KBO Orientability

Harald Zankl[‡] <u>Nao Hirokawa</u>[†] Aart Middeldorp[‡]

† Japan Advanced Institute of Science and Technology
 ‡ University of Innsbruck

Reference

JAR 2009 Harald Zankl, Nao Hirokawa, and Aart Middeldorp KBO Orientability Journal of Automated Reasoning 43(2), pp. 173-201, 2009

Term Rewriting

DEFINITION

- pair of terms $l \to r$ is rewrite rule if $l \notin \mathcal{V} \land \mathcal{V}ar(r) \subseteq \mathcal{V}ar(l)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \to_{\mathcal{R}} t$ if $\exists l \to r \in \mathcal{R}$, context C, substitution σ . $s = C[l\sigma] \land t = C[r\sigma]$

Term Rewriting

DEFINITION

- pair of terms $l \to r$ is rewrite rule if $l \notin \mathcal{V} \land \mathcal{V}ar(r) \subseteq \mathcal{V}ar(l)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \to_{\mathcal{R}} t$ if $\exists l \to r \in \mathcal{R}$, context C, substitution σ . $s = C[l\sigma] \land t = C[r\sigma]$

EXAMPLE

TRS \mathcal{R}

$x + 0 \rightarrow x$	$x + s(y) \to s(x + y)$
x imes 0 ightarrow 0	$x\times s(y)\to x\times y+x$

Term Rewriting

DEFINITION

- pair of terms $l \to r$ is rewrite rule if $l \notin \mathcal{V} \land \mathcal{V}ar(r) \subseteq \mathcal{V}ar(l)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \to_{\mathcal{R}} t$ if $\exists l \to r \in \mathcal{R}$, context C, substitution σ . $s = C[l\sigma] \land t = C[r\sigma]$

EXAMPLE

TRS \mathcal{R}

$x + 0 \rightarrow x$	$x + s(y) \to s(x + y)$
x imes 0 ightarrow 0	$x\times s(y)\to x\times y+x$

rewriting

$$\begin{split} \mathsf{s}(0) \times \mathsf{s}(0) &\to_{\mathcal{R}} \mathsf{s}(0) \times \mathsf{0} + \mathsf{s}(0) \\ &\to_{\mathcal{R}} \mathsf{0} + \mathsf{s}(0) \\ &\to_{\mathcal{R}} \mathsf{s}(0 + \mathsf{0}) \\ &\to_{\mathcal{R}} \mathsf{s}(0) \quad \text{terminated} \end{split}$$

DEFINITION

TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

DEFINITION

TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

DEFINITION

TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

INSTITUTE STATE IN CONTRACT STATE STAT

DEFINITION

TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

- INST Knuth-Bendix order (KBO)
 - introduced by Knuth and Bendix, 1970

DEFINITION

TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

- Knuth-Bendix order (KBO)
 - introduced by Knuth and Bendix, 1970
 - best studied termination methods

DEFINITION

TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

- Knuth-Bendix order (KBO) 13
 - introduced by Knuth and Bendix, 1970
 - best studied termination methods
 - great success in theorem provers (Waldmeister, Vampire, ...)

DEFINITION

• precedence > is proper order on function symbols $\mathcal F$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

DEFINITION

- $\bullet~\ensuremath{\mathsf{precedence}}\xspace > \ensuremath{\mathsf{is}}\xspace$ proper order on function symbols $\mathcal F$
- weight function (w, w_0) is pair in $\mathbb{R}_{\geq 0}^{\mathcal{F}} \times \mathbb{R}_{\geq 0}$

・ロト・日本・モート モー うくぐ

DEFINITION

- $\bullet~\ensuremath{\mathsf{precedence}}\xspace > \ensuremath{\mathsf{is}}\xspace$ proper order on function symbols $\mathcal F$
- weight function (w, w_0) is pair in $\mathbb{R}_{\geq 0}^{\mathcal{F}} \times \mathbb{R}_{\geq 0}$
- weight of term t is

$$w(t) = \begin{cases} w_0 & \text{if } t \in \mathcal{V} \\ w(f) + w(t_1) + \dots + w(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

・ロト・日本・モート モー うくぐ

DEFINITION

- $\bullet~{\rm precedence}>{\rm is~proper}~{\rm order}~{\rm on}~{\rm function}~{\rm symbols}~{\cal F}$
- weight function (w, w_0) is pair in $\mathbb{R}_{\geq 0}^{\mathcal{F}} \times \mathbb{R}_{\geq 0}$
- weight of term t is

$$w(t) = \begin{cases} w_0 & \text{if } t \in \mathcal{V} \\ w(f) + w(t_1) + \dots + w(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

• weight function (w, w_0) is admissible for precedence > if

$$w(f) > 0$$
 or $f \geqslant g$

for all unary functions f and all functions g

KBO Orientability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Knuth-Bendix order $>_{\text{kbo}}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s >_{\text{kbo}} t$ if $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$ and either

Knuth-Bendix order $>_{\text{kbo}}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s >_{\text{kbo}} t$ if $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$ and either

• w(s) > w(t), or

Knuth-Bendix order $>_{\text{kbo}}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s >_{\text{kbo}} t$ if $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$ and either

- $\bullet \ w(s) > w(t) \text{, or }$
- w(s) = w(t) and

Knuth-Bendix order $>_{\text{kbo}}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s >_{\text{kbo}} t$ if $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$ and either

- w(s) > w(t), or
- w(s) = w(t) and
 - $s = f^n(t)$ and $t \in \mathcal{V}$ for some unary f and $n \ge 1$; or

Knuth-Bendix order $>_{\text{kbo}}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s >_{\text{kbo}} t$ if $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$ and either

- w(s) > w(t), or
- w(s) = w(t) and
 - $s = f^n(t)$ and $t \in \mathcal{V}$ for some unary f and $n \ge 1$; or
 - $s = f(s_1, \ldots, s_{i-1}, s_i, \ldots, s_n)$, $t = f(s_1, \ldots, s_{i-1}, t_i, \ldots, t_n)$, and $s_i >_{\text{kbo}} t_i$; or

Knuth-Bendix order $>_{\text{kbo}}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s >_{\text{kbo}} t$ if $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$ and either

- w(s) > w(t), or
- w(s) = w(t) and
 - $s = f^n(t)$ and $t \in \mathcal{V}$ for some unary f and $n \ge 1$; or
 - $s = f(s_1, \ldots, s_{i-1}, s_i, \ldots, s_n)$, $t = f(s_1, \ldots, s_{i-1}, t_i, \ldots, t_n)$, and $s_i >_{\text{kbo}} t_i$; or

•
$$s = f(s_1, \ldots, s_n)$$
, $t = g(t_1, \ldots, t_m)$, and $f > g$

let $X \subseteq \mathbb{R}_{\geq 0}$. TRS \mathcal{R} is KBO_X terminating if

• \exists precedence >

• \exists admissible weight function $(w, w_0) \in X^{\mathcal{F}} \times X$

such that $l >_{\text{kbo}} r$ for all $l \to r \in \mathcal{R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

let $X \subseteq \mathbb{R}_{\geq 0}$. TRS \mathcal{R} is KBO_X terminating if

• \exists precedence >

• \exists admissible weight function $(w, w_0) \in X^{\mathcal{F}} \times X$

such that $l >_{\text{kbo}} r$ for all $l \to r \in \mathcal{R}$

Theorem

Knuth and Bendix, 1970

TRS is terminating if it is $KBO_{\mathbb{N}}$ terminating

Quiz

 $a(a(x)) \rightarrow b(b(b(x))) \qquad b(b(b(b(x)))) \rightarrow a(a(a(x)))$

 $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{b}(\mathsf{b}(\mathsf{b}(x))) \qquad \quad \mathsf{b}(\mathsf{b}(\mathsf{b}(\mathsf{b}(x))))) \to \mathsf{a}(\mathsf{a}(\mathsf{a}(x)))$

is $\mathsf{KBO}_{\mathbb{N}}$ terminating ?

 $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{b}(\mathsf{b}(\mathsf{b}(x))) \qquad \quad \mathsf{b}(\mathsf{b}(\mathsf{b}(\mathsf{b}(x))))) \to \mathsf{a}(\mathsf{a}(\mathsf{a}(x)))$

is $\mathsf{KBO}_{\mathbb{N}}$ terminating ? — yes

Proof

take precedence a > b and weight function

$$w(a) = ?$$
 $w(b) = ?$ $w_0 = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{b}(\mathsf{b}(\mathsf{b}(x))) \qquad \quad \mathsf{b}(\mathsf{b}(\mathsf{b}(\mathsf{b}(x))))) \to \mathsf{a}(\mathsf{a}(\mathsf{a}(x)))$

is $\mathsf{KBO}_{\mathbb{N}}$ terminating ? — yes

Proof

take precedence a > b and weight function

$$w(a) = 3$$
 $w(b) = 2$ $w_0 = 1$

 $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{b}(\mathsf{b}(\mathsf{b}(x))) \qquad \quad \mathsf{b}(\mathsf{b}(\mathsf{b}(\mathsf{b}(x))))) \to \mathsf{a}(\mathsf{a}(\mathsf{a}(x)))$

is $\mathsf{KBO}_\mathbb{N}$ terminating ? — yes

Proof

take precedence a > b and weight function

w(a) = 3 w(b) = 2 $w_0 = 1$

Proof

another solution: take precedence $> = \emptyset$ and weight function

$$w(\mathsf{a}) = ?$$
 $w(\mathsf{b}) = ?$ $w_0 = 1$

 $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{b}(\mathsf{b}(\mathsf{b}(x))) \qquad \quad \mathsf{b}(\mathsf{b}(\mathsf{b}(\mathsf{b}(x))))) \to \mathsf{a}(\mathsf{a}(\mathsf{a}(x)))$

is $\mathsf{KBO}_\mathbb{N}$ terminating ? — yes

Proof

take precedence a > b and weight function

w(a) = 3 w(b) = 2 $w_0 = 1$

Proof

another solution: take precedence $> = \emptyset$ and weight function

w(a) = 13 w(b) = 8 $w_0 = 1$

TRS \mathcal{R}

 $\begin{array}{ll} x + \mathbf{0} \to x & x + \mathbf{s}(y) \to \mathbf{s}(x + y) \\ x \times \mathbf{0} \to \mathbf{0} & x \times \mathbf{s}(y) \to x \times y + x \end{array}$

is $\mathsf{KBO}_{\mathbb{N}}$ terminating ?

TRS \mathcal{R}

is $\mathsf{KBO}_{\mathbb{N}}$ terminating ? — no

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

History of KBO

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

THEOREM

Knuth and Bendix, 1970

TRS is terminating if it is $KBO_{\mathbb{N}}$ terminating

Theorem

Knuth and Bendix, 1970

TRS is terminating if it is $KBO_{\mathbb{N}}$ terminating

Theorem

TRS is terminating if it is $KBO_{\mathbb{R}_{\geq 0}}$ terminating

Dershowitz, 1979

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

THEOREM

Knuth and Bendix, 1970

TRS is terminating if it is $KBO_{\mathbb{N}}$ terminating

Theorem

Dershowitz, 1979

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへの

TRS is terminating if it is $KBO_{\mathbb{R}_{\geq 0}}$ terminating

Theorem

Dick, Kalmus, and Martin, 1990

 $KBO_{\mathbb{R}_{\geq 0}}$ termination is decidable within exponential time

Theorem

Knuth and Bendix, 1970

TRS is terminating if it is $KBO_{\mathbb{N}}$ terminating

Theorem

Dershowitz, 1979

TRS is terminating if it is $KBO_{\mathbb{R}_{\geq 0}}$ terminating

Theorem

Dick, Kalmus, and Martin, 1990

 $KBO_{\mathbb{R}_{\geq 0}}$ termination is decidable within exponential time

<u>Theorem</u>

Korovin and Voronkov, 2001, 2003

- TRS is $KBO_{\mathbb{N}}$ terminating \iff it is $KBO_{\mathbb{R}_{\geq 0}}$ terminating
- $KBO_{\mathbb{R}_{\geq 0}}$ termination is decidable within polynomial time

Theorem

Knuth and Bendix, 1970

TRS is terminating if it is $KBO_{\mathbb{N}}$ terminating

Theorem

Dershowitz, 1979

TRS is terminating if it is $KBO_{\mathbb{R}_{\geq 0}}$ terminating

Theorem

Dick, Kalmus, and Martin, 1990

 $KBO_{\mathbb{R}_{\geq 0}}$ termination is decidable within exponential time

Theorem

Korovin and Voronkov, 2001, 2003

- TRS is $KBO_{\mathbb{N}}$ terminating \iff it is $KBO_{\mathbb{R}_{\geq 0}}$ terminating
- $KBO_{\mathbb{R}_{\geq 0}}$ termination is decidable within polynomial time

Theorem

Zankl and Middeldorp, 2007

 $KBO_{\{0,1,\ldots,B\}}$ termination $(B \in \mathbb{N})$ can reduce to SAT and PBC

KBO Orientability

MAIN RESULT

for every TRS $\mathcal R$ and $N = \sum_{l \to r \in \mathcal R} (|l| + |r|) + 1$

 ${\cal R} \mbox{ is KBO}_{\mathbb N} \mbox{ terminating } \iff {\cal R} \mbox{ is KBO}_{\{0,1,...,B\}} \mbox{ terminating }$ where, $B=N^{4^{N+1}}$

MAIN RESULT

for every TRS $\mathcal R$ and $N = \sum_{l \to r \in \mathcal R} (|l| + |r|) + 1$

 $\mathcal{R} ext{ is KBO}_{\mathbb{N}} ext{ terminating } \iff \mathcal{R} ext{ is KBO}_{\{0,1,\dots,B\}} ext{ terminating }$

where, $\boldsymbol{B} = N^{4^{N+1}}$

OVERVIEW OF PROOF

• Principal Solutions

MAIN RESULT

for every TRS $\mathcal R$ and $N=\sum_{l\rightarrow r\in \mathcal R}(|l|+|r|)+1$

 $\mathcal{R} ext{ is KBO}_{\mathbb{N}} ext{ terminating } \iff \mathcal{R} ext{ is KBO}_{\{0,1,\dots,B\}} ext{ terminating }$

where, $\boldsymbol{B} = N^{4^{N+1}}$

OVERVIEW OF PROOF

• Principal Solutions

MCD

MAIN RESULT

for every TRS $\mathcal R$ and $N = \sum_{l \to r \in \mathcal R} (|l| + |r|) + 1$

 $\mathcal{R} ext{ is KBO}_{\mathbb{N}} ext{ terminating } \iff \mathcal{R} ext{ is KBO}_{\{0,1,\dots,B\}} ext{ terminating }$

where, $\boldsymbol{B} = N^{4^{N+1}}$

OVERVIEW OF PROOF

- Principal Solutions
- MCD
- Bound by Norm

given precedence, $\mathsf{KBO}_{\mathbb{N}}$ problem reduces to linear integral constraints

EXAMPLE

 $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{b}(\mathsf{b}(\mathsf{b}(x))) \qquad \quad \mathsf{b}(\mathsf{b}(\mathsf{b}(\mathsf{b}(x))))) \to \mathsf{a}(\mathsf{a}(\mathsf{a}(x)))$

・ロト・日本・エート・エー うくぐ

given precedence, $KBO_{\mathbb{N}}$ problem reduces to linear integral constraints <u>Example</u>

 $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{b}(\mathsf{b}(\mathsf{b}(x))) \qquad \quad \mathsf{b}(\mathsf{b}(\mathsf{b}(\mathsf{b}(x))))) \to \mathsf{a}(\mathsf{a}(\mathsf{a}(x)))$

• for precedence a > b, solve $2 \cdot w(a) - 3 \cdot w(b) \ge 0$ $-3 \cdot w(a) + 5 \cdot w(b) > 0$

given precedence, $KBO_{\mathbb{N}}$ problem reduces to linear integral constraints <u>Example</u>

 $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{b}(\mathsf{b}(\mathsf{b}(x))) \qquad \quad \mathsf{b}(\mathsf{b}(\mathsf{b}(\mathsf{b}(x))))) \to \mathsf{a}(\mathsf{a}(\mathsf{a}(x)))$

• for precedence a > b, solve $2 \cdot w(a) - 3 \cdot w(b) \ge 0$ • for precedence $> = \emptyset$ solve $2 \cdot w(a) - 3 \cdot w(b) > 0$ $3 \cdot w(a) + 5 \cdot w(b) > 0$ $2 \cdot w(a) - 3 \cdot w(b) > 0$ $-3 \cdot w(a) + 5 \cdot w(b) > 0$

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

 $\{ \vec{a}_i \cdot \vec{x}_i \ R_i \ 0 \}_i$ with $R_i \in \{ \geq, > \}, \vec{a}_i \in \mathbb{Z}^n, \vec{x} \in \mathbb{N}$

・ロト・日本・エート・エー うくぐ

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

 $\{ \vec{a}_i \cdot \vec{x}_i \ R_i \ 0 \}_i \quad \text{with} \quad R_i \in \{ \geq, > \}, \vec{a}_i \in \mathbb{Z}^n, \vec{x} \in \mathbb{N}$

DEFINITION

• write A_I for $(\vec{a}_i)_{1,...,n}$

・ロト・日本・エート・エー うくぐ

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

 $\{ \vec{a}_i \cdot \vec{x}_i \ R_i \ 0 \}_i \quad \text{with} \quad R_i \in \{ \geq, > \}, \vec{a}_i \in \mathbb{Z}^n, \vec{x} \in \mathbb{N}$

DEFINITION

- write A_I for $(\vec{a}_i)_{1,...,n}$
- \vec{x} is solution of A_I if $A_I \vec{x} \ge 0$ and $\vec{x} \in \mathbb{N}^n$

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

 $\{ \vec{a}_i \cdot \vec{x}_i \ R_i \ 0 \}_i \quad \text{with} \quad R_i \in \{ \geq, > \}, \vec{a}_i \in \mathbb{Z}^n, \vec{x} \in \mathbb{N}$

DEFINITION

- write A_I for $(\vec{a}_i)_{1,...,n}$
- \vec{x} is solution of A_I if $A_I \vec{x} \ge 0$ and $\vec{x} \in \mathbb{N}^n$
- solution \vec{x} maximizing $\{i \mid \vec{a}_i \cdot \vec{x} > 0\}$ wrt \subseteq is principal

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form

 $\{ \vec{a}_i \cdot \vec{x}_i \ R_i \ 0 \}_i \quad \text{with} \quad R_i \in \{ \geq, > \}, \vec{a}_i \in \mathbb{Z}^n, \vec{x} \in \mathbb{N}$

DEFINITION

- write A_I for $(\vec{a}_i)_{1,...,n}$
- \vec{x} is solution of A_I if $A_I \vec{x} \ge 0$ and $\vec{x} \in \mathbb{N}^n$
- solution \vec{x} maximizing $\{i \mid \vec{a}_i \cdot \vec{x} > 0\}$ wrt \subseteq is principal

Theorem

- principal solution of A always exists
- \forall principal solution \vec{x} : (I is solvable $\iff \vec{x}$ satisfies I)

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathsf{a}) - 3 \cdot w(\mathsf{b}) > 0\\ -3 \cdot w(\mathsf{a}) + 5 \cdot w(\mathsf{b}) > 0 \end{array} \right\} \qquad A_I = \begin{pmatrix} 2 & -3\\ -3 & 5 \end{pmatrix}$$

・ロット 4回ッ 4回ッ 4回ッ 4日・

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathsf{a}) - 3 \cdot w(\mathsf{b}) > 0\\ -3 \cdot w(\mathsf{a}) + 5 \cdot w(\mathsf{b}) > 0 \end{array} \right\} \qquad A_I = \begin{pmatrix} 2 & -3\\ -3 & 5 \end{pmatrix}$$

since

$$A_I \begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} \qquad \qquad A_I \begin{pmatrix} 13\\8 \end{pmatrix} = \begin{pmatrix} 2\\1 \end{pmatrix}$$

•
$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 is not principal solution of A_I

<□ > < @ > < E > < E > E のQ @

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathsf{a}) - 3 \cdot w(\mathsf{b}) > 0\\ -3 \cdot w(\mathsf{a}) + 5 \cdot w(\mathsf{b}) > 0 \end{array} \right\} \qquad A_I = \begin{pmatrix} 2 & -3\\ -3 & 5 \end{pmatrix}$$

since

$$A_{I}\begin{pmatrix}3\\2\end{pmatrix} = \begin{pmatrix}0\\1\end{pmatrix} \qquad A_{I}\begin{pmatrix}13\\8\end{pmatrix} = \begin{pmatrix}2\\1\end{pmatrix}$$
• $\begin{pmatrix}3\\2\end{pmatrix}$ is not principal solution of A_{I}
• $\begin{pmatrix}13\\8\end{pmatrix}$ is principal solution of A_{I} and satisfies I
hence I is solvable

<□ > < @ > < E > < E > E のQ @

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathbf{a}) - 3 \cdot w(\mathbf{b}) > 0\\ -3 \cdot w(\mathbf{a}) + 5 \cdot w(\mathbf{b}) > 0\\ -4 \cdot w(\mathbf{a}) + 3 \cdot w(\mathbf{b}) \ge 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5\\ -4 & 3 \end{array} \right)$$

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathbf{a}) - 3 \cdot w(\mathbf{b}) > 0\\ -3 \cdot w(\mathbf{a}) + 5 \cdot w(\mathbf{b}) > 0\\ -4 \cdot w(\mathbf{a}) + 3 \cdot w(\mathbf{b}) \ge 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5\\ -4 & 3 \end{array} \right)$$

principal solution of A_I is $\begin{pmatrix} 0\\ 0 \end{pmatrix}$ and does not satisfy I

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathbf{a}) - 3 \cdot w(\mathbf{b}) > 0\\ -3 \cdot w(\mathbf{a}) + 5 \cdot w(\mathbf{b}) > 0\\ -4 \cdot w(\mathbf{a}) + 3 \cdot w(\mathbf{b}) \ge 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5\\ -4 & 3 \end{array} \right)$$

principal solution of A_I is $\begin{pmatrix} 0\\ 0 \end{pmatrix}$ and does not satisfy I hence I is not solvable

KBO Orientability

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathbf{a}) - 3 \cdot w(\mathbf{b}) > 0\\ -3 \cdot w(\mathbf{a}) + 5 \cdot w(\mathbf{b}) > 0\\ -4 \cdot w(\mathbf{a}) + 3 \cdot w(\mathbf{b}) \ge 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5\\ -4 & 3 \end{array} \right)$$

principal solution of
$$A_I$$
 is $\begin{pmatrix} 0\\ 0 \end{pmatrix}$ and does not satisfy I hence I is not solvable

QUESTION

how to find principal solution?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathbf{a}) - 3 \cdot w(\mathbf{b}) > 0\\ -3 \cdot w(\mathbf{a}) + 5 \cdot w(\mathbf{b}) > 0\\ -4 \cdot w(\mathbf{a}) + 3 \cdot w(\mathbf{b}) \ge 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5\\ -4 & 3 \end{array} \right)$$

principal solution of
$$A_I$$
 is $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and does not satisfy I hence I is not solvable

QUESTION

how to find principal solution?

IN MCD

MCD: Method of Complete Description

Dick, Kalmus and Martin, 1990

• $(a_1, \ldots, a_n)^{\kappa} = (\vec{e_i} \mid a_i \ge 0) + (a_j \vec{e_i} - a_i \vec{e_j} \mid a_i < 0, a_j > 0)$

Dick, Kalmus and Martin, 1990

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $(a_1, \dots, a_n)^{\kappa} = (\vec{e_i} \mid a_i \ge 0) + (a_j \vec{e_i} - a_i \vec{e_j} \mid a_i < 0, a_j > 0)$

• for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$S_i^A = \begin{cases} E_n & \text{if } i = 0\\ S_{i-1}^A (\vec{a}_i S_{i-1}^A)^\kappa & \text{otherwise} \end{cases}$$

Dick, Kalmus and Martin, 1990

• $(a_1, \dots, a_n)^{\kappa} = (\vec{e_i} \mid a_i \ge 0) + (a_j \vec{e_i} - a_i \vec{e_j} \mid a_i < 0, a_j > 0)$

• for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$S_i^A = \begin{cases} E_n & \text{if } i = 0\\ S_{i-1}^A (\vec{a}_i S_{i-1}^A)^\kappa & \text{otherwise} \end{cases}$$

• sum of all column vectors of S_m^A is denoted by \vec{s}^A

Dick, Kalmus and Martin, 1990

• $(a_1, \dots, a_n)^{\kappa} = (\vec{e_i} \mid a_i \ge 0) + (a_j \vec{e_i} - a_i \vec{e_j} \mid a_i < 0, a_j > 0)$

• for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$S_i^A = \begin{cases} E_n & \text{if } i = 0\\ S_{i-1}^A (\vec{a}_i S_{i-1}^A)^\kappa & \text{otherwise} \end{cases}$$

• sum of all column vectors of S_m^A is denoted by \vec{s}^A

Theorem

 \vec{s}^A is principal solution of A

KBO Orientability

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathsf{a}) - 3 \cdot w(\mathsf{b}) > 0\\ -3 \cdot w(\mathsf{a}) + 5 \cdot w(\mathsf{b}) > 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5 \end{array} \right)$$

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathsf{a}) - 3 \cdot w(\mathsf{b}) > 0\\ -3 \cdot w(\mathsf{a}) + 5 \cdot w(\mathsf{b}) > 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5 \end{array} \right)$$

performing MCD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathsf{a}) - 3 \cdot w(\mathsf{b}) > 0\\ -3 \cdot w(\mathsf{a}) + 5 \cdot w(\mathsf{b}) > 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5 \end{array} \right)$$

performing MCD

$$S_0^{A_I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S_1^{A_I} = S_0^{A_I} ((2 - 3)S_0^{A_I})^{\kappa} = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$$

$$S_2^{A_I} = S_1^{A_I} ((-3 5)S_1^{A_I})^{\kappa} = \begin{pmatrix} 3 & 10 \\ 2 & 6 \end{pmatrix}$$

KBO Orientability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathsf{a}) - 3 \cdot w(\mathsf{b}) > 0\\ -3 \cdot w(\mathsf{a}) + 5 \cdot w(\mathsf{b}) > 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5 \end{array} \right)$$

performing MCD

$$S_0^{A_I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$S_1^{A_I} = S_0^{A_I} ((2 - 3)S_0^{A_I})^{\kappa} = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$$
$$S_2^{A_I} = S_1^{A_I} ((-3 5)S_1^{A_I})^{\kappa} = \begin{pmatrix} 3 & 10 \\ 2 & 6 \end{pmatrix}$$

we obtain principal solution

$$\vec{s}^{A_I} = \begin{pmatrix} 3\\2 \end{pmatrix} + \begin{pmatrix} 10\\6 \end{pmatrix} = \begin{pmatrix} 13\\8 \end{pmatrix}$$

KBO Orientability

$$I = \left\{ \begin{array}{cc} 2 \cdot w(\mathsf{a}) - 3 \cdot w(\mathsf{b}) > 0\\ -3 \cdot w(\mathsf{a}) + 5 \cdot w(\mathsf{b}) > 0 \end{array} \right\} \qquad A_I = \left(\begin{array}{cc} 2 & -3\\ -3 & 5 \end{array} \right)$$

performing MCD

$$S_0^{A_I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$S_1^{A_I} = S_0^{A_I} ((2 - 3)S_0^{A_I})^{\kappa} = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$$
$$S_2^{A_I} = S_1^{A_I} ((-3 5)S_1^{A_I})^{\kappa} = \begin{pmatrix} 3 & 10 \\ 2 & 6 \end{pmatrix}$$

we obtain principal solution

$$\vec{s}^{A_I} = \begin{pmatrix} 3\\2 \end{pmatrix} + \begin{pmatrix} 10\\6 \end{pmatrix} = \begin{pmatrix} 13\\8 \end{pmatrix}$$

which satisfies *I*. hence *I* is solvable

KBO Orientability

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Bound by Norm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $(a_1, \dots, a_n)^{\kappa} = (\vec{e_i} \mid a_i \ge 0) + (a_j \vec{e_i} - a_i \vec{e_j} \mid a_i < 0, a_j > 0)$

• for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$S_i^A = \begin{cases} E_n & \text{if } i = 0\\ S_{i-1}^A (\vec{a}_i S_{i-1}^A)^\kappa & \text{otherwise} \end{cases}$$

• sum of all column vectors of S_m^A is denoted by \vec{s}^A

• $(a_1, \dots, a_n)^{\kappa} = (\vec{e_i} \mid a_i \ge 0) + (a_j \vec{e_i} - a_i \vec{e_j} \mid a_i < 0, a_j > 0)$

• for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$S_i^A = \begin{cases} E_n & \text{if } i = 0\\ S_{i-1}^A (\vec{a}_i S_{i-1}^A)^\kappa & \text{otherwise} \end{cases}$$

• sum of all column vectors of S^A_m is denoted by \vec{s}^A

GOAL bound $\vec{s}^A \in \{0, 1, \dots, B\}^n$

MCD

• $(a_1, \dots, a_n)^{\kappa} = (\vec{e_i} \mid a_i \ge 0) + (a_j \vec{e_i} - a_i \vec{e_j} \mid a_i < 0, a_j > 0)$

• for $m \times n$ matrix A and $0 \leqslant i \leqslant m$

$$S_i^A = \begin{cases} E_n & \text{if } i = 0\\ S_{i-1}^A (\vec{a}_i S_{i-1}^A)^\kappa & \text{otherwise} \end{cases}$$

• sum of all column vectors of S^A_m is denoted by \vec{s}^A

GOAL bound $\vec{s}^A \in \{0, 1, \dots, B\}^n$

APPROACH

define norm $\|\cdot\|$ to calculate $\|\vec{s}^{A_I}\|$ with $B = \|\vec{s}^{A_I}\|$

KBO Orientability

$\frac{\text{DEFINITION}}{\|A\| = \max_{i,j} |a_{ij}| \text{ for } m \times n \text{ matrix } A = (a_{ij})_{ij}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

DEFINITION

 $||A|| = \max_{i,j} |a_{ij}|$ for $m \times n$ matrix $A = (a_{ij})_{ij}$

Lemma

for every $m \times n$ matrix A and $n \times p$ matrix B

 $\bullet \ \|a^\kappa\| = \|a\|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

DEFINITION

 $||A|| = \max_{i,j} |a_{ij}|$ for $m \times n$ matrix $A = (a_{ij})_{ij}$

Lemma

for every $m \times n$ matrix A and $n \times p$ matrix B

- $||a^{\kappa}|| = ||a||$
- $\bullet \ \|AB\| \leqslant n \|A\| \|B\|$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

DEFINITION

 $||A|| = \max_{i,j} |a_{ij}|$ for $m \times n$ matrix $A = (a_{ij})_{ij}$

LEMMA

for every $m \times n$ matrix A and $n \times p$ matrix B

- $\bullet \ \|a^{\kappa}\| = \|a\|$
- $||AB|| \leq n ||A|| ||B||$
- $(a_1, \ldots, a_n)^{\kappa}$ is $n \times k$ matrix with $k \leq n^2$.
- S_i^A is $m \times k$ matrix with $k \leq n^{2^i}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

DEFINITION

 $||A|| = \max_{i,j} |a_{ij}|$ for $m \times n$ matrix $A = (a_{ij})_{ij}$

LEMMA

for every $m \times n$ matrix A and $n \times p$ matrix B

- $\bullet \ \|a^{\kappa}\| = \|a\|$
- $||AB|| \leq n ||A|| ||B||$
- $(a_1, \ldots, a_n)^{\kappa}$ is $n \times k$ matrix with $k \leq n^2$.
- S_i^A is $m \times k$ matrix with $k \leq n^{2^i}$.
- $||S_i^A|| \leq (2m||A||)^{2^i 1}$
- $\|\vec{s}^A\| \leqslant n^{2^m} \cdot (2m\|A\|)^{2^m-1}$

LEMMA

let \mathcal{R} be TRS of size NI be set of inequalities induced by KBO with fixed precedence A_I be of size $m \times n$

- $m \leqslant N$
- $n \leqslant N$
- $||A_I|| \leq N$

therefore

$$\|\vec{s}^{A_I}\| \leqslant N^{4^{N+1}} := B$$

thus,

$$\vec{s}^{A_I} \in \{0, 1, \dots, B\}^n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Main Result

THEOREM

 \mathcal{R} is $KBO_{\mathbb{N}}$ terminating $\iff \mathcal{R}$ is $KBO_{\{0,1,\dots,B\}}$ terminating where, $B = N^{4^{N+1}}$

Main Result

Theorem

 \mathcal{R} is $KBO_{\mathbb{N}}$ terminating $\iff \mathcal{R}$ is $KBO_{\{0,1,\dots,B\}}$ terminating where, $B = N^{4^{N+1}}$

COROLLARY

Zankl and Middeldorp's SAT and PBC encodings are complete for this B

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Summary

let $\mathcal R$ be TRS, $N=\sum_{l\to r\in \mathcal R}(|l|+|r|)+1,$ and ${\pmb B}=N^{4^{N+1}}$

 \mathcal{R} is $\mathsf{KBO}_{\mathbb{R}_{\geq 0}}$ terminating

- $\iff \mathcal{R} \text{ is KBO}_{\mathbb{N}} \text{ terminating}$
- $\iff \mathcal{R} \text{ is KBO}_{\{0,1,\ldots,B\}} \text{ terminating}$

Korovin and Voronkov

this talk

・ロト・日本・エート・エー うくぐ

Summary

let $\mathcal R$ be TRS, $N=\sum_{l\to r\in \mathcal R}(|l|+|r|)+1,$ and ${\pmb B}=N^{4^{N+1}}$

 $\begin{array}{ll} \mathcal{R} \text{ is } \mathsf{KBO}_{\mathbb{R} \geqslant 0} \text{ terminating} \\ \Leftrightarrow & \mathcal{R} \text{ is } \mathsf{KBO}_{\mathbb{N}} \text{ terminating} & \mathsf{Korovin and } \mathsf{Voronkov} \\ \Leftrightarrow & \mathcal{R} \text{ is } \mathsf{KBO}_{\{0,1,\ldots,B\}} \text{ terminating} & \mathsf{this talk} \end{array}$

• theoretical interest of decidability issue is more or less closed

Summary

let $\mathcal R$ be TRS, $N=\sum_{l\to r\in \mathcal R}(|l|+|r|)+1,$ and ${\pmb B}=N^{4^{N+1}}$

• theoretical interest of decidability issue is more or less closed

• how about automation?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Automation

<□ > < @ > < E > < E > E のQ @

Dick, Kalmus, and Martin, 1990

 $KBO_{\mathbb{R}_{\geq 0}}$ termination is decidable by MCD

Dick, Kalmus, and Martin, 1990

 $KBO_{\mathbb{R}_{\geq 0}}$ termination is decidable by MCD

Theorem

Korovin and Voronkov, 2001, 2003

 $KBO_{\mathbb{R}>0}$ termination is decidable by Karmarkar/Khachiyan algorithm

Dick, Kalmus, and Martin, 1990

 $KBO_{\mathbb{R}_{>0}}$ termination is decidable by MCD

THEOREM Korovin and Voronkov. 2001. 2003 $KBO_{\mathbb{R}>0}$ termination is decidable by Karmarkar/Khachiyan algorithm

THEOREM Zankl and Middeldorp, 2007 $KBO_{\{0,1,\dots,B\}}$ termination $(B \in \mathbb{N})$ is decidable via SAT/PBC encodings

Dick, Kalmus, and Martin, 1990

 $KBO_{\mathbb{R}_{>0}}$ termination is decidable by MCD

THEOREM Korovin and Voronkov. 2001. 2003 $KBO_{\mathbb{R}>0}$ termination is decidable by Karmarkar/Khachiyan algorithm

THEOREM Zankl and Middeldorp, 2007 $KBO_{\{0,1,\dots,B\}}$ termination $(B \in \mathbb{N})$ is decidable via SAT/PBC encodings

Theorem

 $KBO_{\mathbb{R}_{>0}}$ termination is decidable via SMT (linear arithmetic) encoding

• test-bed: 1381 TRSs from Termination Problem Data Base 4.0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

method(B)	total time (sec)	#success	#timeout
MCD	444	102	7

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

method(B)	total time (sec)	#success	#timeout
MCD	444	102	7
simplex	370	105	4

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

method(B)	total time (sec)	#success	#timeout
MCD	444	102	7
simplex	370	105	4
SAT/PBC(4)	31/90	104/104	0/0

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

method(B)	total time (sec)	#success	#timeout
MCD	444	102	7
simplex	370	105	4
SAT/PBC(4)	31/90	104/104	0/0
SAT/PBC(8)	32/93	106/106	0/0

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

method(B)	total time (sec)	#success	#timeout
MCD	444	102	7
simplex	370	105	4
SAT/PBC(4)	31/90	104/104	0/0
SAT/PBC(8)	32/93	106/106	0/0
SAT/PBC(16)	34/100	107/107	0/0

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

method(B)	total time (sec)	#success	#timeout
MCD	444	102	7
simplex	370	105	4
SAT/PBC(4)	31/90	104/104	0/0
SAT/PBC(8)	32/93	106/106	0/0
SAT/PBC(16)	34/100	107/107	0/0
SAT/PBC(1024)	351/187	107/107	3/1

- test-bed: 1381 TRSs from Termination Problem Data Base 4.0
- PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB
- 60 seconds timeout

method(B)	total time (sec)	#success	#timeout
MCD	444	102	7
simplex	370	105	4
SAT/PBC(4)	31/90	104/104	0/0
SAT/PBC(8)	32/93	106/106	0/0
SAT/PBC(16)	34/100	107/107	0/0
SAT/PBC(1024)	351/187	107/107	3/1
SMT	26	107	0

Conclusion

let $\mathcal R$ be TRS, $N=\sum_{l\to r\in \mathcal R} (|l|+|r|)+1,$ and ${\pmb B}=N^{4^{N+1}}$

 \mathcal{R} is $\mathsf{KBO}_{\mathbb{R}_{\geq 0}}$ terminating

 $\iff \mathcal{R} \text{ is KBO}_{\mathbb{N}} \text{ terminating}$

 $\iff \mathcal{R} \text{ is KBO}_{\{0,1,\ldots,B\}} \text{ terminating}$

Korovin and Voronkov

this talk

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CONCLUSION

- finite characterization of KBO orientability
- use SMT solver to automate

Conclusion

let $\mathcal R$ be TRS, $N=\sum_{l\to r\in \mathcal R} (|l|+|r|)+1,$ and ${\pmb B}=N^{4^{N+1}}$

 \mathcal{R} is $\mathsf{KBO}_{\mathbb{R}_{\geq 0}}$ terminating

- $\iff \mathcal{R} \text{ is KBO}_{\mathbb{N}} \text{ terminating}$
- $\iff \mathcal{R} \text{ is KBO}_{\{0,1,\ldots,B\}} \text{ terminating}$

Korovin and Voronkov

this talk

CONCLUSION

- finite characterization of KBO orientability
- use SMT solver to automate

FUTURE WORK

find optimal B

Thank You for Your Attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?