KBO Orientability

Harald Zankl ${ }^{\ddagger} \quad$ Nao Hirokawa ${ }^{\dagger}$ Aart Middeldorp ${ }^{\dagger}$

\dagger Japan Advanced Institute of Science and Technology
University of Innsbruck

Reference

JAR 2009 Harald Zankl, Nao Hirokawa, and Aart Middeldorp KBO Orientability
Journal of Automated Reasoning 43(2), pp. 173-201, 2009

Term Rewriting

DEFINITION

- pair of terms $l \rightarrow r$ is rewrite rule if $l \notin \mathcal{V} \wedge \mathcal{V} \operatorname{ar}(r) \subseteq \mathcal{V} \operatorname{Var}(l)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \rightarrow_{\mathcal{R}} t$ if $\exists l \rightarrow r \in \mathcal{R}$, context C, substitution σ. $s=C[l \sigma] \wedge t=C[r \sigma]$

Term Rewriting

DEFINITION

- pair of terms $l \rightarrow r$ is rewrite rule if $l \notin \mathcal{V} \wedge \mathcal{V} \operatorname{ar}(r) \subseteq \mathcal{V} \operatorname{Var}(l)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \rightarrow_{\mathcal{R}} t$ if $\exists l \rightarrow r \in \mathcal{R}$, context C, substitution σ. $s=C[l \sigma] \wedge t=C[r \sigma]$

Example
TRS \mathcal{R}

$$
\begin{array}{ll}
x+0 \rightarrow x & x+\mathbf{s}(y) \rightarrow \mathbf{s}(x+y) \\
x \times 0 \rightarrow 0 & x \times \mathbf{s}(y) \rightarrow x \times y+x
\end{array}
$$

Term Rewriting

DEFINITION

- pair of terms $l \rightarrow r$ is rewrite rule if $l \notin \mathcal{V} \wedge \mathcal{V} \operatorname{ar}(r) \subseteq \mathcal{V} \operatorname{Var}(l)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \rightarrow_{\mathcal{R}} t$ if $\exists l \rightarrow r \in \mathcal{R}$, context C, substitution σ. $s=C[l \sigma] \wedge t=C[r \sigma]$

Example
TRS \mathcal{R}

$$
\begin{array}{ll}
x+0 \rightarrow x & x+\mathbf{s}(y) \rightarrow \mathbf{s}(x+y) \\
x \times 0 \rightarrow 0 & x \times \mathbf{s}(y) \rightarrow x \times y+x
\end{array}
$$

rewriting

$$
\begin{aligned}
\mathrm{s}(0) \times \mathrm{s}(0) & \rightarrow \mathcal{R} \mathrm{s}(0) \times 0+\mathrm{s}(0) \\
& \rightarrow_{\mathcal{R}} 0+\mathrm{s}(0) \\
& \rightarrow_{\mathcal{R}} \mathrm{s}(0+0) \\
& \rightarrow_{\mathcal{R}} \mathrm{s}(0) \quad \text { terminated }
\end{aligned}
$$

Termination

Definition
TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots$

Termination

Definition
TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots$

QUESTION
how to prove termination?

Termination

Definition
TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

Knuth-Bendix order (KBO)

Termination

Definition
TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

Knuth-Bendix order (KBO)

- introduced by Knuth and Bendix, 1970

Termination

Definition
TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

Knuth-Bendix order (KBO)

- introduced by Knuth and Bendix, 1970
- best studied termination methods

Termination

Definition
TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

Knuth-Bendix order (KBO)

- introduced by Knuth and Bendix, 1970
- best studied termination methods
- great success in theorem provers
(Waldmeister, Vampire, ...)

Knuth-Bendix Orders

$\underline{\text { DEFINITION }}$

- precedence $>$ is proper order on function symbols \mathcal{F}

Knuth-Bendix Orders

DEFINITION

- precedence $>$ is proper order on function symbols \mathcal{F}
- weight function $\left(w, w_{0}\right)$ is pair in $\mathbb{R}_{\geqslant 0}{ }^{\mathcal{F}} \times \mathbb{R}_{\geqslant 0}$

Knuth-Bendix Orders

$\underline{\text { DEFINITION }}$

- precedence $>$ is proper order on function symbols \mathcal{F}
- weight function $\left(w, w_{0}\right)$ is pair in $\mathbb{R} \geqslant 0^{\mathcal{F}} \times \mathbb{R}_{\geqslant 0}$
- weight of term t is

$$
w(t)= \begin{cases}w_{0} & \text { if } t \in \mathcal{V} \\ w(f)+w\left(t_{1}\right)+\cdots+w\left(t_{n}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Knuth-Bendix Orders

$\underline{\text { DEFINITION }}$

- precedence $>$ is proper order on function symbols \mathcal{F}
- weight function $\left(w, w_{0}\right)$ is pair in $\mathbb{R}_{\geqslant 0}{ }^{\mathcal{F}} \times \mathbb{R}_{\geqslant 0}$
- weight of term t is

$$
w(t)= \begin{cases}w_{0} & \text { if } t \in \mathcal{V} \\ w(f)+w\left(t_{1}\right)+\cdots+w\left(t_{n}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

- weight function $\left(w, w_{0}\right)$ is admissible for precedence $>$ if

$$
w(f)>0 \quad \text { or } \quad f \geqslant g
$$

for all unary functions f and all functions g

DEFINITION
Knuth-Bendix order $>_{\text {kbo }}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all $x \in \mathcal{V}$ and either

DEFINITION
Knuth-Bendix order $>_{\text {kbo }}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all $x \in \mathcal{V}$ and either

- $w(s)>w(t)$, or

DEFINITION
Knuth-Bendix order $>_{\text {kbo }}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all $x \in \mathcal{V}$ and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and

Definition
Knuth-Bendix order $>_{\text {kbo }}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$:
$s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all $x \in \mathcal{V}$ and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and
- $s=f^{n}(t)$ and $t \in \mathcal{V}$ for some unary f and $n \geqslant 1$; or

DEFINITION

Knuth-Bendix order $>_{\text {kbo }}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$:
$s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all $x \in \mathcal{V}$ and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and
- $s=f^{n}(t)$ and $t \in \mathcal{V}$ for some unary f and $n \geqslant 1$; or
- $s=f\left(s_{1}, \ldots, s_{i-1}, s_{i}, \ldots, s_{n}\right), t=f\left(s_{1}, \ldots, s_{i-1}, t_{i}, \ldots, t_{n}\right)$, and $s_{i}>_{\mathrm{kbo}} t_{i}$; or

DEFINITION

Knuth-Bendix order $>_{\text {kbo }}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$:
$s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all $x \in \mathcal{V}$ and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and
- $s=f^{n}(t)$ and $t \in \mathcal{V}$ for some unary f and $n \geqslant 1$; or
- $s=f\left(s_{1}, \ldots, s_{i-1}, s_{i}, \ldots, s_{n}\right), t=f\left(s_{1}, \ldots, s_{i-1}, t_{i}, \ldots, t_{n}\right)$, and $s_{i}>_{\text {kbo }} t_{i}$; or
- $s=f\left(s_{1}, \ldots, s_{n}\right), t=g\left(t_{1}, \ldots, t_{m}\right)$, and $f>g$

DEFINITION
let $X \subseteq \mathbb{R}_{\geqslant 0}$. TRS \mathcal{R} is KBO_{X} terminating if

- \exists precedence $>$
- \exists admissible weight function $\left(w, w_{0}\right) \in X^{\mathcal{F}} \times X$
such that $l>_{\text {kbo }} r$ for all $l \rightarrow r \in \mathcal{R}$

DEFINITION
let $X \subseteq \mathbb{R}_{\geqslant 0}$. TRS \mathcal{R} is KBO_{X} terminating if

- \exists precedence $>$
- \exists admissible weight function $\left(w, w_{0}\right) \in X^{\mathcal{F}} \times X$
such that $l>_{\text {kbo }} r$ for all $l \rightarrow r \in \mathcal{R}$

Theorem
Knuth and Bendix, 1970
$T R S$ is terminating if it is $K B O_{\mathbb{N}}$ terminating

Quiz

Example I

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

Example I

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

is $\mathrm{KBO}_{\mathbb{N}}$ terminating ?

Example I

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

is $\mathrm{KBO}_{\mathbb{N}}$ terminating ? - yes

PROOF

take precedence $\mathrm{a}>\mathrm{b}$ and weight function

$$
w(\mathrm{a})=? \quad w(\mathrm{~b})=? \quad w_{0}=1
$$

Example I

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

is $\mathrm{KBO}_{\mathbb{N}}$ terminating ? - yes

PROOF

take precedence $\mathrm{a}>\mathrm{b}$ and weight function

$$
w(\mathrm{a})=3 \quad w(\mathrm{~b})=2 \quad w_{0}=1
$$

Example I

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

is $\mathrm{KBO}_{\mathbb{N}}$ terminating ? - yes
$\underline{\text { PROOF }}$
take precedence $\mathrm{a}>\mathrm{b}$ and weight function
$w(\mathrm{a})=3$
$w(\mathrm{~b})=2$
$w_{0}=1$

Proof
another solution: take precedence $>=\varnothing$ and weight function

$$
w(\mathrm{a})=? \quad w(\mathrm{~b})=? \quad w_{0}=1
$$

Example I

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

is $\mathrm{KBO}_{\mathbb{N}}$ terminating ? - yes
$\underline{\text { PROOF }}$
take precedence $\mathrm{a}>\mathrm{b}$ and weight function
$w(\mathrm{a})=3$
$w(\mathrm{~b})=2$
$w_{0}=1$

Proof
another solution: take precedence $>=\varnothing$ and weight function

$$
w(\mathrm{a})=13 \quad w(\mathbf{b})=8 \quad w_{0}=1
$$

Example II

TRS \mathcal{R}

$$
\begin{array}{ll}
x+0 \rightarrow x & x+\mathbf{s}(y) \rightarrow \mathbf{s}(x+y) \\
x \times 0 \rightarrow 0 & x \times \mathbf{s}(y) \rightarrow x \times y+x
\end{array}
$$

is $\mathrm{KBO}_{\mathbb{N}}$ terminating ?

Example II

TRS \mathcal{R}

$$
\begin{array}{ll}
x+0 \rightarrow x & x+\mathrm{s}(y) \rightarrow \mathrm{s}(x+y) \\
x \times 0 \rightarrow 0 & x \times \mathrm{s}(y) \rightarrow x \times y+x
\end{array}
$$

is $\mathrm{KBO}_{\mathbb{N}}$ terminating ? - no

History of KBO

TRS is terminating if it is $K B O_{\mathbb{N}}$ terminating

$T R S$ is terminating if it is $K B O_{\mathbb{N}}$ terminating

Theorem

$T R S$ is terminating if it is $K B O_{\mathbb{R} \geqslant 0}$ terminating
$T R S$ is terminating if it is $K B O_{\mathbb{N}}$ terminating

Theorem
Dershowitz, 1979
TRS is terminating if it is $K B O_{\mathbb{R} \geqslant 0}$ terminating

Theorem
Dick, Kalmus, and Martin, 1990
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable within exponential time
$T R S$ is terminating if it is $K B O_{\mathbb{N}}$ terminating

ThEOREM
Dershowitz, 1979
$T R S$ is terminating if it is $K B O_{\mathbb{R} \geqslant 0}$ terminating

Theorem
Dick, Kalmus, and Martin, 1990
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable within exponential time

Theorem
Korovin and Voronkov, 2001, 2003

- $T R S$ is $K B O_{\mathbb{N}}$ terminating \Longleftrightarrow it is $K B O_{\mathbb{R}_{\geqslant 0}}$ terminating
- $K B O_{\mathbb{R}_{\geqslant 0}}$ termination is decidable within polynomial time
$T R S$ is terminating if it is $K B O_{\mathbb{N}}$ terminating
ThEOREM

TRS is terminating if it is $K B O_{\mathbb{R} \geqslant 0}$ terminating

Theorem
Dick, Kalmus, and Martin, 1990
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable within exponential time

Theorem
Korovin and Voronkov, 2001, 2003

- $T R S$ is $K B O_{\mathbb{N}}$ terminating \Longleftrightarrow it is $K B O_{\mathbb{R}_{\geqslant 0}}$ terminating
- $K B O_{\mathbb{R}_{\geqslant 0}}$ termination is decidable within polynomial time
$K B O_{\{0,1, \ldots, B\}}$ termination $(B \in \mathbb{N})$ can reduce to $S A T$ and $P B C$

This Talk

MAIN RESULT

for every TRS \mathcal{R} and $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$
\mathcal{R} is $\mathrm{KBO}_{\mathbb{N}}$ terminating $\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating where, $B=N^{4^{N+1}}$

This Talk

MAIN RESULT

for every TRS \mathcal{R} and $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$
\mathcal{R} is $\mathrm{KBO}_{\mathbb{N}}$ terminating $\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating
where, $B=N^{4^{N+1}}$

OVERVIEW OF PROOF

- Principal Solutions

This Talk

MAIN RESULT

for every TRS \mathcal{R} and $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$
\mathcal{R} is $\mathrm{KBO}_{\mathbb{N}}$ terminating $\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating
where, $B=N^{4^{N+1}}$

OVERVIEW OF PROOF

- Principal Solutions
- MCD

This Talk

MAIN RESULT

for every $\operatorname{TRS} \mathcal{R}$ and $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$
\mathcal{R} is $\mathrm{KBO}_{\mathbb{N}}$ terminating $\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating
where, $B=N^{4^{N+1}}$

OVERVIEW OF PROOF

- Principal Solutions
- MCD
- Bound by Norm

Principal Solutions

Example

given precedence, $\mathrm{KBO}_{\mathbb{N}}$ problem reduces to linear integral constraints
Example

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

Example

given precedence, $\mathrm{KBO}_{\mathbb{N}}$ problem reduces to linear integral constraints
Example

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

- for precedence $a>b$, solve
wrt $w(\mathrm{a}), w(\mathrm{~b}) \in \mathbb{N}$

$$
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b}) \geqslant 0 \quad-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b})>0
$$

Example

given precedence, $\mathrm{KBO}_{\mathbb{N}}$ problem reduces to linear integral constraints
Example

$$
\mathrm{a}(\mathrm{a}(x)) \rightarrow \mathrm{b}(\mathrm{~b}(\mathrm{~b}(x))) \quad \mathrm{b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(x))))) \rightarrow \mathrm{a}(\mathrm{a}(\mathrm{a}(x)))
$$

- for precedence $\mathrm{a}>\mathrm{b}$, solve
wrt $w(\mathrm{a}), w(\mathbf{b}) \in \mathbb{N}$

$$
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b}) \geqslant 0 \quad-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b})>0
$$

- for precedence $>=\varnothing$ solve

$$
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b})>0 \quad-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b})>0
$$

Principal Solutions

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

$$
\left\{\begin{array}{cccc}
\vec{a}_{i} \cdot \vec{x}_{i} & R_{i} & 0 & \}_{i} \\
\text { with } & R_{i} \in\{\geqslant,>\}, \vec{a}_{i} \in \mathbb{Z}^{n}, \vec{x} \in \mathbb{N}
\end{array}\right.
$$

Principal Solutions

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

$$
\left\{\begin{array}{cccc}
\vec{a}_{i} \cdot \vec{x}_{i} & R_{i} & 0 & \}_{i} \\
\text { with } & R_{i} \in\{\geqslant,>\}, \vec{a}_{i} \in \mathbb{Z}^{n}, \vec{x} \in \mathbb{N}
\end{array}\right.
$$

Definition

- write A_{I} for $\left(\vec{a}_{i}\right)_{1, \ldots, n}$

Principal Solutions

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

$$
\left\{\begin{array}{cccc}
\vec{a}_{i} \cdot \vec{x}_{i} & R_{i} & 0 & \}_{i} \\
\text { with } & R_{i} \in\{\geqslant,>\}, \vec{a}_{i} \in \mathbb{Z}^{n}, \vec{x} \in \mathbb{N}
\end{array}\right.
$$

Definition

- write A_{I} for $\left(\vec{a}_{i}\right)_{1, \ldots, n}$
- \vec{x} is solution of A_{I} if $A_{I} \vec{x} \geqslant 0$ and $\vec{x} \in \mathbb{N}^{n}$

Principal Solutions

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

$$
\left\{\begin{array}{cccc}
\vec{a}_{i} \cdot \vec{x}_{i} & R_{i} & 0 & \}_{i} \\
\text { with } & R_{i} \in\{\geqslant,>\}, \vec{a}_{i} \in \mathbb{Z}^{n}, \vec{x} \in \mathbb{N}
\end{array}\right.
$$

Definition

- write A_{I} for $\left(\vec{a}_{i}\right)_{1, \ldots, n}$
- \vec{x} is solution of A_{I} if $A_{I} \vec{x} \geqslant 0$ and $\vec{x} \in \mathbb{N}^{n}$
- solution \vec{x} maximizing $\left\{i \mid \vec{a}_{i} \cdot \vec{x}>0\right\}$ wrt \subseteq is principal

Principal Solutions

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

$$
\left\{\begin{array}{cccc}
\vec{a}_{i} \cdot \vec{x}_{i} & R_{i} & 0 & \}_{i} \\
\text { with } & R_{i} \in\{\geqslant,>\}, \vec{a}_{i} \in \mathbb{Z}^{n}, \vec{x} \in \mathbb{N}
\end{array}\right.
$$

Definition

- write A_{I} for $\left(\vec{a}_{i}\right)_{1, \ldots, n}$
- \vec{x} is solution of A_{I} if $A_{I} \vec{x} \geqslant 0$ and $\vec{x} \in \mathbb{N}^{n}$
- solution \vec{x} maximizing $\left\{i \mid \vec{a}_{i} \cdot \vec{x}>0\right\}$ wrt \subseteq is principal

Theorem

- principal solution of A always exists
- \forall principal solution $\vec{x}: \quad(I$ is solvable $\Longleftrightarrow \vec{x}$ satisfies $I)$

$$
I=\left\{\begin{array}{rcc}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b}) & >0 \\
-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b}) & >0
\end{array}\right\} \quad A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right)
$$

$$
I=\left\{\begin{array}{r}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b})
\end{array}>001 \text { - }-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b}) \quad>0 .\right\} \quad A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right)
$$

since

$$
A_{I}\binom{3}{2}=\binom{0}{1} \quad A_{I}\binom{13}{8}=\binom{2}{1}
$$

- $\binom{3}{2}$ is not principal solution of A_{I}
since

$$
A_{I}\binom{3}{2}=\binom{0}{1} \quad A_{I}\binom{13}{8}=\binom{2}{1}
$$

- $\binom{3}{2}$ is not principal solution of A_{I}
- $\binom{13}{8}$ is principal solution of A_{I} and satisfies I hence I is solvable

Example

$$
I=\left\{\begin{aligned}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b}) & >0 \\
-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b}) & >0 \\
-4 \cdot w(\mathrm{a})+3 \cdot w(\mathrm{~b}) & \geqslant 0
\end{aligned}\right\} \quad A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5 \\
-4 & 3
\end{array}\right)
$$

Example

principal solution of A_{I} is $\binom{0}{0}$ and does not satisfy I

Example

principal solution of A_{I} is $\binom{0}{0}$ and does not satisfy I
hence I is not solvable

Example

$$
I=\left\{\begin{array}{r}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b})>0 \\
-3 \cdot w(\mathrm{a})+5 \cdot w(\mathbf{b})>0 \\
-4 \cdot w(\mathrm{a})+3 \cdot w(\mathbf{b}) \geqslant 0
\end{array}\right\} \quad A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5 \\
-4 & 3
\end{array}\right)
$$

principal solution of A_{I} is $\binom{0}{0}$ and does not satisfy I
hence I is not solvable

QUESTION

how to find principal solution?

Example

$$
I=\left\{\begin{array}{r}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b})
\end{array}>001 . A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5 \\
-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b}) & >0 \\
-4 \cdot w(\mathrm{a})+3 \cdot w(\mathrm{~b}) & \geqslant 0
\end{array}\right\}\right.
$$

principal solution of A_{I} is $\binom{0}{0}$ and does not satisfy I
hence I is not solvable

QUESTION

how to find principal solution? MCD

MCD: Method of Complete Description

MCD

Dick, Kalmus and Martin, 1990

$$
\text { - }\left(a_{1}, \ldots, a_{n}\right)^{\kappa}=\left(\vec{e}_{i} \mid a_{i} \geqslant 0\right)+\left(a_{j} \vec{e}_{i}-a_{i} \vec{e}_{j} \mid a_{i}<0, a_{j}>0\right)
$$

MCD

Dick, Kalmus and Martin, 1990

- $\left(a_{1}, \ldots, a_{n}\right)^{\kappa}=\left(\vec{e}_{i} \mid a_{i} \geqslant 0\right)+\left(a_{j} \vec{e}_{i}-a_{i} \vec{e}_{j} \mid a_{i}<0, a_{j}>0\right)$
- for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$
S_{i}^{A}= \begin{cases}E_{n} & \text { if } i=0 \\ S_{i-1}^{A}\left(\vec{a}_{i} S_{i-1}^{A}\right)^{\kappa} & \text { otherwise }\end{cases}
$$

MCD

Dick, Kalmus and Martin, 1990

- $\left(a_{1}, \ldots, a_{n}\right)^{\kappa}=\left(\vec{e}_{i} \mid a_{i} \geqslant 0\right)+\left(a_{j} \vec{e}_{i}-a_{i} \vec{e}_{j} \mid a_{i}<0, a_{j}>0\right)$
- for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$
S_{i}^{A}= \begin{cases}E_{n} & \text { if } i=0 \\ S_{i-1}^{A}\left(\vec{a}_{i} S_{i-1}^{A}\right)^{\kappa} & \text { otherwise }\end{cases}
$$

- sum of all column vectors of S_{m}^{A} is denoted by \vec{s}^{A}

MCD

Dick, Kalmus and Martin, 1990

- $\left(a_{1}, \ldots, a_{n}\right)^{\kappa}=\left(\vec{e}_{i} \mid a_{i} \geqslant 0\right)+\left(a_{j} \vec{e}_{i}-a_{i} \vec{e}_{j} \mid a_{i}<0, a_{j}>0\right)$
- for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$
S_{i}^{A}= \begin{cases}E_{n} & \text { if } i=0 \\ S_{i-1}^{A}\left(\vec{a}_{i} S_{i-1}^{A}\right)^{\kappa} & \text { otherwise }\end{cases}
$$

- sum of all column vectors of S_{m}^{A} is denoted by \vec{s}^{A}

Theorem
\vec{s}^{A} is principal solution of A

Example

$$
I=\left\{\begin{array}{rc}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b}) & >0 \\
-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b}) & >0
\end{array}\right\} \quad A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right)
$$

Example

performing MCD

Example

$$
I=\left\{\begin{array}{r}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b})
\end{array}>001 \text {-3•w(a)+5:w(b)} \gg 0\right\} \quad A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right\}
$$

performing MCD

$$
\begin{aligned}
& S_{0}^{A_{I}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& S_{1}^{A_{I}}=S_{0}^{A_{I}}\left((2-3) S_{0}^{A_{I}}\right)^{\kappa}=\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right) \\
& S_{2}^{A_{I}}=S_{1}^{A_{I}}\left((-35) S_{1}^{A_{I}}\right)^{\kappa}=\left(\begin{array}{cc}
3 & 10 \\
2 & 6
\end{array}\right)
\end{aligned}
$$

Example

$$
I=\left\{\begin{array}{r}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b})
\end{array}>001 \text { - }-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b}) \quad>0\right\} \quad A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right\}
$$

performing MCD

$$
\begin{aligned}
& S_{0}^{A_{I}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& S_{1}^{A_{I}}=S_{0}^{A_{I}}\left((2-3) S_{0}^{A_{I}}\right)^{\kappa}=\left(\begin{array}{cc}
1 & 3 \\
0 & 2
\end{array}\right) \\
& S_{2}^{A_{I}}=S_{1}^{A_{I}}\left((-35) S_{1}^{A_{I}}\right)^{\kappa}=\left(\begin{array}{cc}
3 & 10 \\
2 & 6
\end{array}\right)
\end{aligned}
$$

we obtain principal solution

$$
\vec{s}^{A_{I}}=\binom{3}{2}+\binom{10}{6}=\binom{13}{8}
$$

Example

$$
I=\left\{\begin{aligned}
2 \cdot w(\mathrm{a})-3 \cdot w(\mathrm{~b}) & >0 \\
-3 \cdot w(\mathrm{a})+5 \cdot w(\mathrm{~b}) & >0
\end{aligned}\right\} \quad A_{I}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right)
$$

performing MCD

$$
\begin{aligned}
& S_{0}^{A_{I}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& S_{1}^{A_{I}}=S_{0}^{A_{I}}\left((2-3) S_{0}^{A_{I}}\right)^{\kappa}=\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right) \\
& S_{2}^{A_{I}}=S_{1}^{A_{I}}\left((-35) S_{1}^{A_{I}}\right)^{\kappa}=\left(\begin{array}{cc}
3 & 10 \\
2 & 6
\end{array}\right)
\end{aligned}
$$

we obtain principal solution

$$
\vec{s}^{A_{I}}=\binom{3}{2}+\binom{10}{6}=\binom{13}{8}
$$

which satisfies I. hence I is solvable

Bound by Norm

MCD

- $\left(a_{1}, \ldots, a_{n}\right)^{\kappa}=\left(\vec{e}_{i} \mid a_{i} \geqslant 0\right)+\left(a_{j} \vec{e}_{i}-a_{i} \vec{e}_{j} \mid a_{i}<0, a_{j}>0\right)$
- for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$
S_{i}^{A}= \begin{cases}E_{n} & \text { if } i=0 \\ S_{i-1}^{A}\left(\vec{a}_{i} S_{i-1}^{A}\right)^{\kappa} & \text { otherwise }\end{cases}
$$

- sum of all column vectors of S_{m}^{A} is denoted by \vec{s}^{A}

MCD

$$
\text { - }\left(a_{1}, \ldots, a_{n}\right)^{\kappa}=\left(\vec{e}_{i} \mid a_{i} \geqslant 0\right)+\left(a_{j} \vec{e}_{i}-a_{i} \vec{e}_{j} \mid a_{i}<0, a_{j}>0\right)
$$

- for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$
S_{i}^{A}= \begin{cases}E_{n} & \text { if } i=0 \\ S_{i-1}^{A}\left(\vec{a}_{i} S_{i-1}^{A}\right)^{\kappa} & \text { otherwise }\end{cases}
$$

- sum of all column vectors of S_{m}^{A} is denoted by \vec{s}^{A}

GOAL

bound $\vec{s}^{A} \in\{0,1, \ldots, B\}^{n}$

MCD

- $\left(a_{1}, \ldots, a_{n}\right)^{\kappa}=\left(\vec{e}_{i} \mid a_{i} \geqslant 0\right)+\left(a_{j} \vec{e}_{i}-a_{i} \vec{e}_{j} \mid a_{i}<0, a_{j}>0\right)$
- for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$
S_{i}^{A}= \begin{cases}E_{n} & \text { if } i=0 \\ S_{i-1}^{A}\left(\vec{a}_{i} S_{i-1}^{A}\right)^{\kappa} & \text { otherwise }\end{cases}
$$

- sum of all column vectors of S_{m}^{A} is denoted by \vec{s}^{A}

GOAL

bound $\vec{s}^{A} \in\{0,1, \ldots, B\}^{n}$

APPROACH

define norm $\|\cdot\|$ to calculate $\left\|\vec{s}^{A_{I}}\right\|$ with $B=\left\|\vec{s}^{A_{I}}\right\|$

Norm

DEFINITION
$\|A\|=\max _{i, j}\left|a_{i j}\right|$ for $m \times n$ matrix $A=\left(a_{i j}\right)_{i j}$

Norm

DEFINITION
$\|A\|=\max _{i, j}\left|a_{i j}\right|$ for $m \times n$ matrix $A=\left(a_{i j}\right)_{i j}$

LEMMA
for every $m \times n$ matrix A and $n \times p$ matrix B

- $\left\|a^{\kappa}\right\|=\|a\|$

Norm

DEFINITION
$\|A\|=\max _{i, j}\left|a_{i j}\right|$ for $m \times n$ matrix $A=\left(a_{i j}\right)_{i j}$

LEMMA
for every $m \times n$ matrix A and $n \times p$ matrix B

- $\left\|a^{\kappa}\right\|=\|a\|$
- $\|A B\| \leqslant n\|A\|\|B\|$

Norm

DEFINITION
$\|A\|=\max _{i, j}\left|a_{i j}\right|$ for $m \times n$ matrix $A=\left(a_{i j}\right)_{i j}$

LEMMA
for every $m \times n$ matrix A and $n \times p$ matrix B

- $\left\|a^{\kappa}\right\|=\|a\|$
- $\|A B\| \leqslant n\|A\|\|B\|$
- $\left(a_{1}, \ldots, a_{n}\right)^{\kappa}$ is $n \times k$ matrix with $k \leqslant n^{2}$.
- S_{i}^{A} is $m \times k$ matrix with $k \leqslant n^{2^{i}}$.

Norm

DEFINITION
$\|A\|=\max _{i, j}\left|a_{i j}\right|$ for $m \times n$ matrix $A=\left(a_{i j}\right)_{i j}$

LEMMA
for every $m \times n$ matrix A and $n \times p$ matrix B

- $\left\|a^{\kappa}\right\|=\|a\|$
- $\|A B\| \leqslant n\|A\|\|B\|$
- $\left(a_{1}, \ldots, a_{n}\right)^{\kappa}$ is $n \times k$ matrix with $k \leqslant n^{2}$.
- S_{i}^{A} is $m \times k$ matrix with $k \leqslant n^{2^{i}}$.
- $\left\|S_{i}^{A}\right\| \leqslant(2 m\|A\|)^{2^{i}-1}$
- $\left\|\vec{s}^{A}\right\| \leqslant n^{2^{m}} \cdot(2 m\|A\|)^{2^{m}-1}$

Lemma

let \mathcal{R} be TRS of size N
I be set of inequalities induced by KBO with fixed precedence
A_{I} be of size $m \times n$

- $m \leqslant N$
- $n \leqslant N$
- $\left\|A_{I}\right\| \leqslant N$
therefore

$$
\left\|\vec{s}^{A_{I}}\right\| \leqslant N^{4^{N+1}}:=B
$$

thus,

$$
\vec{s}^{A_{I}} \in\{0,1, \ldots, B\}^{n}
$$

Main Result

Theorem
\mathcal{R} is $K B O_{\mathbb{N}}$ terminating $\Longleftrightarrow \mathcal{R}$ is $K B O_{\{0,1, \ldots, B\}}$ terminating where, $B=N^{4^{N+1}}$

Main Result

Theorem
\mathcal{R} is $K B O_{\mathbb{N}}$ terminating $\Longleftrightarrow \mathcal{R}$ is $K B O_{\{0,1, \ldots, B\}}$ terminating where, $B=N^{4^{N+1}}$

Corollary
Zankl and Middeldorp's SAT and PBC encodings are complete for this B

Summary

let \mathcal{R} be TRS, $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$, and $B=N^{4^{N+1}}$

\mathcal{R} is $\mathrm{KBO}_{\mathbb{R} \geqslant 0}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\mathbb{N}}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating
Korovin and Voronkov
this talk

Summary

let \mathcal{R} be TRS, $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$, and $B=N^{4^{N+1}}$

\mathcal{R} is $\mathrm{KBO}_{\mathbb{R} \geqslant 0}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\mathbb{N}}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating

Korovin and Voronkov this talk

- theoretical interest of decidability issue is more or less closed

Summary

let \mathcal{R} be TRS, $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$, and $B=N^{4^{N+1}}$

\mathcal{R} is $\mathrm{KBO}_{\mathbb{R} \geqslant 0}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\mathbb{N}}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating

Korovin and Voronkov this talk

- theoretical interest of decidability issue is more or less closed
- how about automation?

Automation

Theorem
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable by $M C D$

Dick, Kalmus, and Martin, 1990

Theorem
Dick, Kalmus, and Martin, 1990
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable by $M C D$

Theorem
Korovin and Voronkov, 2001, 2003
$K B O_{\mathbb{R}_{\geqslant 0}}$ termination is decidable by Karmarkar/Khachiyan algorithm
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable by $M C D$

THEOREM
Korovin and Voronkov, 2001, 2003
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable by Karmarkar/Khachiyan algorithm

Theorem
Zankl and Middeldorp, 2007
$K B O_{\{0,1, \ldots, B\}}$ termination $(B \in \mathbb{N})$ is decidable via SAT/PBC encodings
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable by $M C D$

Theorem
Korovin and Voronkov, 2001, 2003
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable by Karmarkar/Khachiyan algorithm

Theorem
Zankl and Middeldorp, 2007
$K B O_{\{0,1, \ldots, B\}}$ termination $(B \in \mathbb{N})$ is decidable via SAT/PBC encodings

Theorem
$K B O_{\mathbb{R}_{\geqslant 0}}$ termination is decidable via SMT (linear arithmetic) encoding

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron $885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$
- 60 seconds timeout

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron $885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$
- 60 seconds timeout
method(B)
total time (sec)
\#success \#timeout
MCD
444
102
7

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron $885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$
- 60 seconds timeout

method (B)	total time (sec)	\#success	\#timeout
MCD	444	102	7
simplex	370	105	4

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron $885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$
- 60 seconds timeout

method (B)	total time (sec)	\#success	\#timeout
MCD	444	102	7
simplex	370	105	4
SAT $/$ PBC (4)	$31 / 90$	$104 / 104$	$0 / 0$

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron $885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$
- 60 seconds timeout

method (B)	total time (sec)	\#success	\#timeout
MCD	444	102	7
simplex	370	105	4
SAT $/$ PBC(4)	$31 / 90$	$104 / 104$	$0 / 0$
SAT $/ \operatorname{PBC}(8)$	$32 / 93$	$106 / 106$	$0 / 0$

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron $885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$
- 60 seconds timeout

method (B)	total time (sec)	\#success	\#timeout
MCD	444	102	7
simplex	370	105	4
SAT $/$ PBC(4)	$31 / 90$	$104 / 104$	$0 / 0$
SAT $/$ PBC(8)	$32 / 93$	$106 / 106$	$0 / 0$
SAT $/$ PBC(16)	$34 / 100$	$107 / 107$	$0 / 0$

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

method (B)	total time (sec)	\#success	\#timeout
MCD	444	102	7
simplex	370	105	4
SAT $/$ PBC(4)	$31 / 90$	$104 / 104$	$0 / 0$
SAT $/$ PBC(8)	$32 / 93$	$106 / 106$	$0 / 0$
SAT $/$ PBC(16)	$34 / 100$	$107 / 107$	$0 / 0$
SAT $/$ PBC(1024)	$351 / 187$	$107 / 107$	$3 / 1$

Experiments

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron $885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$
- 60 seconds timeout

method (B)	total time (sec)	\#success	\#timeout
MCD	444	102	7
simplex	370	105	4
SAT $/$ PBC(4)	$31 / 90$	$104 / 104$	$0 / 0$
SAT $/$ PBC(8)	$32 / 93$	$106 / 106$	$0 / 0$
SAT $/$ PBC(16)	$34 / 100$	$107 / 107$	$0 / 0$
SAT $/$ PBC(1024)	$351 / 187$	$107 / 107$	$3 / 1$
SMT	26	107	0

Conclusion

let \mathcal{R} be TRS, $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$, and $B=N^{4^{N+1}}$
\mathcal{R} is $\mathrm{KBO}_{\mathbb{R} \geqslant 0}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\mathbb{N}}$ terminating Korovin and Voronkov
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating this talk

CONCLUSION

- finite characterization of KBO orientability
- use SMT solver to automate

Conclusion

let \mathcal{R} be TRS, $N=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)+1$, and $B=N^{4^{N+1}}$
\mathcal{R} is $\mathrm{KBO}_{\mathbb{R} \geqslant 0}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\mathbb{N}}$ terminating Korovin and Voronkov
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating this talk

CONCLUSION

- finite characterization of KBO orientability
- use SMT solver to automate

FUTURE WORK
find optimal B

Thank You for Your Attention

