On the Meaning of Algebraic Weights given by the Gol

Marc de Falco

Institut de Mathématiques de Luminy

GTI Workshop, Kyoto

Marc de Falco (IML)

A D > A B > A B >

• Gol for MELL is almost sound. where almost means no ? in conclusion...

- Gol for MELL is almost sound. where almost means no ? in conclusion...
- but after all, we don't really need those why not... do we?

A D > A B > A B >

- Gol for MELL is almost sound. where almost means no ? in conclusion...
- but after all, we don't really need those why not... do we?
- Take λ -calculus encoding into MELL: $A \Rightarrow B \equiv ?A^{\perp} \Re B$

- Gol for MELL is almost sound. where almost means no ? in conclusion...
- but after all, we don't really need those why not... do we?
- Take λ -calculus encoding into MELL: $A \Rightarrow B \equiv ?A^{\perp} \Re B$
- So Gol is sound for... computations to free variables applied to normal terms!

- Gol for MELL is almost sound. where almost means no ? in conclusion...
- but after all, we don't really need those why not... do we?
- Take λ -calculus encoding into MELL: $A \Rightarrow B \equiv ?A^{\perp} \ ?? B$
- So Gol is sound for... computations to free variables applied to normal terms!
- Functional programming without functions is quite limiting.

• Is it really that bad?

- Is it really that bad?
- Take $t \rightarrow^*_{\beta} t'$ with $\vdash t, t' : A_1 \rightarrow \cdots \rightarrow A_n \rightarrow B$ where B is atomic.

- Is it really that bad?
- Take $t \rightarrow^*_{\beta} t'$ with $\vdash t, t' : A_1 \rightarrow \cdots \rightarrow A_n \rightarrow B$ where B is atomic.
- Maybe $Ex(t) \neq Ex(t')$.

- Is it really that bad?
- Take $t \rightarrow^*_{\beta} t'$ with $\vdash t, t' : A_1 \rightarrow \cdots \rightarrow A_n \rightarrow B$ where B is atomic.
- Maybe $Ex(t) \neq Ex(t')$.
- With $\vdash u_i : A_i$ we will have $\vdash (t)u_1 \cdots u_n : B$ and $\vdash (t')u_1 \cdots u_n : B$.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Is it really that bad?
- Take $t \rightarrow^*_{\beta} t'$ with $\vdash t, t' : A_1 \rightarrow \cdots \rightarrow A_n \rightarrow B$ where B is atomic.
- Maybe $Ex(t) \neq Ex(t')$.
- With $\vdash u_i : A_i$ we will have $\vdash (t)u_1 \cdots u_n : B$ and $\vdash (t')u_1 \cdots u_n : B$.

• So
$$\operatorname{Ex}((t)u_1\cdots u_n) = \operatorname{Ex}((t')u_1\cdots u_n).$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Is it really that bad?
- Take $t \rightarrow^*_{\beta} t'$ with $\vdash t, t' : A_1 \rightarrow \cdots \rightarrow A_n \rightarrow B$ where B is atomic.
- Maybe $Ex(t) \neq Ex(t')$.
- With $\vdash u_i : A_i$ we will have $\vdash (t)u_1 \cdots u_n : B$ and $\vdash (t')u_1 \cdots u_n : B$.

• So
$$\operatorname{Ex}((t)u_1\cdots u_n) = \operatorname{Ex}((t')u_1\cdots u_n).$$

 Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or with the right one using Ex(t').

イロト イポト イヨト イヨ

- Is it really that bad?
- Take $t \rightarrow^*_{\beta} t'$ with $\vdash t, t' : A_1 \rightarrow \cdots \rightarrow A_n \rightarrow B$ where B is atomic.
- Maybe $Ex(t) \neq Ex(t')$.
- With $\vdash u_i : A_i$ we will have $\vdash (t)u_1 \cdots u_n : B$ and $\vdash (t')u_1 \cdots u_n : B$.

• So
$$\mathsf{Ex}((t)u_1\cdots u_n) = \mathsf{Ex}((t')u_1\cdots u_n).$$

- Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or with the right one using Ex(t').
- So computationnaly $Ex(t) \sim Ex(t')$.

イロト 不得下 イヨト イヨト

• Focus on Danos-Regnier view of Geometry of Interaction.

- Focus on Danos-Regnier view of Geometry of Interaction.
- Gol semantics sliced into a set of algebraic weights with a one-to-one correspondence with meaningful paths in proofs/programs.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Focus on Danos-Regnier view of Geometry of Interaction.
- Gol semantics sliced into a set of algebraic weights with a one-to-one correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that $Ex(t) \sim Ex(t')$ by looking at weights only?

< ロ > < 同 > < 三 > < 三

- Focus on Danos-Regnier view of Geometry of Interaction.
- Gol semantics sliced into a set of algebraic weights with a one-to-one correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that $E_x(t) \sim E_x(t')$ by looking at weights only?

Equivalent Problem

Can we give a meaning to each weight such that the global meaning is preserved by reduction?

• • • • • • • • • • • • •

Outline

The Danos-Regnier theory

2 An involved example with λ -terms

Towards a theory of meaning

Paths and reduction

- Representation of a proof/program via a graph-like syntax: e.g. proofnets, interaction nets.
- We consider *straights* and *maximal* paths: $\mathfrak{P}(R)$.
- Cut-elimination is translated into a path reduction: $\delta_{\mathcal{R}} : \mathfrak{P}(R) \mapsto \mathfrak{P}(R') \text{ for } R \xrightarrow{\mathcal{R}} R'.$

• Throughout reduction paths can be

・ロト ・日子・ ・ ヨト

• Throughout reduction paths can be

・ロト ・日子・ ・ ヨト

• Throughout reduction paths can be

• Throughout reduction paths can be deformed (possibly duplicated)

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Throughout reduction paths can be deformed (possibly duplicated) or

• Throughout reduction paths can be deformed (possibly duplicated) or

• Persistent paths: survive all possible reductions (needs a confluent and normalizing system to make sense).

Image: A math a math

• M is an inverse monoid with zero (imz) iff

- M is an inverse monoid with zero (imz) iff
 - M is a monoid

イロト イヨト イヨト イヨ

- M is an inverse monoid with zero (imz) iff
 - M is a monoid
 - with a zero element: $\forall x, x0 = 0x = 0$

-

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- M is an inverse monoid with zero (imz) iff
 - M is a monoid
 - with a zero element: $\forall x, x0 = 0x = 0$
 - ▶ with an inverse for each element: $\forall x, \exists x^*, xx^*x = x$ and $x^*xx^* = x^*$.

- M is an inverse monoid with zero (imz) iff
 - M is a monoid
 - with a zero element: $\forall x, x0 = 0x = 0$
 - with an inverse for each element: $\forall x, \exists x^*, xx^*x = x$ and $x^*xx^* = x^*$.
- Path weighting: a function $w : \mathfrak{P}(R) \mapsto M$ such that

• • • • • • • • • • • •

- M is an inverse monoid with zero (imz) iff
 - M is a monoid
 - with a zero element: $\forall x, x0 = 0x = 0$
 - ▶ with an inverse for each element: $\forall x, \exists x^*, xx^*x = x$ and $x^*xx^* = x^*$.
- Path weighting: a function $w : \mathfrak{P}(R) \mapsto M$ such that
 - $w(\varphi_1\varphi_2) = w(\varphi_2)w(\varphi_1)$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- M is an inverse monoid with zero (imz) iff
 - M is a monoid
 - with a zero element: $\forall x, x0 = 0x = 0$
 - ▶ with an inverse for each element: $\forall x, \exists x^*, xx^*x = x$ and $x^*xx^* = x^*$.
- Path weighting: a function $w : \mathfrak{P}(R) \mapsto M$ such that
 - $w(\varphi_1\varphi_2) = w(\varphi_2)w(\varphi_1)$
 - $w(\varphi^r) = w(\varphi)^*$ where φ^r is the reversal of φ .

イロト 不得下 イヨト イヨト

- M is an inverse monoid with zero (imz) iff
 - M is a monoid
 - with a zero element: $\forall x, x0 = 0x = 0$
 - with an inverse for each element: $\forall x, \exists x^*, xx^*x = x$ and $x^*xx^* = x^*$.
- Path weighting: a function $w : \mathfrak{P}(R) \mapsto M$ such that
 - $w(\varphi_1\varphi_2) = w(\varphi_2)w(\varphi_1)$
 - $w(\varphi^r) = w(\varphi)^*$ where φ^r is the reversal of φ .
- Regular paths: $w(\varphi) \neq 0$

イロト 不得下 イヨト イヨト

Gol from the Danos-Regnier point of view

Sketch of Definition

We call *Geometry of Interaction* for a logical system \mathcal{L} a family of weighting functions w_R for all $R \in \mathcal{L}$ targetting the same imz and such that:

 φ persistent $\iff \varphi$ regular

イロト イポト イヨト イヨ

Gol from the Danos-Regnier point of view

Sketch of Definition

We call *Geometry of Interaction* for a logical system \mathcal{L} a family of weighting functions w_R for all $R \in \mathcal{L}$ targetting the same imz and such that:

 $\varphi \text{ persistent } \iff \varphi \text{ regular}$

• Let $\mathbb{C}[M]$ be the \mathbb{C} -algebra generated by M where the zero of M is also the zero of the algebra (its closure is a \mathbb{C}^* -algebra)

< ロ > < 同 > < 三 > < 三

Gol from the Danos-Regnier point of view

Sketch of Definition

We call *Geometry of Interaction* for a logical system \mathcal{L} a family of weighting functions w_R for all $R \in \mathcal{L}$ targetting the same imz and such that:

 $\varphi \text{ persistent } \iff \varphi \text{ regular}$

- Let $\mathbb{C}[M]$ be the \mathbb{C} -algebra generated by M where the zero of M is also the zero of the algebra (its closure is a \mathbb{C}^* -algebra)
- For any R we can define $E_x(R) = \sum_{\varphi \in \mathfrak{P}(R)} w(\varphi)$

イロト 不得下 イヨト イヨト
Gol from the Danos-Regnier point of view

Sketch of Definition

We call *Geometry of Interaction* for a logical system \mathcal{L} a family of weighting functions w_R for all $R \in \mathcal{L}$ targetting the same imz and such that:

 $\varphi \text{ persistent } \iff \varphi \text{ regular}$

- Let $\mathbb{C}[M]$ be the \mathbb{C} -algebra generated by M where the zero of M is also the zero of the algebra (its closure is a \mathbb{C}^* -algebra)
- For any R we can define $Ex(R) = \sum_{\varphi \in \mathfrak{P}(R)} w(\varphi)$
- We recover the standard definition of the geometry of interaction.

イロト 不得下 イヨト イヨト

Gol from the Danos-Regnier point of view

Sketch of Definition

We call *Geometry of Interaction* for a logical system \mathcal{L} a family of weighting functions w_R for all $R \in \mathcal{L}$ targetting the same imz and such that:

 φ persistent $\iff \varphi$ regular

- Let $\mathbb{C}[M]$ be the \mathbb{C} -algebra generated by M where the zero of M is also the zero of the algebra (its closure is a \mathbb{C}^* -algebra)
- For any R we can define $Ex(R) = \sum_{\varphi \in \mathfrak{P}(R)} w(\varphi)$
- We recover the standard definition of the geometry of interaction.
- $\mathsf{Ex}(R)$ is not necessarily equal to $\mathsf{Ex}(R')$ when $R \to R'$

イロト 不得下 イヨト イヨト

Outline

The Danos-Regnier theory

(2) An involved example with λ -terms

Towards a theory of meaning

(ロ) (回) (三) (三)

Nets for λ -calculus

• We are going to represent λ -calculus via a translation into MELL proofnets

・ロン ・回 と ・ ヨン・

- We are going to represent λ -calculus via a translation into MELL proofnets
- MELL proofnets are going to be presented via a mix between sharing graphs (i.e. numbered interaction nets) and Regnier's new syntax for MELL proofnets

イロト イポト イヨト イヨ

- We are going to represent $\lambda\text{-calculus}$ via a translation into MELL proofnets
- MELL proofnets are going to be presented via a mix between sharing graphs (i.e. numbered interaction nets) and Regnier's new syntax for MELL proofnets
- This syntax is a simplification for studying Gol without dealing with unnecessary issues.

イロト イポト イヨト イヨ

- We are going to represent $\lambda\text{-calculus}$ via a translation into MELL proofnets
- MELL proofnets are going to be presented via a mix between sharing graphs (i.e. numbered interaction nets) and Regnier's new syntax for MELL proofnets
- This syntax is a simplification for studying Gol without dealing with unnecessary issues.
- Disclaimer: it might be a little technical...

< ロ > < 同 > < 三 > < 三

• We construct nets made from numbered cells:

where $n \in \mathbb{N}$ is called the level and x is a λ -calculus variable.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

• We construct nets made from numbered cells:

where $n \in \mathbb{N}$ is called the level and x is a λ -calculus variable.

• For t a λ -term, $FV_o(t)$ = the set of occurrences of free variables in t.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

• We construct nets made from numbered cells:

$$-n - \sum_{n} \mathbf{O}_{n}$$

where $n \in \mathbb{N}$ is called the level and x is a λ -calculus variable.

- For t a λ -term, $FV_o(t)$ = the set of occurrences of free variables in t.
- For any n ∈ N and λ-term t we build a net [t]_n with a one-to-one labelling of conclusions by FV_o(t) ∪ {●}.

• • • • • • • • • • • •

• We construct nets made from numbered cells:

$$-n - \lambda_n$$
 $(0, n)$

where $n \in \mathbb{N}$ is called the level and x is a λ -calculus variable.

- For t a λ -term, $FV_o(t)$ = the set of occurrences of free variables in t.
- For any n ∈ N and λ-term t we build a net [t]_n with a one-to-one labelling of conclusions by FV_o(t) ∪ {●}.
- The translation of t will be the net $[t] = [t]_0$.

• • • • • • • • • • • • •

æ

ヘロン ヘロン ヘヨン ヘヨン

where we have collected all free occurrences of x.

・ロト ・回ト ・ヨト

A D > A B > A B >

Some examples

*n*th Church integer: $\overline{n} = \lambda f \cdot \lambda x \cdot (f)^n x$

$$[\lambda x.x] = \underbrace{[\lambda x.x]}_{0}, \quad [\overline{0}] = [\lambda f.\lambda x.x] = \underbrace{[\lambda f.\lambda x.x]}_{0}, \quad [\overline{0}] = [\lambda f.\lambda x.x] = \underbrace{[\lambda f.\lambda x.(f)x]}_{0}, \quad [\overline{0}] = \underbrace{[\lambda f.\lambda x$$

2

・ロト ・回ト ・ヨト ・ヨト

Reduction

- We can mimic β-reduction with a big-step reduction coming from MELL proofnets.
- To do so we need to rebuild boxes: connected components of a minimum level.
- We can define in an obvious way paths and their reductions.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

The weighting imz

Let M be the imz generated

- by constants: $\{p,q\} \cup \{x_{n,c} \ , \ x \in V, n,c \in \mathbb{N}\}$
- a morphism !
- and relations:

$$p^*p = q^*q = 1$$

$$q^*p = p^*q = 0$$

$$x^*_{i,c}x_{j,d} = \delta_{ij}\delta_{cd}$$

$$!(u)x_{i,c} = x_{i,c}!^c(u), \forall u \in M$$

We define a weighting of paths with

$$!^{n}(p) \bigvee_{n} !^{n}(q) \qquad !^{n}(q) \bigvee_{n} !^{n}(p) \qquad !^{n}(x_{1,c_{1}}) \bigvee_{n} !^{n}(x_{m,c_{m}})$$
where $c_{i} = l_{i} - n$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• A *bentobako* is a finite sequence of elements of the form 0, 1 or $x_i[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- A *bentobako* is a finite sequence of elements of the form 0, 1 or $x_i[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- A *bentobako* is a finite sequence of elements of the form 0, 1 or $x_i[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b = e_1, \dots, e_n, e_{n+1}, \dots, e_m$, we write $b_n = e_1, \dots, e_n$ and $b^n = e_{n+1}, \dots, e_m$.

イロト イポト イヨト イヨ

- A *bentobako* is a finite sequence of elements of the form 0, 1 or $x_i[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b = e_1, \dots, e_n, e_{n+1}, \dots, e_m$, we write $b_n = e_1, \dots, e_n$ and $b^n = e_{n+1}, \dots, e_m$.
- We interpret weights by partial and reversible operations on bentobakos.

- A *bentobako* is a finite sequence of elements of the form 0, 1 or $x_i[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b = e_1, \dots, e_n, e_{n+1}, \dots, e_m$, we write $b_n = e_1, \dots, e_n$ and $b^n = e_{n+1}, \dots, e_m$.
- We interpret weights by partial and reversible operations on bentobakos.
- $\mathbf{p}(b) = 0 \circ b, \ \mathbf{q}(b) = 1 \circ b$

- A *bentobako* is a finite sequence of elements of the form 0, 1 or $x_i[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b = e_1, \dots, e_n, e_{n+1}, \dots, e_m$, we write $b_n = e_1, \dots, e_n$ and $b^n = e_{n+1}, \dots, e_m$.
- We interpret weights by partial and reversible operations on bentobakos.
- $\mathbf{p}(b) = 0 \circ b$, $\mathbf{q}(b) = 1 \circ b$
- $\mathbf{x}_{\mathbf{i},\mathbf{c}}(b) = x_i[b_c] \circ b^c$

- A *bentobako* is a finite sequence of elements of the form 0, 1 or $x_i[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b = e_1, \dots, e_n, e_{n+1}, \dots, e_m$, we write $b_n = e_1, \dots, e_n$ and $b^n = e_{n+1}, \dots, e_m$.
- We interpret weights by partial and reversible operations on bentobakos.
- $\mathbf{p}(b) = 0 \circ b$, $\mathbf{q}(b) = 1 \circ b$
- $\mathbf{x}_{\mathbf{i},\mathbf{c}}(b) = x_i[b_c] \circ b^c$
- $!^{\mathbf{n}}(\mathbf{w})(b) = b_n \circ \mathbf{w}(b^n)$

(日) (同) (日) (日)

•
$$[\lambda x.x] =$$

2

• Two regular paths of weights: $i = p x_{1,0} q^{\star}$

・ロト ・回ト ・ヨト ・

•
$$[\lambda x.x] =$$

• Two regular paths of weights: $i = px_{1,0}q^*$ and $i^* = qx_{1,0}^*p^*$.

æ

・ロト ・回ト ・ヨト ・ヨト

- Two regular paths of weights: $i = px_{1,0}q^*$ and $i^* = qx_{1,0}^*p^*$.
- Operations: $\mathbf{i}(1 \circ b) = 0 \circ x_1[] \circ b$ and $\mathbf{i}^*(0 \circ x_1[] \circ b) = 1 \circ b$.

• • • • • • • • • • • • •

•
$$[\lambda x.x] =$$

- Two regular paths of weights: $i = px_{1,0}q^*$ and $i^* = qx_{1,0}^*p^*$.
- Operations: $\mathbf{i}(1 \circ b) = 0 \circ x_1[] \circ b$ and $\mathbf{i}^*(0 \circ x_1[] \circ b) = 1 \circ b$.
- The number of regular paths is always even. We will only present half of them.

• • • • • • • • • • • •

Example: $(\lambda x.x)\lambda x.x$

•
$$1 \circ b \xrightarrow{\mathbf{q}} 1 \circ 1 \circ b \xrightarrow{\mathbf{i}} 0 \circ x_1 [] \circ 1 \circ b$$

 $\xrightarrow{\mathbf{p}^*} x_1 [] \circ 1 \circ b \xrightarrow{!(\mathbf{i})} x_1 [] \circ 0 \circ x_1 [] \circ b \xrightarrow{\mathbf{p}} 0 \circ x_1 [] \circ 0 \circ x_1 [] \circ b$
 $\xrightarrow{\mathbf{i}^*} 1 \circ 0 \circ x_1 [] \circ b \xrightarrow{\mathbf{q}^*} 0 \circ x_1 [] \circ b$

- $q^*i^*p!(i)p^*iq = q^*qx_{1,0}^*p!(px_{1,0}q^*)p^*px_{1,0}q^*q = x_{1,0}^*!(px_{1,0}q^*)x_{1,0} = px_{1,0}q^*x_{1,0}^*x_{1,0} = i$
- The two methods are equivalent thanks to

Lemma (Danos-Regnier)

If w and w' are weights of paths in a λ -term then $w = w' \iff \mathbf{w} = \mathbf{w}'$

イロト イポト イヨト イヨ

• Direct generalization of the previous case.

•
$$[(\lambda x.x)t] =$$

• For any path of weight w in t, we have:

•
$$b \xrightarrow{\mathbf{p}^* \mathbf{iq}} x_1[] \circ b \xrightarrow{!(\mathbf{w})} x_1[] \circ \mathbf{w}(b) = \xrightarrow{\mathbf{q}^* \mathbf{i}^* \mathbf{p}} \mathbf{w}(b)$$

• $q^*i^*p!(w)p^*iq = q^*qx_{1,0}^*p!(w)p^*px_{1,0}q^*q = x_{1,0}^*!(w)x_{1,0} = wx_{1,0}^*x_{1,0} = w$

イロト 不得下 イヨト イヨト

Marc d

- Finding the meaning of $i = px_{1,0}q^*$.
- Interactive procedure:

- $\lambda x.x$ acts as a perfect intermediary, it prepends and postpends any path, in a reversible way.
- During computation each part of the token has a meaning:

$$\begin{array}{c|c} 1 \circ b \rightarrow 0 \circ x_{1} \end{array} \circ b$$
Query for value
Query for argument value
Internal state
$$\begin{array}{c|c} & & & \\ &$$

Example: $\overline{2}$

- Regular weights: $w_s = pf_{1,0}qq^*q^*$, $w_i = pf_{2,1}!(q)p^*f_{1,0}^*p^*$, $w_e = qpx_{0,2}!(p^*)f_{2,1}^*p^*$
- Operations: $\mathbf{w}_{s}(1 \circ 1 \circ b) = 0 \circ f_{1}[] \circ 1 \circ b$, $\mathbf{w}_{i}(0 \circ f_{1}[] \circ 0 \circ e \circ b) = 0 \circ f_{2}[e] \circ 1 \circ b$ $\mathbf{w}_{e}(0 \circ f_{2}[e] \circ 0 \circ e' \circ b) = 1 \circ 0 \circ x_{1}[e, e'] \circ b$

Example: $(\overline{2})t$

- Paths in t are expected to be of the shape $1 \circ b \rightarrow 0 \circ \sigma \circ b'$.
- This is the case when t is a function answering to a query by querying the value of its argument.
- $\lambda x.x$ and $\overline{2}$ are of this kind.

Image: A math a math

Example: $(\overline{2})\lambda z.z$

$$1 \circ b \bullet \longrightarrow 1 \circ 1 \circ b \\ w_{s}$$

$$f_{1}[] \circ 1 \circ b \bullet \longrightarrow 0 \circ f_{1}[] \circ 1 \circ b$$

$$i \\
f_{1}[] \circ 0 \circ z_{1}[] \circ b \bullet \longrightarrow 0 \circ f_{1}[] \circ 0 \circ z_{1}[] \circ b$$

$$w_{i}$$

$$f_{2}[z_{1}[]] \circ 1 \circ b \bullet \longrightarrow 0 \circ f_{2}[z_{1}[]] \circ 1 \circ b$$

$$i \\
f_{2}[z_{1}[]] \circ 0 \circ z_{1}[] \circ b \bullet \longrightarrow 0 \circ f_{2}[z_{1}[]] \circ 0 \circ z_{1}[] \circ b$$

$$w_{e}$$

$$0 \circ x_{1}[z_{1}[], z_{1}[]] \circ b \bullet \longrightarrow 1 \circ 0 \circ x_{1}[z_{1}[], z_{1}[]] \circ b$$

•
$$(\overline{2})\lambda z.z \rightarrow \lambda x.(\lambda z.z)(\lambda z.z)x \rightarrow^2 \lambda x.x$$

- $px_{1,2}z_{1,0}z_{1,0}q^*$ is different from $i = px_{1,0}q^*$.
- But they have the same meaning!

3

・ロト ・回ト ・ヨト ・ヨト

Example: $(\overline{2})\overline{2}$

$$1 \circ 1 \circ b \bullet \longrightarrow 1 \circ 1 \circ 1 \circ b \bullet \\ w_{s}$$

$$f_{1}[] \circ 1 \circ 1 \circ b \bullet \longrightarrow 0 \circ f_{1}[] \circ 1 \circ 1 \circ b \\ w_{e}$$

$$f_{1}[] \circ 0 \circ f_{1}[] \circ 1 \circ b \bullet \longrightarrow 0 \circ f_{1}[] \circ 1 \circ 1 \circ b \\ w_{i}$$

$$f_{2}[f_{1}[]] \circ 1 \circ 1 \circ b \bullet \longrightarrow 0 \circ f_{2}[f_{1}[]] \circ 1 \circ 1 \circ b \\ w_{e}$$

$$f_{2}[f_{1}[]] \circ 0 \circ f_{1}[] \circ 1 \circ b \bullet \longrightarrow 0 \circ f_{2}[f_{1}[]] \circ 0 \circ f_{1}[] \circ 1 \circ b \\ w_{e}$$

$$0 \circ x_{1}[f_{1}[], f_{1}[]] \circ 1 \circ b \bullet \longrightarrow 1 \circ 0 \circ x_{1}[f_{1}[], f_{1}[]] \circ 1 \circ b$$

- Computation: $q^* w_e p!(w_s) p^* w_i p!(w_s) p^* w_s q$
- Weight: $w_{ss} = p x_{1,2} f_{1,0} f_{1,0} q q^* q^*$

3
Example: $(\overline{2})\overline{2}$

- Computation: q^{*}w_ep!(w_s)p^{*}w_ip!(w_s)p^{*}w_sq
 - Weight: $w_{ss} = p x_{1,2} f_{1,0} f_{1,0} q q^* q^*$
 - Operation: $1 \circ 1 \circ b \rightarrow 0 \circ x_1[f_1[], f_1[]] \circ 1 \circ b$
- The other paths are a lot more complicated. Let's use a program!
- Computation: $q^* w_e p!(w_i) p^* w_e^* q$
 - Weight: $w_{i} = px_{1,2}!(f_{2,1}!(q)p^*f_{1,0})x_{1,2}^*p^*$
 - Operation: $0 \circ x_1[\alpha, f_1[]] \circ 0 \circ \beta \circ b \rightarrow 0 \circ x_1[\alpha, f_2[\beta]] \circ 1 \circ b$
- Computation: $q^* w_e p!(w_s) p^* w_i p!(w_i) p^* w_i^* p!(w_e) p^* w_e^* q$
 - Weight: $w_{i.} = px_{1,2}f_{2,1}x_{1,2}!(!(f_{1,0}q)p^*)f_{2,1}^*f_{1,0}^*x_{1,2}^*p^*.$
 - Operation: $0 \circ x_1[f_1[], f_2[\alpha]] \circ 0 \circ \beta \circ b \to 0 \circ x_1[f_2[x_1[\alpha, \beta]], f_1[]] \circ 1 \circ b$
- Computation: $q^* w_s^* p!(w_e) p^* w_i^* p!(w_e) p^* w_e^* q$
 - Weight: $w_{ee} = qpx_{1,2}!(x_{1,2}!(p^*)f_{2,1}^*)f_{2,1}^*x_{1,2}^*p^*$
 - ► Operation: $0 \circ x_1[f_2[\alpha], f_2[\beta]] \circ 0 \circ \gamma \circ b \rightarrow 1 \circ 0 \circ x_1[\alpha, x_1[\beta, \gamma]] \circ b$

イロト イポト イヨト イヨト

Example: $\overline{4}$

- $v_s = pf_{1,0}qq^{\star}q^{\star}$, $1 \circ 1 \circ b \rightarrow 0 \circ f_1[] \circ 1 \circ b$
- $v_{i1} = pf_{2,1}!(q)p^*f_{1,0}^*p^*, \ 0 \circ f_1[] \circ 0 \circ \alpha \circ b \to 0 \circ f_2[\alpha] \circ 1 \circ b$
- $v_{i2} = pf_{3,2}!(!(q)p^*)f_{2,1}^*p^*$, $0 \circ f_2[\alpha] \circ 0 \circ \beta \circ b \to 0 \circ f_3[\alpha, \beta] \circ 1 \circ b$
- $v_{i3} = pf_{4,3}!^2(!(q)p^*)f_{3,2}^*p^*, 0 \circ f_3[\alpha,\beta] \circ 0 \circ \gamma \circ b \to 0 \circ f_4[\alpha,\beta,\gamma] \circ 1 \circ b$
- $v_e = qpx_{1,4}!^3(p^*)f_{4,3}^*p^*$, $0 \circ f_4[\alpha, \beta, \gamma] \circ 0 \circ \delta \circ b \to 1 \circ 0 \circ x_1[\alpha, \beta, \gamma, \delta] \circ b$
- It has the same meaning as (2) while using an extra path: w_i is a compression of v_{i1} and v_{i3}.

(日) (同) (日) (日)

General situation

Theorem

There are 4 + 2n(n-1) regular paths in $(\overline{n})\overline{n}$ of weight:

$$\sigma_n = p x_{1,n} f_{1,0}^n q q^* q^*$$

for k < n - 1 and $l \le n - 1$:

 $\iota_{n}(k,l) = p x_{1,n}!^{n-l-1} (f_{k+2,k+1}!^{k} (\beta^{l} (!(f_{1,0}^{l}q)p^{\star})) f_{k+1,k}^{\star}) x_{1,n}^{\star} p^{\star}$ $\epsilon_{n} = q p \beta^{n} (p^{\star}) x_{1,n}^{\star} p^{\star}$

with $\beta(w) = x_{1,n}!^{n-1}(w)f_{n,n-1}^{\star}$.

Sketch of proof:

- Show that there exists regular paths of these weights by computation.
- Show that they are the only ones by showing that there is no room for others in a semantics.

イロト イポト イヨト イヨト

Outline

The Danos-Regnier theory

2 An involved example with λ -terms

Towards a theory of meaning

イロト イヨト イヨト イヨ

What is the meaning of weights

From the previous example we have a candidate notion for the meaning.

Sketch of definition $E, F \subseteq M$, we have $E \sim F$ if they lead to the same kind of computations.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

First try at a definition

What we would like to define as having the same meaning:

Definition

Let $E, F \subseteq M$ be self-dual, we say that $E \sim F$ when for all $g \in M$ there exists a bijective function from $\{e \in E \ , \ eg \neq 0\}$ to $\{f \in F \ , \ fg \neq 0\}$

Unfortunately it is too restrictive because g can be anything:

- $i = px_{1,0}q^*$
- $j = px_{1,2}z_{1,0}z_{1,0}q^*$
- Take $g = px_{1,0}$, we have $i^*g, ig \neq 0$ but $j^*g = 0$.
- So {i, i^{*}} ≁ {j, j^{*}}.

The problem comes from the fact that g can never appear in the context of $\lambda\text{-terms.}$

イロト イポト イヨト イヨト

A proper definition for λ -caclulus

Lemma

Let t be a λ -term and $C\langle\rangle$ a context with one hole. For all path φ in $C\langle t\rangle$, long enough with respect to t, there is a function of maximal arity $f_{\varphi} : \mathbb{M}^n \to \mathbb{M}$ such that there exists $e_1, \dots, e_n \in Ex([t])$ with $w(\varphi) = f_{\varphi}(e_1, \dots, e_n)$.

Definition

Let t and t be λ -term and $C\langle\rangle$ a context with one hole. We say that $t \leq t'$ when for all φ in $C\langle t \rangle$, long enough with respect to t, there exists $e'_1, \dots, e'_n \in Ex([t'])$ such that

$$f_{\varphi}(e_1,\cdots,e_n)=0 \iff f_{\varphi}(e'_1,\cdots,e'_n)=0$$

 $t \sim t'$ when $t \leq t'$ and $t' \leq t$

Can we decide this relation?

Is $t \sim t'$ implying that there exists t_0 such that $t \rightarrow^* t_0$ and $t' \rightarrow^* t_0$?

イロト 不得下 イヨト イヨト