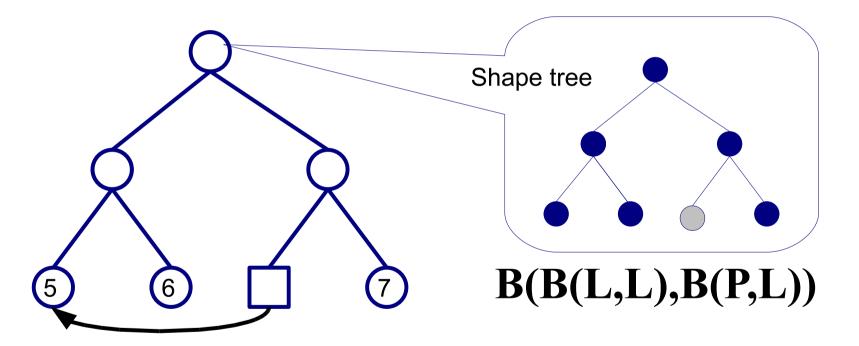
Typed Abstract Syntax for

Cyclic Sharing Structures

Shape Trees

▷ Skeltons of cyclic sharing trees

Shape trees $\boldsymbol{\tau} ::= \mathbf{E} \mid \mathbf{P} \mid \mathbf{L} \mid \mathbf{B}(\boldsymbol{\tau}_1, \boldsymbol{\tau}_2)$



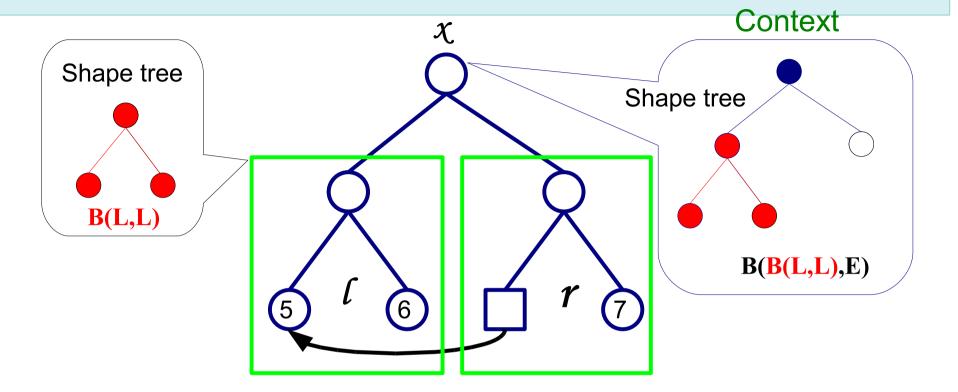
▷ Used as types

▷ Blue nodes represent possible positions for sharing pointers.

Typing rules

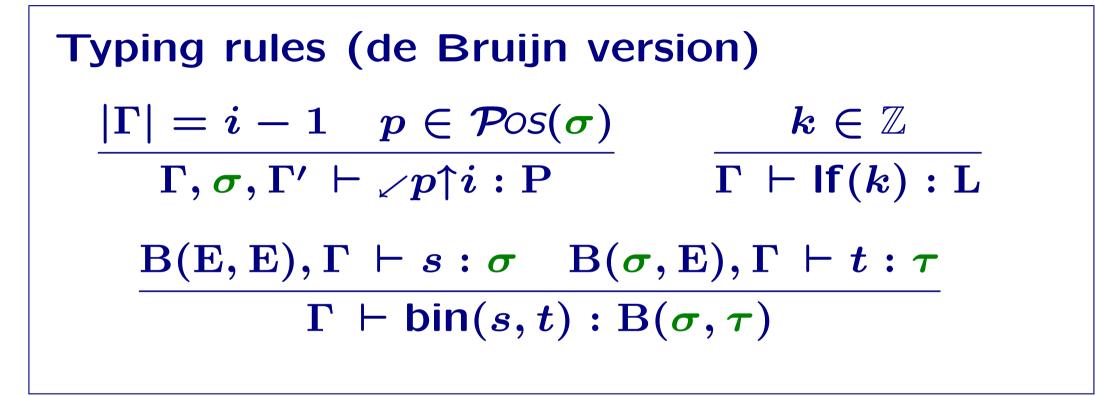
- ▷ A type declaration $x : \sigma$ means: " σ is the shape of a subtree headed by μx ".
- \triangleright Taking a position $p \in \mathcal{P}os(\sigma)$ safely refers to a position in the subtree.

Example: making bin-node



 $\begin{array}{ll} x:\mathrm{B}(\mathrm{E},\mathrm{E}) \vdash & x:\mathrm{B}(\mathrm{B}(\mathrm{L},\mathrm{L}),\mathrm{E}) \vdash \\ \mu y_1.\mathrm{bin}(5,6):\mathrm{B}(\mathrm{L},\mathrm{L}) & \mu y_2.\mathrm{bin}(\swarrow 11^{\uparrow}x,7):\mathrm{B}(\mathrm{P},\mathrm{L}) \\ & \vdash \mu x.\mathrm{bin}(\mu y_1.\mathrm{bin}(5,6),\mu y_2.\mathrm{bin}(\swarrow 11^{\uparrow}x,7)) \end{array}$

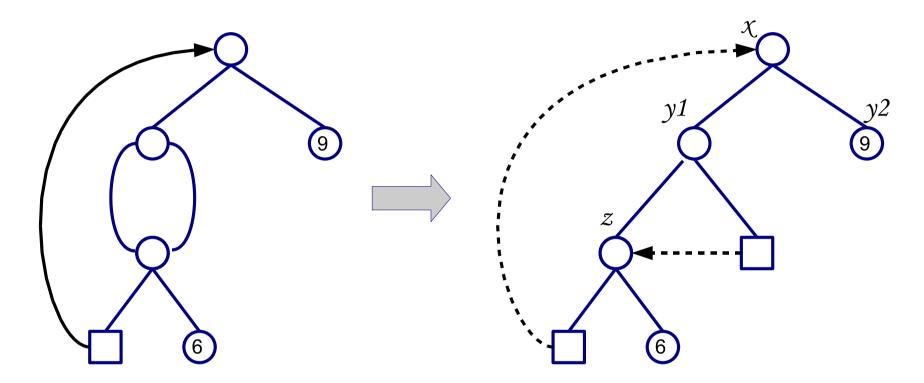
: B(B(L,L),B(P,L))



Thm.

Given rooted, connected and edge-ordered graph, the term representation in de Bruijn is unique.

▷ Sharing via cross edge



⊳ Term

 $bin(bin(\uparrow 3, lf(6)), \swarrow 1\uparrow 1), lf(9))$

▷ Cyclic sharing trees are all well-typed terms:

$$T_{ au}(\Gamma) = \{t \hspace{0.1 in}| \hspace{0.1 in} \Gamma \hspace{0.1 in}dash t: au\}$$

Need: sets indexed by contexts T* and shape trees T

Consider algebras in $(Set^{T^*})^T$

- $\triangleright \text{ Algebra of an endofunctor } \Sigma:$ $\Sigma\text{-algebra } (A, \alpha: \Sigma A \to A)$
- ▷ Functor $\Sigma : (\mathbf{Set}^{\mathbb{T}^*})^{\mathbb{T}} \longrightarrow (\mathbf{Set}^{\mathbb{T}^*})^{\mathbb{T}}$ for cyclic sharing trees is defined by

$$egin{aligned} & (\Sigma A)_{ ext{P}} = 0 & (\Sigma A)_{ ext{P}} = ext{PO} & (\Sigma A)_{ ext{L}} = K_{\mathbb{Z}} \ & (\Sigma A)_{ ext{B}(\sigma, au)} = \delta_{ ext{B}(ext{E}, ext{E})} A_{\sigma} imes \delta_{ ext{B}(\sigma, ext{E})} A_{ au} \end{aligned}$$

- \triangleright **\Sigma**-algebra $(A, \alpha : \Sigma A \rightarrow A)$
- ▷ Functor $\Sigma : (\mathbf{Set}^{\mathbb{T}^*})^{\mathbb{T}} \longrightarrow (\mathbf{Set}^{\mathbb{T}^*})^{\mathbb{T}}$ for cyclic sharing trees is given by

$$\operatorname{\mathsf{ptr}}^A:\operatorname{PO} o A_{\operatorname{P}} \quad \operatorname{lf}^A:K_{\mathbb{Z}} o A_{\operatorname{L}}$$
 $\operatorname{\mathsf{bin}}^{\sigma, au\,A}:\delta_{\operatorname{B}(\operatorname{E},\operatorname{E})}A_{\sigma} imes\delta_{\operatorname{B}(\sigma,\operatorname{E})}A_{ au} o A_{\operatorname{B}(\sigma, au)}$

Typing rules (de Bruijn version)

$$\begin{array}{ll} |\Gamma| = i - 1 & p \in \mathcal{P} OS(\sigma) \\ \overline{\Gamma, \sigma, \Gamma' \vdash \swarrow p \uparrow i : P} & \frac{k \in \mathbb{Z}}{\Gamma \vdash \mathsf{lf}(k) : L} \\ \\ \frac{\mathrm{B}(\mathrm{E}, \mathrm{E}), \Gamma \vdash s : \sigma & \mathrm{B}(\sigma, \mathrm{E}), \Gamma \vdash t : \tau}{\Gamma \vdash \mathsf{bin}(s, t) : \mathrm{B}(\sigma, \tau)} \end{array}$$

Initial Algebra

▷ All cyclic sharing trees

$$T_{ au}(\Gamma) = \{t \hspace{0.1 in}| \hspace{0.1 in} \Gamma \hspace{0.1 in}dash t: au\}$$

Thm. T forms an initial Σ -algebra.

[Proof]

▷ Smith-Plotkin construction of an initial algebra

- The initial algebra characterisation derives
- (i) Structural recursion by the unique homomorphism
- (ii) Structural induction by [Hermida, Jacobs I&C'98]
- iii) Inductive type (in Haskell)

Structural Recursion Principle

Thm. The unique homomorphism $\phi: T \longrightarrow A$ is:

$$\begin{split} \phi_{\mathrm{P}}(\Gamma)(\swarrow p\uparrow i) &= \mathsf{ptr}^{A}(\Gamma)(\swarrow p\uparrow i) \\ \phi_{\mathrm{L}}(\Gamma)(\mathsf{lf}(k)) &= \mathsf{lf}^{A}(\Gamma)(k) \\ \phi_{\mathrm{B}(\sigma,\tau)}(\Gamma)(\mathsf{bin}(s,t)) \\ &= \mathsf{bin}^{A}(\Gamma)(\phi_{\sigma}(\mathrm{B}(\mathrm{E},\mathrm{E}),\Gamma)(s), \ \phi_{\tau}(\mathrm{B}(\sigma,\mathrm{E}),\Gamma)(t)) \end{split}$$

▷ "fold" in Haskell

- Thm. Let P be a predicate on T. To prove that $P_{\tau}^{\Gamma}(t)$ holds for all $t \in T_{\tau}(\Gamma)$, it suffices to show
- (i) $P_{\mathrm{P}}^{\Gamma}(\swarrow p \uparrow i)$ holds for all $\swarrow p \uparrow i \in \mathrm{PO}(\Gamma)$,
- (ii) $P_{\mathrm{L}}^{\Gamma}(\mathsf{lf}(k))$ holds for all $k\in\mathbb{Z}$,
- iii) If $P^{\mathrm{B}(\mathrm{E},\mathrm{E}),\Gamma}_{\sigma}(s)$ & $P^{\mathrm{B}(\sigma,\mathrm{E}),\Gamma}_{\tau}(t)$ holds, then $P^{\Gamma}_{\mathrm{B}(\sigma, au)}(\mathsf{bin}(s,t))$ holds.

Inductive Type for Cyclic Sharing Structures

Constructors of the initial algebra
$$T \in (\mathsf{Set}^{\mathbb{T}^*})^{\mathbb{T}}$$

 $\mathsf{ptr}^T(\Gamma) : \mathsf{PO}(\Gamma) \to T_{\mathsf{P}}(\Gamma); \quad \swarrow p \uparrow i \mapsto \swarrow p \uparrow i.$
 $\mathsf{lf}^T(\Gamma) : \mathbb{Z} \to T_{\mathsf{L}}(\Gamma); \qquad k \mapsto \mathsf{lf}(k).$
 $\mathsf{bin}^{\sigma,\tau T}(\Gamma) : T_{\sigma}(\mathsf{B}(\mathsf{E},\mathsf{E}),\Gamma) \times T_{\tau}(\mathsf{B}(\sigma,\mathsf{E}),\Gamma) \to T_{\mathsf{B}(\sigma,\tau)}(\Gamma)$

▷ Dependent type def. in Agda is more straightforward

▷ An initial algebra characterisation

Goals

- \triangleright To derive the following from \uparrow :
- [I] A simple term syntax
- [II] An inductive type
 - for cyclic sharing structures
 - **Reference** M. Hamana. Initial Algebra Semantics for Cyclic Sharing Structures, TLCA'09.

There are interpretations:

 $T \xrightarrow{!}$ Equational Term Graphs $\longrightarrow S$

- where ${m {\cal S}}$ is any of
- (i) Coalgebraic
- (ii) Domain-theoretic
- (iii) Categorical semantics: Traced sym. monoidal categories [Hasegawa'97]

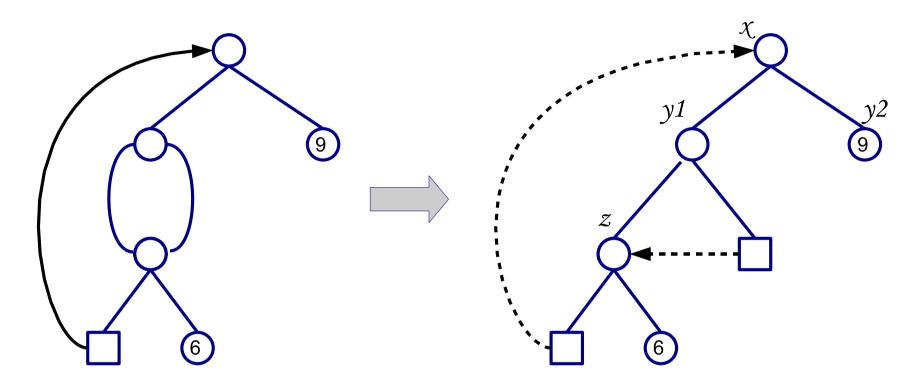
(Equational) term graphs [Barendregt et al.'87][Ariola,Klop'96]

▷ Interpretations

 $T \xrightarrow{!}$ Equational Term Graphs \cong letrec-Exprs $\longrightarrow (\mathcal{F} : \mathcal{C} \to \mathcal{M})$

- ▷ Cartesian-center symmetric traced monoidal category
 - = identity-on-object functor $\mathcal{F}:\mathcal{C}\to\mathcal{M}$
 - Cartesian $\boldsymbol{\mathcal{C}}$
 - Symmetric traced monoidal $\boldsymbol{\mathcal{M}}$

▷ Sharing via cross edge



⊳ Term

 $\mu x.\mathsf{bin}(\mu y_1.\mathsf{bin}(\mu z.\mathsf{bin}(\uparrow x,\mathsf{lf}(6)),\swarrow 1\uparrow y_1),\mathsf{lf}(9))$

 $\mu x.\mathsf{bin}(\mu y_1.\mathsf{bin}(\mu z.\mathsf{bin}(\uparrow x,\mathsf{lf}(6)),\swarrow 1\uparrow y_1),\mathsf{lf}(9))$

- $\stackrel{\text{de Br.}}{=} \quad bin(bin(\uparrow 3, lf(6)), \swarrow 1\uparrow 1), lf(9))$
- $\mapsto \qquad \mathsf{bin}_{\epsilon}(\mathsf{bin}_{11}(\mathsf{fin}_{11}(\mathsf$

$$\{ \epsilon \mid \epsilon = bin(1, 2) \\ 1 = bin(11, 12) \\ 11 = bin(111, 112) \\ 12 = 11 \\ 111 = \epsilon \\ 112 = lf(6) \\ 2 = lf(9) \}$$

letrec $(\epsilon, 1, 11, 12, 111, 112, 2)$

 \mapsto

 \mapsto

Hasegawa

= $(bin(1, 2), bin(1, 12), bin(111, 112), 11, \epsilon, lf(6), lf(9))$ in ϵ

 $\mathcal{F}(\Delta); (\mathrm{id} \otimes Tr(\mathcal{F}\Delta_7; (\llbracket \epsilon, 1, \ldots \vdash \mathrm{bin}(1, 2) \rrbracket \otimes \llbracket \epsilon, 1, \ldots \vdash \mathrm{bin}(11, 12) \rrbracket \otimes \ldots); \mathcal{F}\Delta)); \mathcal{F}\pi_1$

Connection to Traced Categorical Semantics

- ▷ How useful?
- ▷ Application: Haskell's "arrows" [Hughes'00][Paterson'01]
 - Arrow-type in Haskell (or, Freyd category) is a cartesian-center premonoidal category [Heunen, Jacobs, Hasuo'06]
 - Arrow with loop

is a cartesian-center traced premonoidal category [Benton, Hyland'03]

- Cyclic sharing theory is interpreted
 in a cartesian-center traced monoidal category
 [Hasegawa'97]
- ▷ What impact for functional programing?