
On the Meaning of Algebraic Weights
given by the GoI

Marc de Falco

Institut de Mathématiques de Luminy

GTI Workshop, Kyoto

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 1 / 32



Our problem

GoI for MELL is almost sound. where almost means no ? in conclusion. . .

but after all, we don’t really need those why not... do we?

Take λ-calculus encoding into MELL: A⇒ B ≡ ?A⊥ � B

So GoI is sound for. . . computations to free variables applied to normal terms!

Functional programming without functions is quite limiting.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 2 / 32



Our problem

GoI for MELL is almost sound. where almost means no ? in conclusion. . .

but after all, we don’t really need those why not... do we?

Take λ-calculus encoding into MELL: A⇒ B ≡ ?A⊥ � B

So GoI is sound for. . . computations to free variables applied to normal terms!

Functional programming without functions is quite limiting.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 2 / 32



Our problem

GoI for MELL is almost sound. where almost means no ? in conclusion. . .

but after all, we don’t really need those why not... do we?

Take λ-calculus encoding into MELL: A⇒ B ≡ ?A⊥ � B

So GoI is sound for. . . computations to free variables applied to normal terms!

Functional programming without functions is quite limiting.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 2 / 32



Our problem

GoI for MELL is almost sound. where almost means no ? in conclusion. . .

but after all, we don’t really need those why not... do we?

Take λ-calculus encoding into MELL: A⇒ B ≡ ?A⊥ � B

So GoI is sound for. . . computations to free variables applied to normal terms!

Functional programming without functions is quite limiting.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 2 / 32



Our problem

GoI for MELL is almost sound. where almost means no ? in conclusion. . .

but after all, we don’t really need those why not... do we?

Take λ-calculus encoding into MELL: A⇒ B ≡ ?A⊥ � B

So GoI is sound for. . . computations to free variables applied to normal terms!

Functional programming without functions is quite limiting.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 2 / 32



Our problem

Is it really that bad?

Take t →∗β t ′ with ` t, t ′ : A1 → · · · → An → B where B is atomic.

Maybe Ex(t) 6= Ex(t ′).

With ` ui : Ai we will have ` (t)u1 · · · un : B and ` (t ′)u1 · · · un : B.

So Ex((t)u1 · · · un) = Ex((t ′)u1 · · · un).

Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or
with the right one using Ex(t ′).

So computationnaly Ex(t) ∼ Ex(t ′).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 3 / 32



Our problem

Is it really that bad?

Take t →∗β t ′ with ` t, t ′ : A1 → · · · → An → B where B is atomic.

Maybe Ex(t) 6= Ex(t ′).

With ` ui : Ai we will have ` (t)u1 · · · un : B and ` (t ′)u1 · · · un : B.

So Ex((t)u1 · · · un) = Ex((t ′)u1 · · · un).

Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or
with the right one using Ex(t ′).

So computationnaly Ex(t) ∼ Ex(t ′).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 3 / 32



Our problem

Is it really that bad?

Take t →∗β t ′ with ` t, t ′ : A1 → · · · → An → B where B is atomic.

Maybe Ex(t) 6= Ex(t ′).

With ` ui : Ai we will have ` (t)u1 · · · un : B and ` (t ′)u1 · · · un : B.

So Ex((t)u1 · · · un) = Ex((t ′)u1 · · · un).

Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or
with the right one using Ex(t ′).

So computationnaly Ex(t) ∼ Ex(t ′).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 3 / 32



Our problem

Is it really that bad?

Take t →∗β t ′ with ` t, t ′ : A1 → · · · → An → B where B is atomic.

Maybe Ex(t) 6= Ex(t ′).

With ` ui : Ai we will have ` (t)u1 · · · un : B and ` (t ′)u1 · · · un : B.

So Ex((t)u1 · · · un) = Ex((t ′)u1 · · · un).

Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or
with the right one using Ex(t ′).

So computationnaly Ex(t) ∼ Ex(t ′).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 3 / 32



Our problem

Is it really that bad?

Take t →∗β t ′ with ` t, t ′ : A1 → · · · → An → B where B is atomic.

Maybe Ex(t) 6= Ex(t ′).

With ` ui : Ai we will have ` (t)u1 · · · un : B and ` (t ′)u1 · · · un : B.

So Ex((t)u1 · · · un) = Ex((t ′)u1 · · · un).

Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or
with the right one using Ex(t ′).

So computationnaly Ex(t) ∼ Ex(t ′).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 3 / 32



Our problem

Is it really that bad?

Take t →∗β t ′ with ` t, t ′ : A1 → · · · → An → B where B is atomic.

Maybe Ex(t) 6= Ex(t ′).

With ` ui : Ai we will have ` (t)u1 · · · un : B and ` (t ′)u1 · · · un : B.

So Ex((t)u1 · · · un) = Ex((t ′)u1 · · · un).

Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or
with the right one using Ex(t ′).

So computationnaly Ex(t) ∼ Ex(t ′).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 3 / 32



Our problem

Is it really that bad?

Take t →∗β t ′ with ` t, t ′ : A1 → · · · → An → B where B is atomic.

Maybe Ex(t) 6= Ex(t ′).

With ` ui : Ai we will have ` (t)u1 · · · un : B and ` (t ′)u1 · · · un : B.

So Ex((t)u1 · · · un) = Ex((t ′)u1 · · · un).

Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or
with the right one using Ex(t ′).

So computationnaly Ex(t) ∼ Ex(t ′).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 3 / 32



Our problem

Focus on Danos-Regnier view of Geometry of Interaction.

GoI semantics sliced into a set of algebraic weights with a one-to-one
correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that Ex(t) ∼ Ex(t ′) by looking at weights only?

Equivalent Problem

Can we give a meaning to each weight such that the global meaning is preserved
by reduction?

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 4 / 32



Our problem

Focus on Danos-Regnier view of Geometry of Interaction.

GoI semantics sliced into a set of algebraic weights with a one-to-one
correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that Ex(t) ∼ Ex(t ′) by looking at weights only?

Equivalent Problem

Can we give a meaning to each weight such that the global meaning is preserved
by reduction?

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 4 / 32



Our problem

Focus on Danos-Regnier view of Geometry of Interaction.

GoI semantics sliced into a set of algebraic weights with a one-to-one
correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that Ex(t) ∼ Ex(t ′) by looking at weights only?

Equivalent Problem

Can we give a meaning to each weight such that the global meaning is preserved
by reduction?

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 4 / 32



Our problem

Focus on Danos-Regnier view of Geometry of Interaction.

GoI semantics sliced into a set of algebraic weights with a one-to-one
correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that Ex(t) ∼ Ex(t ′) by looking at weights only?

Equivalent Problem

Can we give a meaning to each weight such that the global meaning is preserved
by reduction?

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 4 / 32



Outline

1 The Danos-Regnier theory

2 An involved example with λ-terms

3 Towards a theory of meaning

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 5 / 32



Paths and reduction

Representation of a proof/program via a graph-like syntax: e.g. proofnets,
interaction nets.

We consider straights and maximal paths: P(R).

Cut-elimination is translated into a path reduction:

δR : P(R) 7→ P(R ′) for R
R−→ R ′.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 6 / 32



Persistent paths

Throughout reduction paths can be

deformed (possibly duplicated) or

destroyed.

P

→∗ P ′

Persistent paths: survive all possible reductions (needs a confluent and
normalizing system to make sense).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 7 / 32



Persistent paths

Throughout reduction paths can be

deformed (possibly duplicated) or

destroyed.

P

→∗ P ′

Persistent paths: survive all possible reductions (needs a confluent and
normalizing system to make sense).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 7 / 32



Persistent paths

Throughout reduction paths can be

deformed (possibly duplicated) or

destroyed.

P →∗ P ′

Persistent paths: survive all possible reductions (needs a confluent and
normalizing system to make sense).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 7 / 32



Persistent paths

Throughout reduction paths can be deformed (possibly duplicated)

or

destroyed.

P →∗ P ′

Persistent paths: survive all possible reductions (needs a confluent and
normalizing system to make sense).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 7 / 32



Persistent paths

Throughout reduction paths can be deformed (possibly duplicated) or

destroyed.

P →∗ P ′

Persistent paths: survive all possible reductions (needs a confluent and
normalizing system to make sense).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 7 / 32



Persistent paths

Throughout reduction paths can be deformed (possibly duplicated) or

destroyed.

P →∗ P ′

Persistent paths: survive all possible reductions (needs a confluent and
normalizing system to make sense).

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 7 / 32



Regular paths

M is an inverse monoid with zero (imz) iff

I M is a monoid
I with a zero element: ∀x , x0 = 0x = 0
I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that

I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)
I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 8 / 32



Regular paths

M is an inverse monoid with zero (imz) iff
I M is a monoid

I with a zero element: ∀x , x0 = 0x = 0
I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that

I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)
I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 8 / 32



Regular paths

M is an inverse monoid with zero (imz) iff
I M is a monoid
I with a zero element: ∀x , x0 = 0x = 0

I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that

I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)
I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 8 / 32



Regular paths

M is an inverse monoid with zero (imz) iff
I M is a monoid
I with a zero element: ∀x , x0 = 0x = 0
I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that

I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)
I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 8 / 32



Regular paths

M is an inverse monoid with zero (imz) iff
I M is a monoid
I with a zero element: ∀x , x0 = 0x = 0
I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that

I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)
I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 8 / 32



Regular paths

M is an inverse monoid with zero (imz) iff
I M is a monoid
I with a zero element: ∀x , x0 = 0x = 0
I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that
I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)

I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 8 / 32



Regular paths

M is an inverse monoid with zero (imz) iff
I M is a monoid
I with a zero element: ∀x , x0 = 0x = 0
I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that
I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)
I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 8 / 32



Regular paths

M is an inverse monoid with zero (imz) iff
I M is a monoid
I with a zero element: ∀x , x0 = 0x = 0
I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that
I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)
I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 8 / 32



GoI from the Danos-Regnier point of view

Sketch of Definition
We call Geometry of Interaction for a logical system L a family of weighting
functions wR for all R ∈ L targetting the same imz and such that:

ϕ persistent ⇐⇒ ϕ regular

Let C[M] be the C-algebra generated by M where the zero of M is also the
zero of the algebra (its closure is a C?-algebra)

For any R we can define Ex(R) =
∑
ϕ∈P(R) w(ϕ)

We recover the standard definition of the geometry of interaction.

Ex(R) is not necessarily equal to Ex(R ′) when R → R ′

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 9 / 32



GoI from the Danos-Regnier point of view

Sketch of Definition
We call Geometry of Interaction for a logical system L a family of weighting
functions wR for all R ∈ L targetting the same imz and such that:

ϕ persistent ⇐⇒ ϕ regular

Let C[M] be the C-algebra generated by M where the zero of M is also the
zero of the algebra (its closure is a C?-algebra)

For any R we can define Ex(R) =
∑
ϕ∈P(R) w(ϕ)

We recover the standard definition of the geometry of interaction.

Ex(R) is not necessarily equal to Ex(R ′) when R → R ′

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 9 / 32



GoI from the Danos-Regnier point of view

Sketch of Definition
We call Geometry of Interaction for a logical system L a family of weighting
functions wR for all R ∈ L targetting the same imz and such that:

ϕ persistent ⇐⇒ ϕ regular

Let C[M] be the C-algebra generated by M where the zero of M is also the
zero of the algebra (its closure is a C?-algebra)

For any R we can define Ex(R) =
∑
ϕ∈P(R) w(ϕ)

We recover the standard definition of the geometry of interaction.

Ex(R) is not necessarily equal to Ex(R ′) when R → R ′

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 9 / 32



GoI from the Danos-Regnier point of view

Sketch of Definition
We call Geometry of Interaction for a logical system L a family of weighting
functions wR for all R ∈ L targetting the same imz and such that:

ϕ persistent ⇐⇒ ϕ regular

Let C[M] be the C-algebra generated by M where the zero of M is also the
zero of the algebra (its closure is a C?-algebra)

For any R we can define Ex(R) =
∑
ϕ∈P(R) w(ϕ)

We recover the standard definition of the geometry of interaction.

Ex(R) is not necessarily equal to Ex(R ′) when R → R ′

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 9 / 32



GoI from the Danos-Regnier point of view

Sketch of Definition
We call Geometry of Interaction for a logical system L a family of weighting
functions wR for all R ∈ L targetting the same imz and such that:

ϕ persistent ⇐⇒ ϕ regular

Let C[M] be the C-algebra generated by M where the zero of M is also the
zero of the algebra (its closure is a C?-algebra)

For any R we can define Ex(R) =
∑
ϕ∈P(R) w(ϕ)

We recover the standard definition of the geometry of interaction.

Ex(R) is not necessarily equal to Ex(R ′) when R → R ′

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 9 / 32



Outline

1 The Danos-Regnier theory

2 An involved example with λ-terms

3 Towards a theory of meaning

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 10 / 32



Nets for λ-calculus

We are going to represent λ-calculus via a translation into MELL proofnets

MELL proofnets are going to be presented via a mix between sharing graphs
(i.e. numbered interaction nets) and Regnier’s new syntax for MELL
proofnets

This syntax is a simplification for studying GoI without dealing with
unnecessary issues.

Disclaimer: it might be a little technical. . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 11 / 32



Nets for λ-calculus

We are going to represent λ-calculus via a translation into MELL proofnets

MELL proofnets are going to be presented via a mix between sharing graphs
(i.e. numbered interaction nets) and Regnier’s new syntax for MELL
proofnets

This syntax is a simplification for studying GoI without dealing with
unnecessary issues.

Disclaimer: it might be a little technical. . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 11 / 32



Nets for λ-calculus

We are going to represent λ-calculus via a translation into MELL proofnets

MELL proofnets are going to be presented via a mix between sharing graphs
(i.e. numbered interaction nets) and Regnier’s new syntax for MELL
proofnets

This syntax is a simplification for studying GoI without dealing with
unnecessary issues.

Disclaimer: it might be a little technical. . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 11 / 32



Nets for λ-calculus

We are going to represent λ-calculus via a translation into MELL proofnets

MELL proofnets are going to be presented via a mix between sharing graphs
(i.e. numbered interaction nets) and Regnier’s new syntax for MELL
proofnets

This syntax is a simplification for studying GoI without dealing with
unnecessary issues.

Disclaimer: it might be a little technical. . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 11 / 32



The translation

We construct nets made from numbered cells:

n λ @ x
n n n

where n ∈ N is called the level and x is a λ-calculus variable.

For t a λ-term, FVo(t) = the set of occurrences of free variables in t.

For any n ∈ N and λ-term t we build a net [t]n with a one-to-one labelling of
conclusions by FVo(t) ∪ {•}.
The translation of t will be the net [t] = [t]0.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 12 / 32



The translation

We construct nets made from numbered cells:

n λ @ x
n n n

where n ∈ N is called the level and x is a λ-calculus variable.

For t a λ-term, FVo(t) = the set of occurrences of free variables in t.

For any n ∈ N and λ-term t we build a net [t]n with a one-to-one labelling of
conclusions by FVo(t) ∪ {•}.
The translation of t will be the net [t] = [t]0.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 12 / 32



The translation

We construct nets made from numbered cells:

n λ @ x
n n n

where n ∈ N is called the level and x is a λ-calculus variable.

For t a λ-term, FVo(t) = the set of occurrences of free variables in t.

For any n ∈ N and λ-term t we build a net [t]n with a one-to-one labelling of
conclusions by FVo(t) ∪ {•}.

The translation of t will be the net [t] = [t]0.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 12 / 32



The translation

We construct nets made from numbered cells:

n λ @ x
n n n

where n ∈ N is called the level and x is a λ-calculus variable.

For t a λ-term, FVo(t) = the set of occurrences of free variables in t.

For any n ∈ N and λ-term t we build a net [t]n with a one-to-one labelling of
conclusions by FVo(t) ∪ {•}.
The translation of t will be the net [t] = [t]0.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 12 / 32



The translation

variable [x ]n =

x •

n

abstraction [λx .u]n =
•

[u]n
. . .. . .

FVo(u)− occx (u)

x

λ

•

n

n

where we have collected all free occurrences of x .

application [(u)v ]• = [v ]n+1 [u]n

@

. . .

FVo(v)

. . .

FVo(u)

• •

n•

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 13 / 32



The translation

variable [x ]n =

x •

n

abstraction [λx .u]n =
•

[u]n
. . .. . .

FVo(u)− occx (u)

x

λ

•

n

n

where we have collected all free occurrences of x .

application [(u)v ]• = [v ]n+1 [u]n

@

. . .

FVo(v)

. . .

FVo(u)

• •

n•

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 13 / 32



The translation

variable [x ]n =

x •

n

abstraction [λx .u]n =
•

[u]n
. . .. . .

FVo(u)− occx (u)

x

λ

•

n

n

where we have collected all free occurrences of x .

application [(u)v ]• = [v ]n+1 [u]n

@

. . .

FVo(v)

. . .

FVo(u)

• •

n•

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 13 / 32



Some examples

nth Church integer: n = λf .λx .(f )nx

[λx .x ] = λ

x
0

•
0

0

, [0] = [λf .λx .x ] = λ

λf

x

0

0

0

0

0

•

,

[1] = [λf .λx .(f )x ] = λ

λf

x

0

0

0

0

@

0
0

0

•

, [2] = λ

λf

x

0

0

0

0

@ @

0

1 2

0 1

•

, . . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 14 / 32



Reduction

We can mimic β-reduction with a big-step reduction coming from MELL
proofnets.

To do so we need to rebuild boxes: connected components of a minimum
level.

We can define in an obvious way paths and their reductions.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 15 / 32



The weighting imz

Let M be the imz generated

by constants: {p, q} ∪ {xn,c , x ∈ V , n, c ∈ N}
a morphism !

and relations:
p?p = q?q = 1

q?p = p?q = 0

x?i,cxj,d = δijδcd

!(u)xi,c = xi,c !c(u),∀u ∈ M

We define a weighting of paths with

λ @ x
n n n

l1 lm

where ci = li − n

!n(p) !n(q) !n(q) !n(p) !n(x1,c1 ) !n(xm,cm )

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 16 / 32



Bentobako semantics

A bentobako is a finite sequence of elements of the form 0, 1 or xi [b] where
x ∈ V ,i ∈ N and b is a bentobako.

We write a ◦ b for the concatenate of a and b,

if b = e1, · · · , en, en+1, · · · , em, we write bn = e1, · · · , en and
bn = en+1, · · · , em.

We interpret weights by partial and reversible operations on bentobakos.

p(b) = 0 ◦ b, q(b) = 1 ◦ b

xi,c(b) = xi [bc ] ◦ bc

!n(w)(b) = bn ◦w(bn)

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 17 / 32



Bentobako semantics

A bentobako is a finite sequence of elements of the form 0, 1 or xi [b] where
x ∈ V ,i ∈ N and b is a bentobako.

We write a ◦ b for the concatenate of a and b,

if b = e1, · · · , en, en+1, · · · , em, we write bn = e1, · · · , en and
bn = en+1, · · · , em.

We interpret weights by partial and reversible operations on bentobakos.

p(b) = 0 ◦ b, q(b) = 1 ◦ b

xi,c(b) = xi [bc ] ◦ bc

!n(w)(b) = bn ◦w(bn)

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 17 / 32



Bentobako semantics

A bentobako is a finite sequence of elements of the form 0, 1 or xi [b] where
x ∈ V ,i ∈ N and b is a bentobako.

We write a ◦ b for the concatenate of a and b,

if b = e1, · · · , en, en+1, · · · , em, we write bn = e1, · · · , en and
bn = en+1, · · · , em.

We interpret weights by partial and reversible operations on bentobakos.

p(b) = 0 ◦ b, q(b) = 1 ◦ b

xi,c(b) = xi [bc ] ◦ bc

!n(w)(b) = bn ◦w(bn)

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 17 / 32



Bentobako semantics

A bentobako is a finite sequence of elements of the form 0, 1 or xi [b] where
x ∈ V ,i ∈ N and b is a bentobako.

We write a ◦ b for the concatenate of a and b,

if b = e1, · · · , en, en+1, · · · , em, we write bn = e1, · · · , en and
bn = en+1, · · · , em.

We interpret weights by partial and reversible operations on bentobakos.

p(b) = 0 ◦ b, q(b) = 1 ◦ b

xi,c(b) = xi [bc ] ◦ bc

!n(w)(b) = bn ◦w(bn)

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 17 / 32



Bentobako semantics

A bentobako is a finite sequence of elements of the form 0, 1 or xi [b] where
x ∈ V ,i ∈ N and b is a bentobako.

We write a ◦ b for the concatenate of a and b,

if b = e1, · · · , en, en+1, · · · , em, we write bn = e1, · · · , en and
bn = en+1, · · · , em.

We interpret weights by partial and reversible operations on bentobakos.

p(b) = 0 ◦ b, q(b) = 1 ◦ b

xi,c(b) = xi [bc ] ◦ bc

!n(w)(b) = bn ◦w(bn)

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 17 / 32



Bentobako semantics

A bentobako is a finite sequence of elements of the form 0, 1 or xi [b] where
x ∈ V ,i ∈ N and b is a bentobako.

We write a ◦ b for the concatenate of a and b,

if b = e1, · · · , en, en+1, · · · , em, we write bn = e1, · · · , en and
bn = en+1, · · · , em.

We interpret weights by partial and reversible operations on bentobakos.

p(b) = 0 ◦ b, q(b) = 1 ◦ b

xi,c(b) = xi [bc ] ◦ bc

!n(w)(b) = bn ◦w(bn)

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 17 / 32



Bentobako semantics

A bentobako is a finite sequence of elements of the form 0, 1 or xi [b] where
x ∈ V ,i ∈ N and b is a bentobako.

We write a ◦ b for the concatenate of a and b,

if b = e1, · · · , en, en+1, · · · , em, we write bn = e1, · · · , en and
bn = en+1, · · · , em.

We interpret weights by partial and reversible operations on bentobakos.

p(b) = 0 ◦ b, q(b) = 1 ◦ b

xi,c(b) = xi [bc ] ◦ bc

!n(w)(b) = bn ◦w(bn)

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 17 / 32



Example: λx .x

[λx .x ] = λ

x
0

•
0

0

Two regular paths of weights: i = px1,0q
?

and i? = qx?1,0p
?.

Operations: i(1 ◦ b) = 0 ◦ x1[] ◦ b and i?(0 ◦ x1[] ◦ b) = 1 ◦ b.

The number of regular paths is always even. We will only present half of
them.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 18 / 32



Example: λx .x

[λx .x ] = λ

x
0

•
0

0

Two regular paths of weights: i = px1,0q
?

and i? = qx?1,0p
?.

Operations: i(1 ◦ b) = 0 ◦ x1[] ◦ b and i?(0 ◦ x1[] ◦ b) = 1 ◦ b.

The number of regular paths is always even. We will only present half of
them.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 18 / 32



Example: λx .x

[λx .x ] = λ

x
0

•
0

0

Two regular paths of weights: i = px1,0q
? and i? = qx?1,0p

?.

Operations: i(1 ◦ b) = 0 ◦ x1[] ◦ b and i?(0 ◦ x1[] ◦ b) = 1 ◦ b.

The number of regular paths is always even. We will only present half of
them.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 18 / 32



Example: λx .x

[λx .x ] = λ

x
0

•
0

0

Two regular paths of weights: i = px1,0q
? and i? = qx?1,0p

?.

Operations: i(1 ◦ b) = 0 ◦ x1[] ◦ b and i?(0 ◦ x1[] ◦ b) = 1 ◦ b.

The number of regular paths is always even. We will only present half of
them.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 18 / 32



Example: λx .x

[λx .x ] = λ

x
0

•
0

0

Two regular paths of weights: i = px1,0q
? and i? = qx?1,0p

?.

Operations: i(1 ◦ b) = 0 ◦ x1[] ◦ b and i?(0 ◦ x1[] ◦ b) = 1 ◦ b.

The number of regular paths is always even. We will only present half of
them.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 18 / 32



Example: (λx .x)λx .x

[(λx .x)λx .x ] = λ

x

@

λ

x

0

1

•

0

0

0

1

1

1 ◦ b
q−→ 1 ◦ 1 ◦ b

i−→ 0 ◦ x1[] ◦ 1 ◦ b
p?

−→ x1[] ◦ 1 ◦ b
!(i)−−→ x1[] ◦ 0 ◦ x1[] ◦ b

p−→ 0 ◦ x1[] ◦ 0 ◦ x1[] ◦ b
i?−→ 1 ◦ 0 ◦ x1[] ◦ b

q?

−→ 0 ◦ x1[] ◦ b

q?i?p!(i)p?iq = q?qx?1,0p
?p!(px1,0q

?)p?px1,0q
?q = x?1,0!(px1,0q

?)x1,0 =
px1,0q

?x?1,0x1,0 = i

The two methods are equivalent thanks to

Lemma (Danos-Regnier)

If w and w ′ are weights of paths in a λ-term then w = w ′ ⇐⇒ w = w′

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 19 / 32



Example: (λx .x)t

Direct generalization of the previous case.

[(λx .x)t] = λ

x

@

0
t•

0

0

0

1

For any path of weight w in t, we have:

b
p?iq−−→ x1[] ◦ b

!(w)−−→ x1[] ◦w(b) =
q?i?p−−−→ w(b)

q?i?p!(w)p?iq = q?qx?1,0p
?p!(w)p?px1,0q

?q = x?1,0!(w)x1,0 = wx?1,0x1,0 = w

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 20 / 32



Example: (λx .x)t

Finding the meaning of i = px1,0q
?.

Interactive procedure:

• •

• •

• •

• •

i

i?

b 1 ◦ b

0 ◦ x1[] ◦ bx1[] ◦ b

x1[] ◦ w(b)

1 ◦ w(b)

0 ◦ x1[] ◦ w(b)

w(b)

λx .x acts as a perfect intermediary, it prepends and postpends any path, in a
reversible way.

During computation each part of the token has a meaning:

1 ◦ b → 0 ◦ x1[] ◦ b

Query for value

Query for argument value Internal state

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 21 / 32



Example: 2

[2] = λ

λf

x

0

0

0

0

@ @

0

1 2

0 1

•
Regular weights: ws = pf1,0qq?q?, wi = pf2,1!(q)p?f ?1,0p

?,
we = qpx0,2!(p?)f ?2,1p

?

Operations: ws(1 ◦ 1 ◦ b) = 0 ◦ f1[] ◦ 1 ◦ b,
wi(0 ◦ f1[] ◦ 0 ◦ e ◦ b) = 0 ◦ f2[e] ◦ 1 ◦ b
we(0 ◦ f2[e] ◦ 0 ◦ e′ ◦ b) = 1 ◦ 0 ◦ x1[e, e′] ◦ b

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 22 / 32



Example: (2)t

ws

wi

we

t

t′

1 ◦ b 1 ◦ 1 ◦ b

0 ◦ f1[] ◦ 1 ◦ bf1[] ◦ 1 ◦ b

f1[] ◦ 0 ◦ α ◦ b′ 0 ◦ f1[] ◦ 0 ◦ α ◦ b′

0 ◦ f2[α] ◦ 1 ◦ b′f2[α] ◦ 1 ◦ b′

f2[α] ◦ 0 ◦ β ◦ b′′ 0 ◦ f2[α] ◦ 0 ◦ β ◦ b′′

1 ◦ 0 ◦ x1[α, β] ◦ b′′0 ◦ x1[α, β] ◦ b′′

Paths in t are expected to be of the shape 1 ◦ b → 0 ◦ σ ◦ b′.

This is the case when t is a function answering to a query by querying the
value of its argument.

λx .x and 2 are of this kind.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 23 / 32



Example: (2)λz .z

ws

wi

we

i

i

1 ◦ b 1 ◦ 1 ◦ b

0 ◦ f1[] ◦ 1 ◦ bf1[] ◦ 1 ◦ b

f1[] ◦ 0 ◦ z1[] ◦ b 0 ◦ f1[] ◦ 0 ◦ z1[] ◦ b

0 ◦ f2[z1[]] ◦ 1 ◦ bf2[z1[]] ◦ 1 ◦ b

f2[z1[]] ◦ 0 ◦ z1[] ◦ b 0 ◦ f2[z1[]] ◦ 0 ◦ z1[] ◦ b

1 ◦ 0 ◦ x1[z1[], z1[]] ◦ b0 ◦ x1[z1[], z1[]] ◦ b

(2)λz .z → λx .(λz .z)(λz .z)x →2 λx .x

px1,2z1,0z1,0q
? is different from i = px1,0q

?.

But they have the same meaning!

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 24 / 32



Example: (2)2

ws

wi

we

we

we

1 ◦ 1 ◦ b 1 ◦ 1 ◦ 1 ◦ b

0 ◦ f1[] ◦ 1 ◦ 1 ◦ bf1[] ◦ 1 ◦ 1 ◦ b

f1[] ◦ 0 ◦ f1[] ◦ 1 ◦ b 0 ◦ f1[] ◦ 0 ◦ f1[] ◦ 1 ◦ b

0 ◦ f2[f1[]] ◦ 1 ◦ 1 ◦ bf2[f1[]] ◦ 1 ◦ 1 ◦ b

f2[f1[]] ◦ 0 ◦ f1[] ◦ 1 ◦ b 0 ◦ f2[f1[]] ◦ 0 ◦ f1[] ◦ 1 ◦ b

1 ◦ 0 ◦ x1[f1[], f1[]] ◦ 1 ◦ b0 ◦ x1[f1[], f1[]] ◦ 1 ◦ b

Computation: q?wep!(ws)p?wip!(ws)p?wsq

Weight: wss = px1,2f1,0f1,0qq?q?

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 25 / 32



Example: (2)2

I Computation: q?wep!(ws)p
?wip!(ws)p

?wsq
I Weight: wss = px1,2f1,0f1,0qq?q?

I Operation: 1 ◦ 1 ◦ b → 0 ◦ x1[f1[], f1[]] ◦ 1 ◦ b

The other paths are a lot more complicated. Let’s use a program!
I Computation: q?wep!(wi )p

?w?
e q

I Weight: w.i = px1,2!(f2,1!(q)p?f ?
1,0)x

?
1,2p

?

I Operation: 0 ◦ x1[α, f1[]] ◦ 0 ◦ β ◦ b → 0 ◦ x1[α, f2[β]] ◦ 1 ◦ b

I Computation: q?wep!(ws)p
?wip!(wi )p

?w?
i p!(we)p

?w?
e q

I Weight: wi. = px1,2f2,1x1,2!(!(f1,0q)p?)f ?
2,1f

?
1,0x

?
1,2p

?.
I Operation: 0 ◦ x1[f1[], f2[α]] ◦ 0 ◦ β ◦ b → 0 ◦ x1[f2[x1[α, β]], f1[]] ◦ 1 ◦ b

I Computation: q?w?
s p!(we)p

?w?
i p!(we)p

?w?
e q

I Weight: wee = qpx1,2!(x1,2!(p
?)f ?

2,1)f
?

2,1x
?
1,2p

?

I Operation: 0 ◦ x1[f2[α], f2[β]] ◦ 0 ◦ γ ◦ b → 1 ◦ 0 ◦ x1[α, x1[β, γ]] ◦ b

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 26 / 32



Example: 4

vs = pf1,0qq?q?, 1 ◦ 1 ◦ b → 0 ◦ f1[] ◦ 1 ◦ b

vi1 = pf2,1!(q)p?f ?1,0p
?, 0 ◦ f1[] ◦ 0 ◦ α ◦ b → 0 ◦ f2[α] ◦ 1 ◦ b

vi2 = pf3,2!(!(q)p?)f ?2,1p
?, 0 ◦ f2[α] ◦ 0 ◦ β ◦ b → 0 ◦ f3[α, β] ◦ 1 ◦ b

vi3 = pf4,3!2(!(q)p?)f ?3,2p
?, 0 ◦ f3[α, β] ◦ 0 ◦ γ ◦ b → 0 ◦ f4[α, β, γ] ◦ 1 ◦ b

ve = qpx1,4!3(p?)f ?4,3p
?, 0 ◦ f4[α, β, γ] ◦ 0 ◦ δ ◦ b → 1 ◦ 0 ◦ x1[α, β, γ, δ] ◦ b

It has the same meaning as (2)2 while using an extra path: w.i is a
compression of vi1 and vi3.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 27 / 32



General situation

Theorem

There are 4 + 2n(n − 1) regular paths in (n)n of weight:

σn = px1,nf
n

1,0qq?q?

for k < n − 1 and l ≤ n − 1:

ιn(k , l) = px1,n!n−l−1(fk+2,k+1!k(βl(!(f l
1,0q)p?))f ?k+1,k)x?1,np

?

εn = qpβn(p?)x?1,np
?

with β(w) = x1,n!n−1(w)f ?n,n−1.

Sketch of proof:

Show that there exists regular paths of these weights by computation.

Show that they are the only ones by showing that there is no room for others
in a semantics.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 28 / 32



Outline

1 The Danos-Regnier theory

2 An involved example with λ-terms

3 Towards a theory of meaning

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 29 / 32



What is the meaning of weights

From the previous example we have a candidate notion for the meaning.

Sketch of definition
E ,F ⊆ M, we have E ∼ F if they lead to the same kind of computations.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 30 / 32



First try at a definition

What we would like to define as having the same meaning:

Definition
Let E ,F ⊆ M be self-dual, we say that E ∼ F when for all g ∈ M there exists a
bijective function from {e ∈ E , eg 6= 0} to {f ∈ F , fg 6= 0}

Unfortunately it is too restrictive because g can be anything:

i = px1,0q
?

j = px1,2z1,0z1,0q
?

Take g = px1,0, we have i?g , ig 6= 0 but j?g = 0.

So {i , i?} 6∼ {j , j?}.
The problem comes from the fact that g can never appear in the context of
λ-terms.

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 31 / 32



A proper definition for λ-caclulus

Lemma

Let t be a λ-term and C 〈〉 a context with one hole. For all path ϕ in C 〈t〉, long
enough with respect to t, there is a function of maximal arity fϕ : Mn → M such
that there exists e1, · · · , en ∈ Ex([t]) with w(ϕ) = fϕ(e1, · · · , en).

Definition

Let t and t be λ-term and C 〈〉 a context with one hole. We say that t ≤ t ′ when
for all ϕ in C 〈t〉, long enough with respect to t, there exists e′1, · · · , e′n ∈ Ex([t ′])
such that

fϕ(e1, · · · , en) = 0 ⇐⇒ fϕ(e′1, · · · , e′n) = 0

t ∼ t ′ when t ≤ t ′ and t ′ ≤ t

Can we decide this relation?
Is t ∼ t ′ implying that there exists t0 such that t →∗ t0 and t ′ →∗ t0?

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 32 / 32


	The Danos-Regnier theory
	An involved example with -terms
	Towards a theory of meaning

