On Categorical Models of Gol Lecture 3

Esfandiar Haghverdi

School of Informatics and Computing Indiana University Bloomington USA

August 26, 2009

In this lecture

- We shall discuss generalizations of Gol interpretation to multi-object setting.
- I shall follow the papers: Haghverdi \& Scott (CSL 2005), Haghverdi (ICALP 2006).

Recall: Gol, main idea

Example:

$$
\frac{A \vdash A \quad A \vdash A}{A \vdash A} \quad \succ \quad A \vdash A
$$

$$
i d_{A} \circ i d_{A} \quad=i d_{A}(\text { Static! })
$$

More generally:
$\Pi \succ \Pi^{\prime}$, then $\llbracket \Pi \rrbracket=\llbracket \Pi^{\prime} \rrbracket($ Static! $)$
$\Pi \succ \Pi^{\prime}$, then $\theta(\Pi) \neq \theta\left(\Pi^{\prime}\right)$, yet
$E X(\theta(\Pi), \sigma)=E X\left(\theta\left(\Pi^{\prime}\right), \tau\right)$ (Dynamic!)

Gol categorically

- (\mathbb{C}, U, T) where
- \mathbb{C} a traced UDC,
- U a reflexive object $(U \otimes U \triangleleft U, \ldots)$
- T a traced endofunctor $(T \otimes T \triangleleft T, \ldots)$
- Gol for MELL à la Girard is completely captured, including C^{*}-algebraic implementation.
- Dictionary:

execution formula	trace
orthogonality	nilpotency
datum	special morphisms
algorithm	special morphisms

It all happened ...

- Do Gol in the category ($\mathrm{FDVec}_{\mathrm{k}}, \oplus$).

It all happened ...

- Do Gol in the category ($\mathrm{FDVec}_{\mathbf{k}}, \oplus$).
- First Problem: There are no non-trivial reflexive objects.

It all happened ...

- Do Gol in the category ($\mathrm{FDVec}_{\mathbf{k}}, \oplus$).
- First Problem: There are no non-trivial reflexive objects.
- Second Problem: It is not traced!

It all happened ...

- Do Gol in the category ($\mathrm{FDVec}_{\mathbf{k}}, \oplus$).
- First Problem: There are no non-trivial reflexive objects.
- Second Problem: It is not traced!
- Hmm ...

It all happened ...

- Do Gol in the category ($\mathrm{FDVec}_{\mathbf{k}}, \oplus$).
- First Problem: There are no non-trivial reflexive objects.
- Second Problem: It is not traced!
- Hmm ...
- Work in a typed setting, no need for reflexive objects.

It all happened ...

- Do Gol in the category ($\mathrm{FDVec}_{\mathbf{k}}, \oplus$).
- First Problem: There are no non-trivial reflexive objects.
- Second Problem: It is not traced!
- Hmm ...
- Work in a typed setting, no need for reflexive objects.

Allow for partial trace.

$$
\operatorname{Tr}\left(\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\right)=A+B(I-D)^{-1} C .
$$

What is new?

Old	New
single reflexive object	multiple objects
UDC, "sum like" monoidal product	arbitrary monoidal product
traced category	partially traced category
nilpotency	abstract orthogonality
Gol for MLL	MGol for MLL

Partial trace (Trace Class)

(Cf. Abramsky, Blute, Panangaden 1999, Jeffrey 1998, Blute, Cockett, Seely 1999, Plotkin MFPS 2003.)
A Trace Class in SMC \mathbb{C} :

$$
\begin{aligned}
& \mathbb{T}_{X, Y}^{U} \subseteq \mathbb{C}(X \otimes U, Y \otimes U) \\
& \operatorname{Tr}_{X, Y}^{U}: \mathbb{T}_{X, Y}^{U} \longrightarrow \mathbb{C}(X, Y)
\end{aligned}
$$

subject to

- Naturality in X and Y : For any $f \in \mathbb{T}_{X, Y}^{U}$ and $g: X^{\prime} \longrightarrow X$ and $h: Y \longrightarrow Y^{\prime}$,

$$
\begin{gathered}
\left(h \otimes 1_{U}\right) f\left(g \otimes 1_{U}\right) \in \mathbb{T}_{X^{\prime}, Y^{\prime}}^{U} \text {, and } \\
\operatorname{Tr}_{X^{\prime}, Y^{\prime}}^{U}\left(\left(h \otimes 1_{U}\right) f\left(g \otimes 1_{U}\right)\right)=h \operatorname{Tr}_{X, Y}^{U}(f) g
\end{gathered}
$$

- Dinaturality in U :

For any $f: X \otimes U \longrightarrow Y \otimes U^{\prime}, g: U^{\prime} \longrightarrow U$,
$\left(1_{Y} \otimes g\right) f \in \mathbb{T}_{X, Y}^{U}$ iff $f\left(1_{X} \otimes g\right) \in \mathbb{T}_{X, Y}^{U^{\prime}}$, and $\operatorname{Tr}_{X, Y}^{U}\left(\left(1_{Y} \otimes g\right) f\right)=\operatorname{Tr}_{X, Y} U^{\prime}\left(f\left(1_{X} \otimes g\right)\right)$.

- Dinaturality in U :

For any $f: X \otimes U \longrightarrow Y \otimes U^{\prime}, g: U^{\prime} \longrightarrow U$,

$$
\begin{gathered}
\left(1_{Y} \otimes g\right) f \in \mathbb{T}_{X, Y}^{U} \text { iff } f\left(1_{X} \otimes g\right) \in \mathbb{T}_{X, Y}^{U^{\prime}}, \text { and } \\
\operatorname{Tr}_{X, Y}^{U}\left(\left(1_{Y} \otimes g\right) f\right)=\operatorname{Tr}_{X, Y}^{U^{\prime}}\left(f\left(1_{X} \otimes g\right)\right)
\end{gathered}
$$

- Vanishing I: $\mathbb{T}_{X, Y}^{\prime}=\mathbb{C}(X \otimes I, Y \otimes I)$ and for $f \in \mathbb{T}_{X, Y}^{\prime}$

$$
\operatorname{Tr}_{X, Y}^{\prime}(f)=\rho_{Y} f \rho_{X}^{-1}
$$

- Dinaturality in U :

For any $f: X \otimes U \longrightarrow Y \otimes U^{\prime}, g: U^{\prime} \longrightarrow U$,

$$
\begin{gathered}
\left(1_{Y} \otimes g\right) f \in \mathbb{T}_{X, Y}^{U} \text { iff } f\left(1_{X} \otimes g\right) \in \mathbb{T}_{X, Y}^{U^{\prime}}, \text { and } \\
\operatorname{Tr}_{X, Y}^{U}\left(\left(1_{Y} \otimes g\right) f\right)=\operatorname{Tr}_{X, Y}^{U^{\prime}}\left(f\left(1_{X} \otimes g\right)\right)
\end{gathered}
$$

- Vanishing I: $\mathbb{T}_{X, Y}^{\prime}=\mathbb{C}(X \otimes I, Y \otimes I)$ and for $f \in \mathbb{T}_{X, Y}^{\prime}$

$$
\operatorname{Tr}_{X, Y}^{\prime}(f)=\rho_{Y} f \rho_{X}^{-1}
$$

- Vanishing II: For any $g: X \otimes U \otimes V \longrightarrow Y \otimes U \otimes V$, if $g \in \mathbb{T}_{X \otimes U, Y \otimes U}^{V}$, then

$$
\begin{gathered}
g \in \mathbb{T}_{X, Y}^{U \otimes V} \text { iff } \operatorname{Tr}_{X \otimes U, Y \otimes U}^{V}(g) \in \mathbb{T}_{X, Y}^{U}, \text { and } \\
\operatorname{Tr}_{X, Y}^{U \otimes V}(g)=\operatorname{Tr}_{X, Y}^{U}\left(\operatorname{Tr}_{X \otimes U, Y \otimes U}^{V}(g)\right) .
\end{gathered}
$$

- Superposing: For any $f \in \mathbb{T}_{X, Y}^{U}$ and $g: W \longrightarrow Z$,

$$
\begin{gathered}
g \otimes f \in \mathbb{T}_{W \otimes X, Z \otimes Y}^{U}, \text { and } \\
\operatorname{Tr}_{W \otimes X, Z \otimes Y}^{U}(g \otimes f)=g \otimes \operatorname{Tr}_{X, Y}^{U}(f) .
\end{gathered}
$$

- Superposing: For any $f \in \mathbb{T}_{X, Y}^{U}$ and $g: W \longrightarrow Z$,

$$
\begin{gathered}
g \otimes f \in \mathbb{T}_{W \otimes X, Z \otimes Y}^{U}, \text { and } \\
\operatorname{Tr}_{W \otimes X, Z \otimes Y}^{U}(g \otimes f)=g \otimes \operatorname{Tr}_{X, Y}^{U}(f) .
\end{gathered}
$$

- Yanking: $\quad s_{U U} \in \mathbb{T}_{U, U}^{U}$, and

$$
\operatorname{Tr}_{U, U}^{U}\left(s_{U, U}\right)=1_{U} .
$$

Examples of trace classes

- ($\mathbf{F D V e c}_{\mathbf{k}}, \oplus, \mathbf{0}$): symmetric monoidal, additive $f: \oplus_{I} X_{i} \longrightarrow \oplus_{J} Y_{j}, f=\left[f_{i j}\right]$, where $f_{i j}: X_{j} \longrightarrow Y_{i}$. $f: X \oplus U \longrightarrow Y \oplus U$ is trace class iff $\left(I-f_{22}\right)$ is invertible

$$
\operatorname{Tr}_{X, Y}^{U}(f)=f_{11}+f_{12}\left(I-f_{22}\right)^{-1} f_{21} .
$$

* Uses linear algebra facts for block matrices (Schur's complement, etc.)

Examples of trace classes

- ($\mathbf{F D V e c}_{\mathbf{k}}, \oplus, \mathbf{0}$): symmetric monoidal, additive $f: \oplus_{I} X_{i} \longrightarrow \oplus_{J} Y_{j}, f=\left[f_{i j}\right]$, where $f_{i j}: X_{j} \longrightarrow Y_{i}$. $f: X \oplus U \longrightarrow Y \oplus U$ is trace class iff $\left(I-f_{22}\right)$ is invertible

$$
\operatorname{Tr}_{X, Y}^{U}(f)=f_{11}+f_{12}\left(I-f_{22}\right)^{-1} f_{21} .
$$

* Uses linear algebra facts for block matrices (Schur's complement, etc.)
- (FDHilb $_{\mathrm{k}}, \oplus$): finite dimensional Hilbert spaces and bounded linear maps.
$M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$
$A(m \times m), B(m \times n), C(n \times m), D(n \times n)$.
If D is invertible,
then M is invertible iff $A-B D^{-1} C$ (the Schur Complement of D) is invertible.
$A(m \times n)$ and $B(n \times m)$
($\left.I_{m}-A B\right)$ is invertible iff $\left(I_{n}-B A\right)$ is invertible.
Moreover $\left(I_{m}-A B\right)^{-1} A=A\left(I_{n}-B A\right)^{-1}$.

Another example

- (CMet, $\times,\{*\}$)
complete metric spaces and non-expansive maps.

Another example

- (CMet, $\times,\{*\}$)
complete metric spaces and non-expansive maps.
- $f:\left(M, d_{M}\right) \longrightarrow\left(N, d_{N}\right)$ non-expansive iff $d_{N}(f(x), f(y)) \leq d_{M}(x, y)$, for all $x, y \in M$.

Another example

- (CMet, $\times,\{*\}$)
complete metric spaces and non-expansive maps.
- $f:\left(M, d_{M}\right) \longrightarrow\left(N, d_{N}\right)$ non-expansive iff $d_{N}(f(x), f(y)) \leq d_{M}(x, y)$, for all $x, y \in M$.
- product: $\left(M \times N, d_{M \times N}\right)$, max metric:
$d_{M \times N}\left((m, n),\left(m^{\prime}, n^{\prime}\right)\right)=\max \left\{d_{M}\left(m, m^{\prime}\right), d_{N}\left(n, n^{\prime}\right)\right\}$.

Another example

- (CMet, $\times,\{*\}$)
complete metric spaces and non-expansive maps.
- $f:\left(M, d_{M}\right) \longrightarrow\left(N, d_{N}\right)$ non-expansive iff $d_{N}(f(x), f(y)) \leq d_{M}(x, y)$, for all $x, y \in M$.
- product: $\left(M \times N, d_{M \times N}\right)$, max metric:
$d_{M \times N}\left((m, n),\left(m^{\prime}, n^{\prime}\right)\right)=\max \left\{d_{M}\left(m, m^{\prime}\right), d_{N}\left(n, n^{\prime}\right)\right\}$.
- $f: X \times U \longrightarrow Y \times U$ is trace class iff

$$
\forall x \in X . \exists!u \cdot \exists y . f(x, u)=(y, u)
$$

That is, the induced map : $U \longrightarrow U$ has a unique fixed point. and

Another example

- (CMet, $\times,\{*\}$)
complete metric spaces and non-expansive maps.
- $f:\left(M, d_{M}\right) \longrightarrow\left(N, d_{N}\right)$ non-expansive iff $d_{N}(f(x), f(y)) \leq d_{M}(x, y)$, for all $x, y \in M$.
- product: $\left(M \times N, d_{M \times N}\right)$, max metric:
$d_{M \times N}\left((m, n),\left(m^{\prime}, n^{\prime}\right)\right)=\max \left\{d_{M}\left(m, m^{\prime}\right), d_{N}\left(n, n^{\prime}\right)\right\}$.
- $f: X \times U \longrightarrow Y \times U$ is trace class iff

$$
\forall x \in X . \exists!u \cdot \exists y . f(x, u)=(y, u)
$$

That is, the induced map : $U \longrightarrow U$ has a unique fixed point. and

- $\operatorname{Tr}_{X, Y}^{U}(f)(x)=y$.
$-A, B$ sets, $f: A \longrightarrow B$ and $g: B \longrightarrow A$. Then,
$-A, B$ sets, $f: A \longrightarrow B$ and $g: B \longrightarrow A$. Then,
- $g f$ has a unique fixed point if and only if $f g$ does.
$-A, B$ sets, $f: A \longrightarrow B$ and $g: B \longrightarrow A$. Then,
- $g f$ has a unique fixed point if and only if $f g$ does.
- $a \in A$ be the unique fixed point of $g f: A \longrightarrow A$ and $b \in B$ be the unique fixed point of $f g: B \longrightarrow B$.
$-A, B$ sets, $f: A \longrightarrow B$ and $g: B \longrightarrow A$. Then,
- $g f$ has a unique fixed point if and only if $f g$ does.
- $a \in A$ be the unique fixed point of $g f: A \longrightarrow A$ and $b \in B$ be the unique fixed point of $f g: B \longrightarrow B$.
- Then $f(a)=b$ and $g(b)=a$.
(Sets, \times): sets and mappings.

Nonexample: $($ Rel,$\times)$, sets and relations.

Orthogonality

(Cf. Hyland and Schalk 2003)

Definition

Let \mathbb{C} be a traced symmetric monoidal category. An orthogonality relation on \mathbb{C} is a family of relations $\perp_{U V}$ between morphisms $u: V \longrightarrow U$ and $x: U \longrightarrow V$

$$
V \xrightarrow{u} U \perp_{U V} U \xrightarrow{x} V
$$

subject to the following axioms:

- Isomorphism : Let $f: U \otimes V^{\prime} \longrightarrow V \otimes U^{\prime}$ and $\hat{f}: U^{\prime} \otimes V \longrightarrow V^{\prime} \otimes U$ be such that

$$
\operatorname{Tr} V^{\prime}\left(\operatorname{Tr}^{U^{\prime}}\left(\left(1 \otimes 1 \otimes s_{U^{\prime}, V^{\prime}}\right) \alpha^{-1}(f \otimes \hat{f}) \alpha\right)\right)=s_{U, V} \text { and }
$$

$$
\operatorname{Tr}^{V}\left(\operatorname{Tr}^{U}\left(\left(1 \otimes 1 \otimes s_{U, V}\right) \alpha^{-1}(\hat{f} \otimes f) \alpha\right)\right)=s_{U^{\prime}, V^{\prime}} . \text { Here }
$$

$$
\alpha=(1 \otimes 1 \otimes s)(1 \otimes s \otimes 1) \text { with } s \text { at appropriate types. }
$$

Then for all $u: V \longrightarrow U$ and $x: U \longrightarrow V$,

$$
\begin{gathered}
u \perp_{U V} x \\
\text { iff } \\
\operatorname{Tr}_{V^{\prime}, U^{\prime}}^{U}\left(s_{U, U^{\prime}}\left(u \otimes 1_{U^{\prime}}\right) f f_{S^{\prime}, U}\right) \perp_{U^{\prime} V^{\prime}} \operatorname{Tr}_{U^{\prime}, V^{\prime}}^{V}\left(\left(1_{V^{\prime}} \otimes x\right) \hat{f}\right) ;
\end{gathered}
$$

that is, orthogonality is invariant under isomorphism.

- Precise Tensor:

For all $u: V \longrightarrow U, v: V^{\prime} \longrightarrow U^{\prime}$ and $h: U \otimes U^{\prime} \longrightarrow V \otimes V^{\prime}$, $(u \otimes v) \perp U \otimes U^{\prime}, V \otimes V^{\prime} h$. iff
$u \perp_{U V} \operatorname{Tr}_{U, V}^{U^{\prime}}\left(\left(1_{V} \otimes v\right) h\right)$ and $v \perp_{U^{\prime} V^{\prime}} \operatorname{Tr}_{U^{\prime}, V^{\prime}}^{U}\left(s_{U, V^{\prime}}\left(u \otimes 1_{V^{\prime}}\right) h s_{U^{\prime}, U}\right)$

- Precise Tensor:

For all $u: V \longrightarrow U, v: V^{\prime} \longrightarrow U^{\prime}$ and $h: U \otimes U^{\prime} \longrightarrow V \otimes V^{\prime}$,

$$
(u \otimes v) \perp U \otimes U^{\prime}, V \otimes V^{\prime} h .
$$

iff

$$
u \perp_{U V} \operatorname{Tr}_{U, V}^{U^{\prime}}\left(\left(1_{V} \otimes v\right) h\right) \text { and } v \perp_{U^{\prime} V^{\prime}} \operatorname{Tr}_{U^{\prime}, V^{\prime}}^{U}\left(s_{U, V^{\prime}}\left(u \otimes 1_{V^{\prime}}\right) h s_{U^{\prime}, U}\right)
$$

- Identity : For all $u: V \longrightarrow U$ and $x: U \longrightarrow V$,

$$
u \perp_{U V} x \text { implies } 1_{I} \perp_{l /} \operatorname{Tr}_{l, l}^{V}(x u)
$$

- Precise Tensor:

For all $u: V \longrightarrow U, v: V^{\prime} \longrightarrow U^{\prime}$ and $h: U \otimes U^{\prime} \longrightarrow V \otimes V^{\prime}$,

$$
(u \otimes v) \perp U \otimes U^{\prime}, V \otimes V^{\prime} h .
$$

iff

$$
u \perp_{U V} \operatorname{Tr}_{U, V}^{U^{\prime}}\left(\left(1_{V} \otimes v\right) h\right) \text { and } v \perp_{U^{\prime} V^{\prime}} \operatorname{Tr}_{U^{\prime}, V^{\prime}}^{U}\left(s_{U, V^{\prime}}\left(u \otimes 1_{V^{\prime}}\right) h s_{U^{\prime}, U}\right)
$$

- Identity : For all $u: V \longrightarrow U$ and $x: U \longrightarrow V$,

$$
u \perp_{U V} x \text { implies } 1_{l} \perp_{l /} \operatorname{Tr}_{l, l}^{V}(x u)
$$

- Symmetry : For all $u: V \longrightarrow U$ and $x: U \longrightarrow V$,

$$
u \perp_{U v} x \text { iff } x \perp_{V U} u
$$

Examples:

- Orthogonality defined by trace class: $(\mathbb{C}, \otimes, I, \operatorname{Tr})$ partially traced category, $f: A \longrightarrow B$ and $g: B \longrightarrow A$

$$
f \perp_{B A} g \text { iff } g f \in \mathbb{T}_{l, l}^{A}
$$

(cf. Focussed orthogonality of Hyland and Schalk) (cf. Polarity definition of Girard: Pole $=$ trace class)

Examples:

- Orthogonality defined by trace class: ($\mathbb{C}, \otimes, I, \operatorname{Tr}$) partially traced category, $f: A \longrightarrow B$ and $g: B \longrightarrow A$

$$
f \perp_{B A} g \text { iff } g f \in \mathbb{T}_{l, l}^{A}
$$

(cf. Focussed orthogonality of Hyland and Schalk)
(cf. Polarity definition of Girard: Pole $=$ trace class)

- $\mathbf{F D V e c}_{\mathbf{k}}$. For $A \in \mathbf{F D V e c}_{\mathbf{k}}, f, g \in \operatorname{End}(A)$, define $f \perp g$ iff $I-g f$ is invertible.

Examples:

- Orthogonality defined by trace class: ($\mathbb{C}, \otimes, I, \operatorname{Tr}$) partially traced category, $f: A \longrightarrow B$ and $g: B \longrightarrow A$

$$
f \perp_{B A} g \text { iff } g f \in \mathbb{T}_{l, l}^{A}
$$

(cf. Focussed orthogonality of Hyland and Schalk)
(cf. Polarity definition of Girard: Pole $=$ trace class)

- FDVec $_{\mathbf{k}}$. For $A \in \mathbf{F D V e c}_{\mathbf{k}}, f, g \in \operatorname{End}(A)$, define $f \perp g$ iff $I-g f$ is invertible.
- CMet. Let $M \in \operatorname{CMet}$. For $f, g \in \operatorname{End}(M)$, define $f \perp g$ iff $g f$ has a unique fixed point.

MGol for MLL: formulas

A, object of $\mathbb{C}, X \subseteq \operatorname{End}(A)$

$$
\begin{aligned}
& X^{\perp}=\{f \in \operatorname{End}(A) \mid \forall g \in X, f \perp g\} \\
& \mathcal{T}(A)=\left\{X \subseteq \operatorname{End}(A) \mid X^{\perp \perp}=X\right\}
\end{aligned}
$$

- $\llbracket \mathbf{1} \rrbracket=\llbracket \perp \rrbracket=I$ where I is the unit of \mathbb{C}.
- $\llbracket \alpha^{\perp} \rrbracket=\llbracket \alpha \rrbracket, \alpha$ atomic.
- $\llbracket A>8 \quad B \rrbracket=\llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \otimes \llbracket B \rrbracket$.

MGol-interpretation for formulas, $\theta(A)$:

- $\theta(1)=\left\{1_{/}\right\}^{\perp \perp}$, and $\theta(\perp)=\left\{1_{/}\right\}^{\perp}$.

MGol-interpretation for formulas, $\theta(A)$:

- $\theta(1)=\left\{1_{/}\right\}^{\perp \perp}$, and $\theta(\perp)=\left\{1_{/}\right\}^{\perp}$.
- $\theta(\alpha) \in \mathcal{T}(\llbracket \alpha \rrbracket), \alpha$ atomic formula.

MGol-interpretation for formulas, $\theta(A)$:

- $\theta(1)=\left\{1_{/}\right\}^{\perp \perp}$, and $\theta(\perp)=\left\{1_{/}\right\}^{\perp}$.
- $\theta(\alpha) \in \mathcal{T}(\llbracket \alpha \rrbracket), \alpha$ atomic formula.
- $\theta\left(\alpha^{\perp}\right)=\theta(\alpha)^{\perp}, \alpha$ atomic.

MGol-interpretation for formulas, $\theta(A)$:

- $\theta(1)=\left\{1_{/}\right\}^{\perp \perp}$, and $\theta(\perp)=\left\{1_{/}\right\}^{\perp}$.
- $\theta(\alpha) \in \mathcal{T}(\llbracket \alpha \rrbracket), \alpha$ atomic formula.
- $\theta\left(\alpha^{\perp}\right)=\theta(\alpha)^{\perp}, \alpha$ atomic.
- $\theta(A \otimes B)=\{a \otimes b \mid a \in \theta(A), b \in \theta(B)\}^{\perp \perp}$

MGol-interpretation for formulas, $\theta(A)$:

- $\theta(1)=\left\{1_{/}\right\}^{\perp \perp}$, and $\theta(\perp)=\left\{1_{/}\right\}^{\perp}$.
- $\theta(\alpha) \in \mathcal{T}(\llbracket \alpha \rrbracket), \alpha$ atomic formula.
- $\theta\left(\alpha^{\perp}\right)=\theta(\alpha)^{\perp}, \alpha$ atomic.
- $\theta(A \otimes B)=\{a \otimes b \mid a \in \theta(A), b \in \theta(B)\}^{\perp \perp}$
- $\theta(A>8)=\left\{a \otimes b \mid a \in \theta(A)^{\perp}, b \in \theta(B)^{\perp}\right\}^{\perp}$

MGol-interpretation for formulas, $\theta(A)$:

- $\theta(1)=\left\{1_{/}\right\}^{\perp \perp}$, and $\theta(\perp)=\left\{1_{/}\right\}^{\perp}$.
- $\theta(\alpha) \in \mathcal{T}(\llbracket \alpha \rrbracket), \alpha$ atomic formula.
- $\theta\left(\alpha^{\perp}\right)=\theta(\alpha)^{\perp}, \alpha$ atomic.
- $\theta(A \otimes B)=\{a \otimes b \mid a \in \theta(A), b \in \theta(B)\}^{\perp \perp}$
- $\theta(A>8)=\left\{a \otimes b \mid a \in \theta(A)^{\perp}, b \in \theta(B)^{\perp}\right\}^{\perp}$
- For any formula $A, \theta A^{\perp}=(\theta A)^{\perp}$,
- $\theta(A) \subseteq \operatorname{End}(\llbracket A \rrbracket)$,
- $\theta(A)^{\perp \perp}=\theta(A)$.

MGol for MLL: proofs

Π a proof of $\vdash[\Delta], \Gamma . \theta(\Pi) \in \operatorname{End}(\otimes \llbracket\ulcorner\rrbracket \otimes \llbracket \Delta \rrbracket):$

- Π is the axiom $\vdash \mathbf{1}$, then $\theta(\Pi)=1_{l}$.

MGol for MLL: proofs

Π a proof of $\vdash[\Delta], \Gamma . \theta(\Pi) \in \operatorname{End}(\otimes \llbracket\ulcorner\rrbracket \otimes \llbracket \Delta \rrbracket):$

- Π is the axiom $\vdash \mathbf{1}$, then $\theta(\Pi)=1_{l}$.
- Π is obtained using the \perp rule applied to the proof Π^{\prime} of $\vdash[\Delta], \Gamma^{\prime}$. Then $\theta(\Pi)=\theta\left(\Pi^{\prime}\right) \otimes 1_{I}=\theta\left(\Pi^{\prime}\right)$.

MGol for MLL: proofs

Π a proof of $\vdash[\Delta], \Gamma . \theta(\Pi) \in \operatorname{End}(\otimes \llbracket\ulcorner\rrbracket \otimes \llbracket \Delta \rrbracket):$

- Π is the axiom $\vdash \mathbf{1}$, then $\theta(\Pi)=1_{l}$.
- Π is obtained using the \perp rule applied to the proof Π^{\prime} of $\vdash[\Delta], \Gamma^{\prime}$. Then $\theta(\Pi)=\theta\left(\Pi^{\prime}\right) \otimes 1_{I}=\theta\left(\Pi^{\prime}\right)$.
- axiom: $\vdash A, A^{\perp}$, suppose $\llbracket A \rrbracket=V$. Then, $\theta(\Pi): V \otimes V \longrightarrow V \otimes V$, which is defined to be $s_{V, V}$
- cut rule on Π^{\prime} and $\Pi^{\prime \prime}$:

$$
\begin{gathered}
\Pi^{\prime} \\
\vdots \\
\vdots \\
\frac{\Pi^{\prime \prime}}{\bullet\left[\Delta^{\prime}\right], \Gamma^{\prime}, A} \stackrel{\vdash\left[\Delta^{\prime \prime}\right], A^{\perp}, \Gamma^{\prime \prime}}{\vdash\left[\Delta^{\prime}, \Delta^{\prime \prime}, A, A^{\perp}\right], \Gamma^{\prime}, \Gamma^{\prime \prime}} \text { cut } \\
\theta(\Pi)=\tau^{-1}\left(\theta\left(\Pi^{\prime}\right) \otimes \theta\left(\Pi^{\prime \prime}\right)\right) \tau, \\
\Gamma^{\prime} \otimes \Gamma^{\prime \prime} \otimes \Delta^{\prime} \otimes \Delta^{\prime \prime} \otimes A \otimes A^{\perp} \xrightarrow[\tau]{\longrightarrow} \Gamma^{\prime} \otimes A \otimes \Delta^{\prime} \otimes A^{\perp} \otimes \Gamma^{\prime \prime} \otimes \Delta^{\prime \prime}
\end{gathered}
$$

- exchange rule:

$$
\begin{gathered}
\Pi^{\prime} \\
\vdots \\
\frac{\vdash[\Delta], \Gamma^{\prime}}{\vdash[\Delta], \Gamma} \text { exchange } \\
\Gamma^{\prime}=\Gamma_{1}^{\prime}, A_{i}, A_{i+1}, \Gamma_{2}^{\prime}, \Gamma=\Gamma_{1}^{\prime}, A_{i+1}, A_{i}, \Gamma_{2}^{\prime} . \text { Then, } \\
\theta(\Pi)=\tau^{-1} \theta\left(\Pi^{\prime}\right) \tau \\
\tau=1_{\Gamma_{1}^{\prime}} \otimes s \otimes 1_{\Gamma_{2}^{\prime} \otimes \Delta .}
\end{gathered}
$$

- par rule:

- times rule:

Then $\theta(\Pi)=\tau^{-1}\left(\theta\left(\Pi^{\prime}\right) \otimes \theta\left(\Pi^{\prime \prime}\right)\right) \tau$, $\Gamma^{\prime} \otimes \Gamma^{\prime \prime} \otimes A \otimes B \otimes \Delta^{\prime} \otimes \Delta^{\prime \prime} \xrightarrow{\tau} \Gamma^{\prime} \otimes A \otimes \Delta^{\prime} \otimes \Gamma^{\prime \prime} \otimes B \otimes \Delta^{\prime \prime}$.

Examples

П:

$$
\frac{\vdash A, A^{\perp} \quad \vdash A, A^{\perp}}{\vdash\left[A^{\perp}, A\right], A, A^{\perp}} c u t
$$

Then,

$$
\theta(\Pi)=\tau^{-1}(s \otimes s) \tau=s_{V \otimes V, V \otimes V}
$$

where $\tau=(1 \otimes 1 \otimes s)(1 \otimes s \otimes 1)$ and
$\llbracket A \rrbracket=\llbracket A^{\perp} \rrbracket=V$.

$$
\frac{\stackrel{\vdash B, B^{\perp} \quad \vdash C, C^{\perp}}{\vdash B, C, B^{\perp} \otimes C^{\perp}}}{\frac{\vdash B, B^{\perp} \otimes C^{\perp}, C}{\vdash B^{\perp} \otimes C^{\perp}, B, C}} \frac{\vdash B^{\perp} \otimes C^{\perp}, B \geqslant C}{\circ 8} .
$$

with $\llbracket B \rrbracket=\llbracket B^{\perp} \rrbracket=V$ and $\llbracket C \rrbracket=\llbracket C^{\perp} \rrbracket=W$.
$\theta(\Pi)=s_{V} \otimes W, V \otimes W$

Proofs are permutations

Proposition

Let Π be an MLL proof of $\vdash[\Delta]$, Γ where $|\Delta|=2 m$ and $|\Gamma|=n$ (counting occurrences of propositional variables). Then $\theta(\Pi)$ is a fixed-point free involutive permutation on $n+2 m$ objects of \mathbb{C}. That is $\theta(\Pi): V_{1} \otimes \cdots \otimes V_{n+2 m} \longrightarrow V_{1} \otimes \cdots \otimes V_{n+2 m}$ induces a permutation π on $\{1,2 \cdots, n+2 m\}$ and

- $\pi^{2}=1$
- For all $i \in\{1,2, \cdots, n+2 m\}, \pi(i) \neq i$.
- For all $i \in\{1,2, \cdots, n+2 m\}, \quad V_{i}=V_{\pi(i)}$.

Theorem (Completeness)

Let M be a fixed-point free involutive permutation from $V_{1} \otimes \cdots \otimes V_{n} \longrightarrow V_{1} \otimes \cdots \otimes V_{n}$ (induced by a permutation μ on $\{1,2, \cdots, n\}$) where $n>0$ is an even integer, $V_{i}=\llbracket A_{i} \rrbracket$, and $V_{i}=V_{\mu(i)}$ for all $i=1, \cdots, n$. Then there is a provable MLL formula φ built from the A_{i}, with a proof Π such that $\theta(\Pi)=M$.

An example

$$
\begin{aligned}
& \mu=(1,4)(2,3) \text { on }\{1,2,3,4\} . \\
& \varphi\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=\varphi\left(A_{1}, A_{2}, A_{2}^{\perp}, A_{1}^{\perp}\right)=\left(\left(A_{1} \otimes A_{2}\right) \otimes A_{2}^{\perp}\right) \otimes 8 A_{1}^{\perp} \\
& \text { One possible } \Pi \text { is (ignoring exchange): }
\end{aligned}
$$

$$
\frac{\frac{\vdash A_{1}, A_{1}^{\perp} \quad \vdash A_{2}, A_{2}^{\perp}}{\vdash A_{1} \otimes A_{2}, A_{1}^{\perp}, A_{2}^{\perp}}}{\stackrel{\vdash\left(A_{1} \otimes A_{2}\right) \times 8 A_{2}^{\perp}, A_{1}^{\perp}}{\vdash\left(\left(A_{1} \otimes A_{2}\right) \times 8 A_{2}^{\perp}\right) \times A_{1}^{\perp}}}
$$

MGol for MLL: cut-elimination

Π a proof of $\vdash[\Delta], \Gamma$, and $\sigma=s \otimes \cdots \otimes s$ (m times) models Δ, with $|\Delta|=2 m$.

$$
E X(\theta(\Pi), \sigma)=\operatorname{Tr}_{\otimes \Gamma, \otimes \Gamma}^{\otimes \Delta}((1 \otimes \sigma) \theta(\Pi))
$$

$E X(\theta(\Pi), \sigma): \otimes \Gamma \longrightarrow \otimes \Gamma$, when it exists.
We prove the execution formula always exists for any MLL proof Π.

Example

П:

$$
\frac{\vdash A, A^{\perp} \quad \vdash A, A^{\perp}}{\vdash\left[A^{\perp}, A\right], A, A^{\perp}} c u t
$$

Then,

$$
\theta(\Pi)=\tau^{-1}(s \otimes s) \tau=s_{V \otimes V, V \otimes V}
$$

where $\tau=(1 \otimes 1 \otimes s)(1 \otimes s \otimes 1)$ and
$\llbracket A \rrbracket=\llbracket A^{\perp} \rrbracket=V$.
$\sigma=s,(m=1)$.
$E X(\theta(\Pi), \sigma)=\operatorname{Tr}\left(\left(1 \otimes s_{V, V}\right) s_{V \otimes V, V \otimes V}\right)=s_{V, V}$.
MGol int. of the cut-free proof of $\vdash A, A^{\perp}$.

Associativity of cut

Lemma

Let Π be a proof of $\vdash[\Gamma, \Delta], \wedge$ and σ and τ be the morphisms representing the cut-formulas in Γ and Δ respectively. Then

$$
\begin{array}{r}
E X(\theta(\Pi), \sigma \otimes \tau)=E X(E X(\theta(\Pi), \tau), \sigma) \\
\quad=E X(E X((1 \otimes s) \theta(\Pi)(1 \otimes s), \sigma), \tau)
\end{array}
$$

whenever all traces exist.

The big picture

$$
\text { proof } \sim \text { algorithm }
$$

cut-elim. $\downarrow \quad \downarrow$ computation
cut-free proof \leadsto datum

$$
\Pi \quad \leadsto \quad \theta(\Pi)
$$

cut-elim. $\downarrow \quad \downarrow$ computation

$$
\Pi^{\prime} \leadsto \theta\left(\Pi^{\prime}\right)=E X(\theta(\Pi), \sigma)
$$

Datum \& Algorithm, simplified

Let $\Gamma=A_{1}, A_{2}$ and $V_{i}=\llbracket A_{i} \rrbracket$.
A datum of type $\theta \Gamma$:
$M: V_{1} \otimes V_{2} \longrightarrow V_{1} \otimes V_{2}$ s.t. for any $\alpha_{i} \in \theta\left(A_{i}^{\perp}\right)$,

$$
\alpha_{1} \otimes \alpha_{2} \perp M
$$

and

$$
M \cdot \alpha_{1}:=\operatorname{Tr}^{V_{1}}\left(s_{V_{2}, V_{1}}^{-1}\left(\alpha_{1} \otimes 1_{V_{2}}\right) M s_{V_{2}, V_{1}}\right)
$$

and

$$
M \hat{\approx} \alpha_{2}:=\operatorname{Tr}^{V_{2}}\left(\left(1 \otimes \alpha_{2}\right) M\right)
$$

both exist.

Lemma

M is a datum of type $\theta\left(A_{1}, A_{2}\right)$ iff for all $\alpha_{i} \in \theta\left(A_{i}^{\perp}\right), M \cdot \alpha_{1}$ and $M^{\wedge} \alpha_{2}$ both exist and are in $\theta\left(A_{2}\right)$ and $\theta\left(A_{1}\right)$ respectively.

An algorithm of type $\theta \Gamma$:
$M: V_{1} \otimes V_{2} \otimes \llbracket \Delta \rrbracket \longrightarrow V_{1} \otimes V_{2} \otimes \llbracket \Delta \rrbracket$
$\Delta=B_{1}, B_{2}, \cdots, B_{2 m}, B_{i+1}=B_{i}^{\perp}$
$i=1,3, \cdots, 2 m-1$
if $\sigma:=\otimes_{i=1, \text { odd }}^{2 m-1}{ }^{s} \llbracket B_{i} \rrbracket, \llbracket B_{i+1} \rrbracket$,
$E X(M, \sigma)$ exists and is a datum of type $\theta \Gamma$.

Main Theorems

Theorem (Convergence)
Let Π be an MLL proof of a sequent $\vdash[\Delta]$, $Г$. Then $\theta(\Pi)$ is an algorithm of type $\theta \Gamma$.

Corollary (Existence of Dynamics)
Let Π be an MLL proof of a sequent $\vdash[\Delta], \Gamma$. Then $E X(\theta(\Pi), \sigma)$ exists.

Theorem (Invariance)
Let Π be an MLL proof of a sequent $\vdash[\Delta], \Gamma$. Then,

- If Π reduces to Π^{\prime} by any sequence of cut-eliminations, then $E X(\theta(\Pi), \sigma)=E X\left(\theta\left(\Pi^{\prime}\right), \tau\right)$. So $E X(\theta(\Pi), \sigma)$ is an invariant of reduction.
- In particular, if Π^{\prime} is any cut-free proof obtained from Π by cut-elimination, then $E X(\theta(\Pi), \sigma)=\theta\left(\Pi^{\prime}\right)$.

Future Work

- System theoretic insights.
- Algorithmic and convergence properties of various trace formulas. (traced UDC based models and complexity analysis.)

Beyond multiplicatives

Old (Gol)	New (MGol)
single reflexive object	multiple objects
needs monoidal retractions	needs monoidal retractions
UDC, "sum like" monoidal product	arbitrary monoidal product
traced category	partially traced category
nilpotency	compatible abstract orthogonality
Gol for MELL	MGol for MELL

Monoidal *-Categories

(Cf. Abramsky, Blute, Panangaden 99, Longo, Roberts, Doplicher, mid 80's)

- \mathbb{C} monoidal category, ($)^{*}: \mathbb{C}^{O p} \longrightarrow \mathbb{C}$ strict symmetric monoidal functor, strictly involutive, the identity on objects.

Note that the conditions above imply $(f \otimes g)^{*}=f^{*} \otimes g^{*}$, and $s_{A, B}^{*}=s_{B, A}$.

Monoidal *-Categories

(Cf. Abramsky, Blute, Panangaden 99, Longo, Roberts, Doplicher, mid 80's)

- \mathbb{C} monoidal category, ($)^{*}: \mathbb{C}^{O p} \longrightarrow \mathbb{C}$ strict symmetric monoidal functor, strictly involutive, the identity on objects.
- $f: A \longrightarrow A$ is Hermitian if $f^{*}=f$.

Note that the conditions above imply $(f \otimes g)^{*}=f^{*} \otimes g^{*}$, and $s_{A, B}^{*}=s_{B, A}$.

Monoidal *-Categories

(Cf. Abramsky, Blute, Panangaden 99, Longo, Roberts, Doplicher, mid 80's)

- \mathbb{C} monoidal category, ($)^{*}: \mathbb{C}^{O p} \longrightarrow \mathbb{C}$ strict symmetric monoidal functor, strictly involutive, the identity on objects.
- $f: A \longrightarrow A$ is Hermitian if $f^{*}=f$.
- $f: A \longrightarrow B$ is partial isometry if $f^{*} f f^{*}=f^{*}$ or equivalently if $f f * f=f$.

Note that the conditions above imply $(f \otimes g)^{*}=f^{*} \otimes g^{*}$, and $s_{A, B}^{*}=s_{B, A}$.

Monoidal *-Categories

(Cf. Abramsky, Blute, Panangaden 99, Longo, Roberts, Doplicher, mid 80's)

- \mathbb{C} monoidal category, ($)^{*}: \mathbb{C}^{O p} \longrightarrow \mathbb{C}$ strict symmetric monoidal functor, strictly involutive, the identity on objects.
- $f: A \longrightarrow A$ is Hermitian if $f^{*}=f$.
- $f: A \longrightarrow B$ is partial isometry if $f^{*} f f^{*}=f^{*}$ or equivalently if $f f * f=f$.
- $f: A \longrightarrow A$ is partial symmetry if it is a Hermitian partial isometry. That is, if $f^{*}=f$ and $f^{3}=f$.

Note that the conditions above imply $(f \otimes g)^{*}=f^{*} \otimes g^{*}$, and $s_{A, B}^{*}=s_{B, A}$.

Examples

- (Hilb, \otimes): $f: H \longrightarrow K, f^{*}: K \longrightarrow H$ is given by the adjoint of f, defined uniquely by $\langle f(x), y\rangle=\left\langle x, f^{*}(y)\right\rangle$.
- (Hilb, \oplus): with the same definition for the ($)^{*}$ functor.
- $(\boldsymbol{R e l}, \times): f: X \longrightarrow Y, f^{*}=\bar{f}$ where \bar{f} is the converse relation.
- (Rel, \oplus): with the same definition for the ($)^{*}$ functor.
- (Plnj, $\uplus): f: X \longrightarrow Y, f^{*}=f^{-1}$.

Gol category

- (\mathbb{C}, T, \perp)

Gol category

- (\mathbb{C}, T, \perp)
- \mathbb{C} partially traced ${ }^{*}$-category

Gol category

- (\mathbb{C}, T, \perp)
- \mathbb{C} partially traced ${ }^{*}$-category
- $T=\left(T, \psi, \psi_{I}\right): \mathbb{C} \longrightarrow \mathbb{C}$ traced symmetric monoidal functor: if $f \in \mathbb{T}_{X, Y}^{U}$, then $\psi_{Y, U}^{-1} T(f) \psi_{X, U} \in \mathbb{T}_{T X, T Y}^{T U}$, and

$$
\operatorname{Tr}_{T X, T Y}^{T U}\left(\psi_{Y, U}^{-1} T(f) \psi_{X, U}\right)=T\left(\operatorname{Tr}_{X, Y}^{U}(f)\right)
$$

Gol category

- (\mathbb{C}, T, \perp)
- \mathbb{C} partially traced ${ }^{*}$-category
- $T=\left(T, \psi, \psi_{I}\right): \mathbb{C} \longrightarrow \mathbb{C}$ traced symmetric monoidal functor: if $f \in \mathbb{T}_{X, Y}^{U}$, then $\psi_{Y, U}^{-1} T(f) \psi_{X, U} \in \mathbb{T}_{T X, T Y}^{T U}$, and

$$
\operatorname{Tr}_{T X, T Y}^{T U}\left(\psi_{Y, U}^{-1} T(f) \psi_{X, U}\right)=T\left(\operatorname{Tr}_{X, Y}^{U}(f)\right)
$$

- \perp is an orthogonality relation on \mathbb{C}.

Gol category

- (\mathbb{C}, T, \perp)
- \mathbb{C} partially traced ${ }^{*}$-category
- $T=\left(T, \psi, \psi_{I}\right): \mathbb{C} \longrightarrow \mathbb{C}$ traced symmetric monoidal functor: if $f \in \mathbb{T}_{X, Y}^{U}$, then $\psi_{Y, U}^{-1} T(f) \psi_{X, U} \in \mathbb{T}_{T X, T Y}^{T U}$, and

$$
\operatorname{Tr}_{T X, T Y}^{T U}\left(\psi_{Y, U}^{-1} T(f) \psi_{X, U}\right)=T\left(\operatorname{Tr}_{X, Y}^{U}(f)\right)
$$

- \perp is an orthogonality relation on \mathbb{C}.
- The following natural retractions exist:
- $\mathcal{K}_{1} \triangleleft T\left(w, w^{*}\right)$
- $l d \triangleleft T\left(d, d^{*}\right)$
- $T^{2} \triangleleft T\left(e, e^{*}\right)$
- $T \otimes T \triangleleft T\left(c, c^{*}\right)$

The orthogonality relation is Gol compatible:
(c1) For all $f: V \longrightarrow U, g: U \longrightarrow V$,

$$
f \perp_{U, V} g \text { implies } d_{U} f d_{V}^{*} \perp_{T U, T V} T g .
$$

The orthogonality relation is Gol compatible:
(c1) For all $f: V \longrightarrow U, g: U \longrightarrow V$,

$$
f \perp_{U, V} g \text { implies } d_{U} f d_{V}^{*} \perp_{T U, T V} T g .
$$

(c2) For all $f: U \longrightarrow U$ and $g: I \longrightarrow I$,

$$
w_{U} g w_{U}^{*} \perp_{T U, T U} T f .
$$

The orthogonality relation is Gol compatible:
(c1) For all $f: V \longrightarrow U, g: U \longrightarrow V$,

$$
f \perp_{U, V} g \text { implies } d_{U} f d_{V}^{*} \perp_{T U, T V} T g .
$$

(c2) For all $f: U \longrightarrow U$ and $g: I \longrightarrow I$,

$$
w_{U} g w_{U}^{*} \perp_{T U, T U} T f .
$$

(c3) For all $f: T V \otimes T V \longrightarrow T U \otimes T U$ and $g: U \longrightarrow V$,

$$
f \perp_{T U \otimes T U, T V \otimes T V} T g \otimes T g \text { implies } c_{U} f_{V}^{*} \perp_{V U, T V} T g .
$$

- The functor T commute with ()*, that is $(T(f))^{*}=T\left(f^{*}\right)$.
- $\psi^{*}=\psi^{-1}$ and $\psi_{l}^{*}=\psi_{l}^{-1}$.
- For example, let $(\mathbb{C}, \otimes, I, \operatorname{Tr}), A$ and B be objects of \mathbb{C}. For $f: A \longrightarrow B$ and $g: B \longrightarrow A, f \perp_{B A} g$ iff $g f \in \mathbb{T}_{l, l}^{A}$. Then, \perp is Gol compatible.

Examples:

- (PInj, $\uplus, \mathbb{N} \times-, \perp)$
$f \perp g$ iff $g f$ is nilpotent. Retractions as before.

Examples:

- (PInj, $\uplus, \mathbb{N} \times-, \perp)$
$f \perp g$ iff $g f$ is nilpotent.
Retractions as before.
- $(\operatorname{Re}, \oplus, \mathbb{N} \times-, \perp)$.

Examples:

- (Plnj, $\uplus, \mathbb{N} \times-, \perp)$ $f \perp g$ iff $g f$ is nilpotent.
Retractions as before.
- $(\operatorname{Rel}, \oplus, \mathbb{N} \times-, \perp)$.
- (Hilb, $\oplus, \ell^{2} \otimes-, \perp$), where Hilb is the category of Hilbert spaces and bounded linear maps.
Where ℓ^{2} is the space of square summable sequences.
$f \perp g$ iff $(1-g f)$ is invertible.

MGol for MELL: formulas

A, object of $\mathbb{C}, X \subseteq \operatorname{End}(A)$

$$
\begin{gathered}
X^{\perp}=\{f \in \operatorname{End}(A) \mid \forall g \in X, f \perp g\} . \\
\mathcal{T}(A)=\left\{X \subseteq \operatorname{End}(A) \mid X^{\perp \perp}=X\right\} . \\
\llbracket!A \rrbracket=\llbracket ? A \rrbracket=T \llbracket A \rrbracket .
\end{gathered}
$$

$\theta(A)$:

- $\theta(!A)=\{T a \mid a \in \theta(A)\}^{\perp \perp}$
- $\theta(? A)=\left\{T a \mid a \in \theta\left(A^{\perp}\right)\right\}^{\perp}$

FACTS
(i) for any formula A, $\theta A^{\perp}=(\theta A)^{\perp}$,
(ii) $\theta(A) \subseteq E n d(\llbracket A \rrbracket)$,
(iii) $\theta(A)^{\perp \perp}=\theta(A)$.

MGol for MELL: proofs

- Π, a proof of $\vdash[\Delta]$, Γ
- $\theta(\Pi) \in \operatorname{End}(\otimes \llbracket \Gamma \rrbracket \otimes \llbracket \bar{\Delta} \rrbracket)$,
- with $\Delta=B_{1}, B_{1}^{\perp}, \cdots B_{m}, B_{m}^{\perp}$,
$\llbracket \bar{\Delta} \rrbracket=T^{k}\left(\llbracket B_{1} \rrbracket \otimes \cdots \otimes \llbracket B_{m}^{\perp} \rrbracket\right)$, for some non-negative integer k.
- T^{0} is the identity functor.
- MLL case can be recovered easily by letting $k=0$.
- Π is the axiom $\vdash \mathbf{1}$, then $\theta(\Pi)=1_{l}$.
- Π is obtained using the \perp rule applied to the proof Π^{\prime} of $\vdash[\Delta], \Gamma^{\prime}$. Then $\theta(\Pi)=\theta\left(\Pi^{\prime}\right) \otimes 1_{I}=\theta\left(\Pi^{\prime}\right)$.
- Π is an axiom $\vdash A, A^{\perp}, \theta(\Pi):=s_{V, V}$ where $\llbracket A \rrbracket=\llbracket A^{\perp} \rrbracket=V$.
- Π is an axiom $\vdash A, A^{\perp}, \theta(\Pi):=s_{V, V}$ where $\llbracket A \rrbracket=\llbracket A^{\perp} \rrbracket=V$.
- Π is obtained using the cut rule on Π^{\prime} and $\Pi^{\prime \prime}$ that is,

$$
\begin{array}{cc}
\Pi^{\prime} & \Pi^{\prime \prime} \\
\vdots & \vdots \\
\left.\Delta^{\prime}\right], \Gamma^{\prime}, A & \vdash\left[\Delta^{\prime \prime}\right], A^{\perp}, \Gamma^{\prime \prime} \\
\hline\left[\Delta^{\prime}, \Delta^{\prime \prime}, A, A^{\perp}\right], \Gamma^{\prime}, \Gamma^{\prime \prime}
\end{array}
$$

Define $\theta(\Pi)=\tau^{-1}\left(\theta\left(\Pi^{\prime}\right) \otimes \theta\left(\Pi^{\prime \prime}\right)\right) \tau$, where τ is the permutation
$\Gamma^{\prime} \otimes \Gamma^{\prime \prime} \otimes \overline{\Delta^{\prime}} \otimes \overline{\Delta^{\prime \prime}} \otimes A \otimes A^{\perp} \xrightarrow{\tau} \Gamma^{\prime} \otimes A \otimes \overline{\Delta^{\prime}} \otimes A^{\perp} \otimes \Gamma^{\prime \prime} \otimes \overline{\Delta^{\prime \prime}}$.
Π is obtained using the exchange rule on the formulas A_{i} and A_{i+1} in Γ^{\prime}. That is Π is of the form

$$
\begin{gathered}
\Gamma_{\vdots}^{\prime} \\
\vdots \\
\frac{\vdash[\Delta], \Gamma^{\prime}}{\vdash[\Delta], \Gamma} \text { exchange }
\end{gathered}
$$

where $\Gamma^{\prime}=\Gamma_{1}^{\prime}, A_{i}, A_{i+1}, \Gamma_{2}^{\prime}$ and $\Gamma=\Gamma_{1}^{\prime}, A_{i+1}, A_{i}, \Gamma_{2}^{\prime}$. Then, $\theta(\Pi)$ is obtained from $\theta\left(\Pi^{\prime}\right)$ by interchanging the rows i and $i+1$. So, $\theta(\Pi)=\tau^{-1} \theta\left(\Pi^{\prime}\right) \tau$, where $\tau=1_{\Gamma_{1}^{\prime}} \otimes s \otimes 1_{\Gamma_{2}^{\prime} \otimes \bar{\Delta}}$.
Π is obtained using an application of the par rule, that is Π is of the form:
Π^{\prime}

$$
\frac{\vdash[\Delta], \Gamma^{\prime}, A, B}{\vdash[\Delta], \Gamma^{\prime}, A 叉 B} \quad \text {. Then } \theta(\Pi)=\theta\left(\Pi^{\prime}\right)
$$

Π is obtained using an application of the times rule, that is Π is of the form:

$$
\begin{array}{cc}
\Pi^{\prime} & \Pi^{\prime \prime} \\
\vdots & \vdots \\
\frac{\vdash\left[\Delta^{\prime}\right], \Gamma^{\prime}, A}{}+\left[\Delta^{\prime \prime}\right], \Gamma^{\prime \prime}, B \\
\vdash\left[\Delta^{\prime}, \Delta^{\prime \prime}\right], \Gamma^{\prime}, \Gamma^{\prime \prime}, A \otimes B
\end{array}
$$

Then $\theta(\Pi)=\tau^{-1}\left(\theta\left(\Pi^{\prime}\right) \otimes \theta\left(\Pi^{\prime \prime}\right)\right) \tau$, where τ is the permutation $\Gamma^{\prime} \otimes \Gamma^{\prime \prime} \otimes A \otimes B \otimes \overline{\Delta^{\prime}} \otimes \overline{\Delta^{\prime \prime}} \xrightarrow{\tau} \Gamma^{\prime} \otimes A \otimes \overline{\Delta^{\prime}} \otimes \Gamma^{\prime \prime} \otimes B \otimes \overline{\Delta^{\prime \prime}}$.
Π is obtained from Π^{\prime} by an of course rule, that is Π has the form : Π^{\prime}

$$
\frac{\vdash[\Delta], ? \Gamma^{\prime}, A}{\vdash[\Delta], ? \Gamma^{\prime},!A} \text { of course }
$$

- $\theta(\Pi)=\left(e_{\Gamma^{\prime}} \otimes 1_{T A} \otimes 1_{\bar{\Delta}}\right) \varphi^{-1} T\left(\llbracket \Pi^{\prime} \rrbracket\right) \varphi\left(e_{\Gamma^{\prime}}^{*} \otimes 1_{T A} \otimes 1_{\bar{\Delta}}\right)$,
- where $T T \triangleleft T\left(e, e^{*}\right)$,
- with $\Gamma^{\prime}=A_{1}, \cdots, A_{n}, e_{\Gamma^{\prime}}=e_{A_{1}} \otimes \cdots \otimes e_{A_{n}}$, similarly for e^{*}, and
- φ is the canonical isomorphism
$\varphi: T^{2}\left(\Gamma^{\prime}\right) \otimes T A \otimes T(\bar{\Delta}) \longrightarrow T\left(T\left(\Gamma^{\prime}\right) \otimes A \otimes \bar{\Delta}\right)$ is defined using
- the isomorphism $\psi_{X, Y}: T X \times T Y \longrightarrow T(X \otimes Y)$. With $\Gamma^{\prime}=A_{1}, \cdots, A_{n}, T\left(\Gamma^{\prime}\right)$ is a shorthand for $T A_{1} \otimes \cdots \otimes T A_{n}$, and $\bar{\Delta}$ is as before.
Π is obtained from Π^{\prime} by the dereliction rule, that is, Π is of the form:

$$
\begin{gathered}
\Pi^{\prime} \\
\vdots \\
\frac{\vdash[\Delta], \Gamma^{\prime}, A}{\vdash[\Delta], \Gamma^{\prime}, ? A} \text { dereliction }
\end{gathered}
$$

Then $\theta(\Pi)=\left(1_{\Gamma^{\prime}} \otimes d_{A} \otimes 1_{\bar{\Delta}}\right) \theta\left(\Pi^{\prime}\right)\left(1_{\Gamma^{\prime}} \otimes d_{A}^{*} \otimes 1_{\bar{\Delta}}\right)$ where $l d \triangleleft T\left(d, d^{*}\right)$.
Π is obtained from Π^{\prime} by the weakening rule, that is, Π is of the form:

$$
\begin{gathered}
\Pi^{\prime} \\
\vdots \\
\vdash[\Delta], \Gamma^{\prime} \\
\hline
\end{gathered}
$$

Then $\theta(\Pi)=\left(1_{\Gamma^{\prime}} \otimes w_{A} \otimes 1_{\bar{\Delta}}\right) \theta\left(\Pi^{\prime}\right)\left(1_{\Gamma^{\prime}} \otimes w_{A}^{*} \otimes 1_{\bar{\Delta}}\right)$, where $\mathcal{K}_{I} \triangleleft T\left(w, w^{*}\right)$.
Π is obtained from Π^{\prime} by the contraction rule, that is, Π is of the form :

$$
\begin{gathered}
\Pi^{\prime} \\
\vdots \\
\frac{\vdash[\Delta], \Gamma^{\prime}, ? A, ? A}{\vdash[\Delta], \Gamma^{\prime}, ? A} \text { contraction }
\end{gathered}
$$

Then $\theta(\Pi)=\left(1_{\Gamma^{\prime}} \otimes c_{A} \otimes 1_{\bar{\Delta}}\right) \theta\left(\Pi^{\prime}\right)\left(1_{\Gamma^{\prime}} \otimes c_{A}^{*} \otimes 1_{\bar{\Delta}}\right)$, where $T \otimes T \triangleleft T\left(c, c^{*}\right)$.

Example

Consider the following proof

$$
\left.\frac{\frac{\vdash A, A^{\perp}}{\vdash A, ? A^{\perp}}}{\vdash!A, ? A^{\perp}} \vdash B, B^{\perp}\right)
$$

Given $\llbracket A \rrbracket=V$ and $\llbracket B \rrbracket=W$, we have $\theta(\Pi)=$ $(1 \otimes s \otimes 1)(1 \otimes e \otimes 1 \otimes 1)\left(\psi^{-1} T(h) \psi \otimes s\right)\left(1 \otimes e^{*} \otimes 1 \otimes 1\right)(1 \otimes s \otimes 1)$ where $h=\left(1 \otimes d_{V}\right) s\left(1 \otimes d_{V}^{*}\right)$.

Proofs as partial symmetries

Proposition

Let Π be an MELL proof of $\vdash[\Delta]$, Γ. Then $\theta(\Pi)$ is a partial symmetry.

Proof.
By induction on the length of the proofs, noting that the functor ()* is a strict symmetric monoidal functor, $T(f)^{*}=T\left(f^{*}\right)$, $\psi^{*}=\psi^{-1}$, and $\psi_{l}^{*}=\psi_{l}^{-1}$.

A calculation

For example:
$\theta(\square)=$
$(1 \otimes s \otimes 1)\left(1 \otimes e_{V} \otimes 1 \otimes 1\right)\left(\psi^{-1} T(h) \psi \otimes s\right)\left(1 \otimes e_{V}^{*} \otimes 1 \otimes 1\right)(1 \otimes s \otimes 1)$ where $h=\left(1 \otimes d_{V}\right) s\left(1 \otimes d_{V}^{*}\right)$.

Then $\theta(\Pi)^{*}=\theta(\Pi)$ as $h^{*}=h$
$s_{V, W}^{*}=s_{V, W}^{-1}=s_{W, V}$
$T(h)^{*}=T\left(h^{*}\right)$ and
$\psi^{*}=\psi^{-1}$.

MGol for MELL: cut-elimination

Π a proof of $\vdash[\Delta], \Gamma$, and $\sigma=T^{k}(s \otimes \cdots \otimes s)$ (m times) models
Δ, with $|\Delta|=2 m$, and k a non-negative integer.

$$
E X(\theta(\Pi), \sigma)=\operatorname{Tr}_{\otimes \Gamma, \otimes \Gamma}^{\otimes \bar{\Delta}}((1 \otimes \sigma) \theta(\Pi))
$$

$E X(\theta(\Pi), \sigma): \otimes \Gamma \longrightarrow \otimes \Gamma$, when it exists.
We prove the execution formula always exists for any MELL proof \square.

The big picture

$$
\text { proof } \leadsto \text { algorithm }
$$

cut-elim. $\downarrow \quad \downarrow$ computation
cut-free proof \leadsto datum

$$
\Pi \leadsto \theta(\Pi)
$$

cut-elim. $\downarrow \quad \downarrow$ computation

$$
\Pi^{\prime} \leadsto \theta\left(\Pi^{\prime}\right)=E X(\theta(\Pi), \sigma)
$$

Datum \& Algorithm, simplified

Let $\Gamma=A_{1}, A_{2}$ and $V_{i}=\llbracket A_{i} \rrbracket$.
A datum of type $\theta \Gamma$:
$M: V_{1} \otimes V_{2} \longrightarrow V_{1} \otimes V_{2}$ s.t. for any $\alpha_{i} \in \theta\left(A_{i}^{\perp}\right)$,

$$
\alpha_{1} \otimes \alpha_{2} \perp M
$$

and

$$
M \cdot \alpha_{1}:=\operatorname{Tr}^{V_{1}}\left(s_{V_{2}, V_{1}}^{-1}\left(\alpha_{1} \otimes 1_{V_{2}}\right) M s_{V_{2}, V_{1}}\right)
$$

and

$$
M \hat{\approx} \alpha_{2}:=\operatorname{Tr}^{V_{2}}\left(\left(1 \otimes \alpha_{2}\right) M\right)
$$

both exist.

Lemma

M is a datum of type $\theta\left(A_{1}, A_{2}\right)$ iff for all $\alpha_{i} \in \theta\left(A_{i}^{\perp}\right), M \cdot \alpha_{1}$ and $M^{\wedge} \alpha_{2}$ both exist and are in $\theta\left(A_{2}\right)$ and $\theta\left(A_{1}\right)$ respectively.

An algorithm of type $\theta \Gamma$:
$M: V_{1} \otimes V_{2} \otimes \llbracket \bar{\Delta} \rrbracket \longrightarrow V_{1} \otimes V_{2} \otimes \llbracket \bar{\Delta} \rrbracket$
$\Delta=B_{1}, B_{1}^{\perp}, \cdots, B_{m}, B_{m}^{\perp}$,
if $\sigma: T^{k}\left(\otimes_{i=1}^{2 m} \llbracket B_{i} \rrbracket\right) \longrightarrow T^{k}\left(\otimes_{i=1}^{2 m} \llbracket B_{i} \rrbracket\right)$ defined as
$T^{k}\left(\otimes_{i=1, \text { odd }}^{2 m-1}{ }^{S} \llbracket B_{i} \rrbracket, \llbracket B_{i+1} \rrbracket\right)$, for some non-negative integer k,
$E X(M, \sigma)$ exists and is a datum of type $\theta \Gamma$.

Main Theorems

Theorem (Convergence)
Let Π be an MELL proof of a sequent $\vdash[\Delta], \Gamma$. Then $\theta(\Pi)$ is an algorithm of type ass $\theta \Gamma$.

Corollary (Existence of Dynamics)
Let Π be an MELL proof of a sequent $\vdash[\Delta]$, $Г$. Then $\operatorname{EX}(\theta(\Pi), \sigma)$ exists.

Theorem (Invariance)
Let Π be an MELL proof of a sequent $\vdash[\Delta]$, Γ such that ? A does not occur in Γ for any formula A. Then,

- If Π reduces to Π^{\prime} by any sequence of cut-elimination steps, then $E X(\theta(\Pi), \sigma)=E X\left(\theta\left(\Pi^{\prime}\right), \tau\right)$. So $E X(\theta(\Pi), \sigma)$ is an invariant of reduction.
- In particular, if Π^{\prime} is any cut-free proof obtained from Π by cut-elimination, then $E X(\theta(\Pi), \sigma)=E X\left(\theta\left(\Pi^{\prime}\right), 1_{l}\right)=\theta\left(\Pi^{\prime}\right)$.

In conclusion

- $\mathbf{(H i l b}, \oplus)$ is partially traced.
- Gol Categories $\left(\mathbb{C}, \otimes,()^{*}, \operatorname{Tr}, T, \perp\right)$.
- Compatibility conditions for \perp.
- Proofs are partial symmetries.
- No completeness or charaterization theorem yet :-(()
- Infinity sneaks in!
- Soundness theorem.
- Relating to Doplicher, Longo, Roberts work??

Things we did not talk about

- Full completeness theorem for MLL (Thesis, TLCA 01)
- Proofs as Polynomials (ENTCS 2008)
- From Gol semantics to denotational semantics (CTCS 04, work in progress)
- Relation to path-based semantics, Λ^{*}-algebra (Thesis, MSCS 2000)

