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Term Rewriting

Definition

pair of terms l→ r is rewrite rule if l 6∈ V ∧ Var(r) ⊆ Var(l)
term rewrite system (TRS) is set of rewrite rules

(rewrite relation) s→R t if ∃l→ r ∈ R, context C, substitution σ.
s = C[lσ] ∧ t = C[rσ]

Example

TRS R
x + 0→ x x + s(y)→ s(x + y)

x× 0→ 0 x× s(y)→ x× y + x

rewriting

s(0)× s(0)→R s(0)× 0 + s(0)

→R 0 + s(0)

→R s(0 + 0)

→R s(0) terminated
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Termination

Definition

TRS R is terminating if there is no infinite rewrite sequence
t1 →R t2 →R · · ·

QUESTION

how to prove termination?

+ Knuth-Bendix order (KBO)

introduced by Knuth and Bendix, 1970

best studied termination methods

great success in theorem provers (Waldmeister, Vampire, ...)
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Knuth-Bendix Orders

Definition

precedence > is proper order on function symbols F

weight function (w,w0) is pair in R>0
F × R>0

weight of term t is

w(t) =

{
w0 if t ∈ V
w(f) + w(t1) + · · ·+ w(tn) if t = f(t1, . . . , tn)

weight function (w,w0) is admissible for precedence > if

w(f) > 0 or f > g

for all unary functions f and all functions g
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Definition

Knuth-Bendix order >kbo on terms T (F ,V):
s >kbo t if |s|x > |t|x for all x ∈ V and either

w(s) > w(t), or

w(s) = w(t) and

s = fn(t) and t ∈ V for some unary f and n > 1; or

s = f(s1, . . . , si−1, si, . . . , sn), t = f(s1, . . . , si−1, ti, . . . , tn), and
si >kbo ti; or

s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g
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Definition

let X ⊆ R>0. TRS R is KBOX terminating if

∃ precedence >

∃ admissible weight function (w,w0) ∈ XF ×X
such that l >kbo r for all l→ r ∈ R

Theorem Knuth and Bendix, 1970

TRS is terminating if it is KBON terminating
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Quiz
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Example I

a(a(x))→ b(b(b(x))) b(b(b(b(b(x)))))→ a(a(a(x)))

is KBON terminating ? — yes

Proof

take precedence a > b and weight function

w(a) =

? 3

w(b) =

? 2

w0 = 1

Proof

another solution: take precedence > = ∅ and weight function

w(a) =

? 13

w(b) =

? 8

w0 = 1
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Example II

TRS R

x+ 0→ x x+ s(y)→ s(x+ y)
x× 0→ 0 x× s(y)→ x× y + x

is KBON terminating ?

— no
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History of KBO
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Theorem Knuth and Bendix, 1970

TRS is terminating if it is KBON terminating

Theorem Dershowitz, 1979

TRS is terminating if it is KBOR>0 terminating

Theorem Dick, Kalmus, and Martin, 1990

KBOR>0 termination is decidable within exponential time

Theorem Korovin and Voronkov, 2001, 2003

TRS is KBON terminating ⇐⇒ it is KBOR>0 terminating

KBOR>0 termination is decidable within polynomial time

Theorem Zankl and Middeldorp, 2007

KBO{0,1,...,B} termination (B ∈ N) can reduce to SAT and PBC
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This Talk

MAIN RESULT

for every TRS R and N =
∑
l→r∈R(|l|+ |r|) + 1

R is KBON terminating ⇐⇒ R is KBO{0,1,...,B} terminating

where, B = N4N+1

OVERVIEW OF PROOF

Principal Solutions

MCD

Bound by Norm
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Principal Solutions
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Example

given precedence, KBON problem reduces to linear integral constraints

Example

a(a(x))→ b(b(b(x))) b(b(b(b(b(x)))))→ a(a(a(x)))

for precedence a > b, solve wrt w(a), w(b) ∈ N

2 · w(a)− 3 · w(b) > 0 −3 · w(a) + 5 · w(b) > 0

for precedence > = ∅ solve wrt w(a), w(b) ∈ N

2 · w(a)− 3 · w(b) > 0 −3 · w(a) + 5 · w(b) > 0
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Principal Solutions

Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003

set I of KBO inequalities are of form

{ ~ai · ~xi Ri 0 }i with Ri ∈ {>, >},~ai ∈ Zn, ~x ∈ N

Definition

write AI for (~ai)1,...,n
~x is solution of AI if AI~x > 0 and ~x ∈ Nn

solution ~x maximizing {i | ~ai · ~x > 0} wrt ⊆ is principal

Theorem

principal solution of A always exists

∀principal solution ~x : (I is solvable ⇐⇒ ~x satisfies I)
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I =
{

2 · w(a)− 3 · w(b) > 0
−3 · w(a) + 5 · w(b) > 0

}
AI =

(
2 −3
−3 5

)

since

AI

(
3
2

)
=
(

0
1

)
AI

(
13
8

)
=
(

2
1

)
(

3
2

)
is not principal solution of AI

(
13
8

)
is principal solution of AI and satisfies I

hence I is solvable
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Example

I =

 2 · w(a)− 3 · w(b) > 0
−3 · w(a) + 5 · w(b) > 0
−4 · w(a) + 3 · w(b) > 0

 AI =

 2 −3
−3 5
−4 3



principal solution of AI is

(
0
0

)
and does not satisfy I

hence I is not solvable

QUESTION

how to find principal solution? + MCD
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MCD: Method of Complete Description
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MCD

Dick, Kalmus and Martin, 1990

(a1, . . . , an)κ = (~ei | ai > 0) ++(aj~ei − ai~ej | ai < 0, aj > 0)

for m× n matrix A and 0 6 i 6 m

SAi =

{
En if i = 0
SAi−1(~aiS

A
i−1)

κ otherwise

sum of all column vectors of SAm is denoted by ~sA

Theorem

~sA is principal solution of A
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Example

I =
{

2 · w(a)− 3 · w(b) > 0
−3 · w(a) + 5 · w(b) > 0

}
AI =

(
2 −3
−3 5

)

performing MCD

SAI
0 =

(
1 0
0 1

)
SAI

1 = SAI
0 ((2 − 3)SAI

0 )κ =
(

1 3
0 2

)
SAI

2 = SAI
1 ((−3 5)SAI

1 )κ =
(

3 10
2 6

)
we obtain principal solution

~sAI =
(

3
2

)
+
(

10
6

)
=
(

13
8

)
which satisfies I. hence I is solvable
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Bound by Norm
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MCD

(a1, . . . , an)κ = (~ei | ai > 0) ++(aj~ei − ai~ej | ai < 0, aj > 0)

for m× n matrix A and 0 6 i 6 m

SAi =

{
En if i = 0
SAi−1(~aiS

A
i−1)

κ otherwise

sum of all column vectors of SAm is denoted by ~sA

GOAL

bound ~sA ∈ {0, 1, . . . , B}n

APPROACH

define norm ‖ · ‖ to calculate ‖~sAI‖ with B = ‖~sAI‖
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Norm

Definition

‖A‖ = maxi,j |aij | for m× n matrix A = (aij)ij

Lemma

for every m× n matrix A and n× p matrix B

‖aκ‖ = ‖a‖
‖AB‖ 6 n‖A‖‖B‖
(a1, . . . , an)κ is n× k matrix with k 6 n2.

SAi is m× k matrix with k 6 n2i

.

‖SAi ‖ 6 (2m‖A‖)2i−1

‖~sA‖ 6 n2m · (2m‖A‖)2m−1
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Lemma

let R be TRS of size N
I be set of inequalities induced by KBO with fixed precedence
AI be of size m× n

m 6 N

n 6 N

‖AI‖ 6 N

therefore
‖~sAI‖ 6 N4N+1

:= B

thus,
~sAI ∈ {0, 1, . . . , B}n
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Main Result

Theorem

R is KBON terminating ⇐⇒ R is KBO{0,1,...,B} terminating

where, B = N4N+1

Corollary

Zankl and Middeldorp’s SAT and PBC encodings are complete for this B
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Summary

let R be TRS, N =
∑
l→r∈R(|l|+ |r|) + 1, and B = N4N+1

R is KBOR>0 terminating

⇐⇒ R is KBON terminating Korovin and Voronkov

⇐⇒ R is KBO{0,1,...,B} terminating this talk

theoretical interest of decidability issue is more or less closed

how about automation? +
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Automation
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Theorem Dick, Kalmus, and Martin, 1990

KBOR>0 termination is decidable by MCD

Theorem Korovin and Voronkov, 2001, 2003

KBOR>0 termination is decidable by Karmarkar/Khachiyan algorithm

Theorem Zankl and Middeldorp, 2007

KBO{0,1,...,B} termination (B ∈ N) is decidable via SAT/PBC encodings

Theorem

KBOR>0 termination is decidable via SMT (linear arithmetic) encoding
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Experiments

test-bed: 1381 TRSs from Termination Problem Data Base 4.0

PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB

60 seconds timeout

method(B) total time (sec) #success #timeout

MCD 444 102 7

simplex 370 105 4

SAT/PBC(4) 31/90 104/104 0/0

SAT/PBC(8) 32/93 106/106 0/0

SAT/PBC(16) 34/100 107/107 0/0

SAT/PBC(1024) 351/187 107/107 3/1

SMT 26 107 0
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Conclusion

let R be TRS, N =
∑
l→r∈R(|l|+ |r|) + 1, and B = N4N+1

R is KBOR>0 terminating

⇐⇒ R is KBON terminating Korovin and Voronkov

⇐⇒ R is KBO{0,1,...,B} terminating this talk

CONCLUSION

finite characterization of KBO orientability

use SMT solver to automate

FUTURE WORK

find optimal B
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Thank You for Your Attention
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