On the Meaning of Algebraic Weights given by the Gol

Marc de Falco
Institut de Mathématiques de Luminy

GTI Workshop, Kyoto

Our problem

- Gol for MELL is almost sound. where almost means no ? in conclusion...

Our problem

- Gol for MELL is almost sound. where almost means no ? in conclusion...
- but after all, we don't really need those why not... do we?

Our problem

- Gol for MELL is almost sound. where almost means no ? in conclusion...
- but after all, we don't really need those why not... do we?
- Take λ-calculus encoding into MELL: $A \Rightarrow B \equiv$? $A^{\perp} 8 B$

Our problem

- Gol for MELL is almost sound. where almost means no ? in conclusion...
- but after all, we don't really need those why not... do we?
- Take λ-calculus encoding into MELL: $A \Rightarrow B \equiv$? $A^{\perp} 8 B$
- So Gol is sound for. . . computations to free variables applied to normal terms!

Our problem

- Gol for MELL is almost sound. where almost means no ? in conclusion...
- but after all, we don't really need those why not... do we?
- Take λ-calculus encoding into MELL: $A \Rightarrow B \equiv$? $A^{\perp 又} B$
- So Gol is sound for. . . computations to free variables applied to normal terms!
- Functional programming without functions is quite limiting.

Our problem

- Is it really that bad?

Our problem

- Is it really that bad?
- Take $t \rightarrow{ }_{\beta}^{*} t^{\prime}$ with $\vdash t, t^{\prime}: A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B$ where B is atomic.

Our problem

- Is it really that bad?
- Take $t \rightarrow{ }_{\beta}^{*} t^{\prime}$ with $\vdash t, t^{\prime}: A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B$ where B is atomic.
- Maybe $\operatorname{Ex}(t) \neq \operatorname{Ex}\left(t^{\prime}\right)$.

Our problem

- Is it really that bad?
- Take $t \rightarrow_{\beta}^{*} t^{\prime}$ with $\vdash t, t^{\prime}: A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B$ where B is atomic.
- Maybe $\operatorname{Ex}(t) \neq \operatorname{Ex}\left(t^{\prime}\right)$.
- With $\vdash u_{i}: A_{i}$ we will have $\vdash(t) u_{1} \cdots u_{n}: B$ and $\vdash\left(t^{\prime}\right) u_{1} \cdots u_{n}: B$.

Our problem

- Is it really that bad?
- Take $t \rightarrow{ }_{\beta}^{*} t^{\prime}$ with $\vdash t, t^{\prime}: A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B$ where B is atomic.
- Maybe $\operatorname{Ex}(t) \neq \operatorname{Ex}\left(t^{\prime}\right)$.
- With $\vdash u_{i}: A_{i}$ we will have $\vdash(t) u_{1} \cdots u_{n}: B$ and $\vdash\left(t^{\prime}\right) u_{1} \cdots u_{n}: B$.
- So $\operatorname{Ex}\left((t) u_{1} \cdots u_{n}\right)=\operatorname{Ex}\left(\left(t^{\prime}\right) u_{1} \cdots u_{n}\right)$.

Our problem

- Is it really that bad?
- Take $t \rightarrow_{\beta}^{*} t^{\prime}$ with $\vdash t, t^{\prime}: A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B$ where B is atomic.
- Maybe $\operatorname{Ex}(t) \neq \operatorname{Ex}\left(t^{\prime}\right)$.
- With $\vdash u_{i}: A_{i}$ we will have $\vdash(t) u_{1} \cdots u_{n}: B$ and $\vdash\left(t^{\prime}\right) u_{1} \cdots u_{n}: B$.
- So $\operatorname{Ex}\left((t) u_{1} \cdots u_{n}\right)=\operatorname{Ex}\left(\left(t^{\prime}\right) u_{1} \cdots u_{n}\right)$.
- Associativity of $\mathrm{Ex} \Rightarrow$ we can compute it with the left formula using $\mathrm{Ex}(t)$ or with the right one using $\operatorname{Ex}\left(t^{\prime}\right)$.

Our problem

- Is it really that bad?
- Take $t \rightarrow{ }_{\beta}^{*} t^{\prime}$ with $\vdash t, t^{\prime}: A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B$ where B is atomic.
- Maybe $\operatorname{Ex}(t) \neq \operatorname{Ex}\left(t^{\prime}\right)$.
- With $\vdash u_{i}: A_{i}$ we will have $\vdash(t) u_{1} \cdots u_{n}: B$ and $\vdash\left(t^{\prime}\right) u_{1} \cdots u_{n}: B$.
- So $\operatorname{Ex}\left((t) u_{1} \cdots u_{n}\right)=\operatorname{Ex}\left(\left(t^{\prime}\right) u_{1} \cdots u_{n}\right)$.
- Associativity of $\mathrm{Ex} \Rightarrow$ we can compute it with the left formula using $\mathrm{Ex}(t)$ or with the right one using $\operatorname{Ex}\left(t^{\prime}\right)$.
- So computationnaly $\operatorname{Ex}(t) \sim \operatorname{Ex}\left(t^{\prime}\right)$.

Our problem

- Focus on Danos-Regnier view of Geometry of Interaction.

Our problem

- Focus on Danos-Regnier view of Geometry of Interaction.
- Gol semantics sliced into a set of algebraic weights with a one-to-one correspondence with meaningful paths in proofs/programs.

Our problem

- Focus on Danos-Regnier view of Geometry of Interaction.
- Gol semantics sliced into a set of algebraic weights with a one-to-one correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that $\mathrm{Ex}(t) \sim \mathrm{Ex}\left(t^{\prime}\right)$ by looking at weights only?

Our problem

- Focus on Danos-Regnier view of Geometry of Interaction.
- Gol semantics sliced into a set of algebraic weights with a one-to-one correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that $\operatorname{Ex}(t) \sim \operatorname{Ex}\left(t^{\prime}\right)$ by looking at weights only?

Equivalent Problem

Can we give a meaning to each weight such that the global meaning is preserved by reduction?

Outline

(1) The Danos-Regnier theory

Paths and reduction

- Representation of a proof/program via a graph-like syntax: e.g. proofnets, interaction nets.
- We consider straights and maximal paths: $\mathfrak{P}(R)$.
- Cut-elimination is translated into a path reduction: $\delta_{\mathcal{R}}: \mathfrak{P}(R) \mapsto \mathfrak{P}\left(R^{\prime}\right)$ for $R \xrightarrow{\mathcal{R}} R^{\prime}$.

Persistent paths

- Throughout reduction paths can be

Persistent paths

- Throughout reduction paths can be

Persistent paths

- Throughout reduction paths can be

Persistent paths

- Throughout reduction paths can be deformed (possibly duplicated)

Persistent paths

- Throughout reduction paths can be deformed (possibly duplicated) or destroyed.

Persistent paths

- Throughout reduction paths can be deformed (possibly duplicated) or destroyed.

- Persistent paths: survive all possible reductions (needs a confluent and normalizing system to make sense).

Regular paths

- M is an inverse monoid with zero (imz) iff

Regular paths

- M is an inverse monoid with zero (imz) iff
- M is a monoid

Regular paths

- M is an inverse monoid with zero (imz) iff
- M is a monoid
- with a zero element: $\forall x, x 0=0 x=0$

Regular paths

- M is an inverse monoid with zero (imz) iff
- M is a monoid
- with a zero element: $\forall x, x 0=0 x=0$
- with an inverse for each element: $\forall x, \exists x^{\star}, x x^{\star} x=x$ and $x^{\star} x x^{\star}=x^{\star}$.

Regular paths

- M is an inverse monoid with zero (imz) iff
- M is a monoid
- with a zero element: $\forall x, x 0=0 x=0$
- with an inverse for each element: $\forall x, \exists x^{\star}, x x^{\star} x=x$ and $x^{\star} x x^{\star}=x^{\star}$.
- Path weighting: a function $\mathrm{w}: \mathfrak{P}(R) \mapsto \mathrm{M}$ such that

Regular paths

- M is an inverse monoid with zero (imz) iff
- M is a monoid
- with a zero element: $\forall x, x 0=0 x=0$
- with an inverse for each element: $\forall x, \exists x^{\star}, x x^{\star} x=x$ and $x^{\star} x x^{\star}=x^{\star}$.
- Path weighting: a function $\mathrm{w}: \mathfrak{P}(R) \mapsto \mathrm{M}$ such that
- $\mathrm{w}\left(\varphi_{1} \varphi_{2}\right)=\mathrm{w}\left(\varphi_{2}\right) \mathrm{w}\left(\varphi_{1}\right)$

Regular paths

- M is an inverse monoid with zero (imz) iff
- M is a monoid
- with a zero element: $\forall x, x 0=0 x=0$
- with an inverse for each element: $\forall x, \exists x^{\star}, x x^{\star} x=x$ and $x^{\star} x x^{\star}=x^{\star}$.
- Path weighting: a function $\mathrm{w}: \mathfrak{P}(R) \mapsto \mathrm{M}$ such that
- $\mathrm{w}\left(\varphi_{1} \varphi_{2}\right)=\mathrm{w}\left(\varphi_{2}\right) \mathrm{w}\left(\varphi_{1}\right)$
- $\mathrm{w}\left(\varphi^{r}\right)=\mathrm{w}(\varphi)^{\star}$ where φ^{r} is the reversal of φ.

Regular paths

- M is an inverse monoid with zero (imz) iff
- M is a monoid
- with a zero element: $\forall x, x 0=0 x=0$
- with an inverse for each element: $\forall x, \exists x^{\star}, x x^{\star} x=x$ and $x^{\star} x x^{\star}=x^{\star}$.
- Path weighting: a function $\mathrm{w}: \mathfrak{P}(R) \mapsto \mathrm{M}$ such that
- $\mathrm{w}\left(\varphi_{1} \varphi_{2}\right)=\mathrm{w}\left(\varphi_{2}\right) \mathrm{w}\left(\varphi_{1}\right)$
- $\mathrm{w}\left(\varphi^{r}\right)=\mathrm{w}(\varphi)^{\star}$ where φ^{r} is the reversal of φ.
- Regular paths: w $(\varphi) \neq 0$

Gol from the Danos-Regnier point of view

Sketch of Definition

We call Geometry of Interaction for a logical system \mathcal{L} a family of weighting functions w_{R} for all $R \in \mathcal{L}$ targetting the same imz and such that:
φ persistent $\Longleftrightarrow \varphi$ regular

Gol from the Danos-Regnier point of view

Sketch of Definition

We call Geometry of Interaction for a logical system \mathcal{L} a family of weighting functions w_{R} for all $R \in \mathcal{L}$ targetting the same imz and such that:

$$
\varphi \text { persistent } \Longleftrightarrow \varphi \text { regular }
$$

- Let $\mathbb{C}[M]$ be the \mathbb{C}-algebra generated by M where the zero of M is also the zero of the algebra (its closure is a \mathbb{C}^{\star}-algebra)

Gol from the Danos-Regnier point of view

Sketch of Definition

We call Geometry of Interaction for a logical system \mathcal{L} a family of weighting functions w_{R} for all $R \in \mathcal{L}$ targetting the same imz and such that:

$$
\varphi \text { persistent } \Longleftrightarrow \varphi \text { regular }
$$

- Let $\mathbb{C}[M]$ be the \mathbb{C}-algebra generated by M where the zero of M is also the zero of the algebra (its closure is a \mathbb{C}^{\star}-algebra)
- For any R we can define $\operatorname{Ex}(R)=\sum_{\varphi \in \mathfrak{P}(R)} \mathrm{w}(\varphi)$

Gol from the Danos-Regnier point of view

Sketch of Definition

We call Geometry of Interaction for a logical system \mathcal{L} a family of weighting functions w_{R} for all $R \in \mathcal{L}$ targetting the same imz and such that:

$$
\varphi \text { persistent } \Longleftrightarrow \varphi \text { regular }
$$

- Let $\mathbb{C}[M]$ be the \mathbb{C}-algebra generated by M where the zero of M is also the zero of the algebra (its closure is a \mathbb{C}^{\star}-algebra)
- For any R we can define $\operatorname{Ex}(R)=\sum_{\varphi \in \mathfrak{P}(R)} \mathrm{w}(\varphi)$
- We recover the standard definition of the geometry of interaction.

Gol from the Danos-Regnier point of view

Sketch of Definition

We call Geometry of Interaction for a logical system \mathcal{L} a family of weighting functions w_{R} for all $R \in \mathcal{L}$ targetting the same imz and such that:

$$
\varphi \text { persistent } \Longleftrightarrow \varphi \text { regular }
$$

- Let $\mathbb{C}[M]$ be the \mathbb{C}-algebra generated by M where the zero of M is also the zero of the algebra (its closure is a \mathbb{C}^{\star}-algebra)
- For any R we can define $\operatorname{Ex}(R)=\sum_{\varphi \in \mathfrak{P}(R)} \mathrm{w}(\varphi)$
- We recover the standard definition of the geometry of interaction.
- $\mathrm{Ex}(R)$ is not necessarily equal to $\mathrm{Ex}\left(R^{\prime}\right)$ when $R \rightarrow R^{\prime}$

Outline

(1) The Danos-Regnier theory

(2) An involved example with λ-terms

(3) Towards a theory of meaning

Nets for λ-calculus

- We are going to represent λ-calculus via a translation into MELL proofnets

Nets for λ-calculus

- We are going to represent λ-calculus via a translation into MELL proofnets
- MELL proofnets are going to be presented via a mix between sharing graphs (i.e. numbered interaction nets) and Regnier's new syntax for MELL proofnets

Nets for λ-calculus

- We are going to represent λ-calculus via a translation into MELL proofnets
- MELL proofnets are going to be presented via a mix between sharing graphs (i.e. numbered interaction nets) and Regnier's new syntax for MELL proofnets
- This syntax is a simplification for studying Gol without dealing with unnecessary issues.

Nets for λ-calculus

- We are going to represent λ-calculus via a translation into MELL proofnets
- MELL proofnets are going to be presented via a mix between sharing graphs (i.e. numbered interaction nets) and Regnier's new syntax for MELL proofnets
- This syntax is a simplification for studying Gol without dealing with unnecessary issues.
- Disclaimer: it might be a little technical...

The translation

- We construct nets made from numbered cells:

where $n \in \mathbb{N}$ is called the level and x is a λ-calculus variable.

The translation

- We construct nets made from numbered cells:

where $n \in \mathbb{N}$ is called the level and x is a λ-calculus variable.
- For t a λ-term, $\mathrm{FV}_{\circ}(t)=$ the set of occurrences of free variables in t.

The translation

- We construct nets made from numbered cells:

where $n \in \mathbb{N}$ is called the level and x is a λ-calculus variable.
- For t a λ-term, $\mathrm{FV}_{\circ}(t)=$ the set of occurrences of free variables in t.
- For any $n \in \mathbb{N}$ and λ-term t we build a net $[t]_{n}$ with a one-to-one labelling of conclusions by $\mathrm{FV}_{o}(t) \cup\{\bullet\}$.

The translation

- We construct nets made from numbered cells:

where $n \in \mathbb{N}$ is called the level and x is a λ-calculus variable.
- For t a λ-term, $\mathrm{FV}_{\circ}(t)=$ the set of occurrences of free variables in t.
- For any $n \in \mathbb{N}$ and λ-term t we build a net $[t]_{n}$ with a one-to-one labelling of conclusions by $\mathrm{FV}_{o}(t) \cup\{\bullet\}$.
- The translation of t will be the net $[t]=[t]_{0}$.

The translation

variable $[x]_{n}=\prod_{x} n$

The translation

variable $[x]_{n}=\prod_{x} n$

where we have collected all free occurrences of x.

The translation

variable $[x]_{n}=\prod_{x} n \xlongequal{\square}$
abstraction $[\lambda x . u]_{n}=$

where we have collected all free occurrences of x.
application $[(u) v]^{\bullet}=\underbrace{[v]_{n+1}}_{|c| c \mid c} \begin{gathered}\text { © } \\ \ldots \\ \mathrm{FV}_{o}(v)_{n} \\ \cdots \\ \mathrm{FV}_{o}(u)\end{gathered}$

Some examples

nth Church integer: $\bar{n}=\lambda f . \lambda x .(f)^{n} x$

Reduction

- We can mimic β-reduction with a big-step reduction coming from MELL proofnets.
- To do so we need to rebuild boxes: connected components of a minimum level.
- We can define in an obvious way paths and their reductions.

The weighting imz

Let M be the imz generated

- by constants: $\{p, q\} \cup\left\{x_{n, c}, x \in V, n, c \in \mathbb{N}\right\}$
- a morphism !
- and relations:

$$
\begin{gathered}
p^{\star} p=q^{\star} q=1 \\
q^{\star} p=p^{\star} q=0 \\
x_{i, c}^{\star} x_{j, d}=\delta_{i j} \delta_{c d} \\
!(u) x_{i, c}=x_{i, c}!^{c}(u), \forall u \in \mathrm{M}
\end{gathered}
$$

We define a weighting of paths with

$$
!^{n}(p) \downarrow \lambda \| n \downarrow!^{n}(q)
$$

$$
!^{n}(q) \downarrow{ }^{\|} \|^{\|}!^{n}(p)
$$

$$
\begin{gathered}
!^{n}\left(x_{1, c_{1}}\right) \downarrow \|_{n}^{l_{n}}!_{n}^{n}\left(x_{m, c_{m}}\right) \\
\text { where } c_{i}=l_{i}-n
\end{gathered}
$$

Bentobako semantics

- A bentobako is a finite sequence of elements of the form 0,1 or $x_{i}[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.

Bentobako semantics

- A bentobako is a finite sequence of elements of the form 0,1 or $x_{i}[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,

Bentobako semantics

- A bentobako is a finite sequence of elements of the form 0,1 or $x_{i}[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b=e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{m}$, we write $b_{n}=e_{1}, \cdots, e_{n}$ and $b^{n}=e_{n+1}, \cdots, e_{m}$.

Bentobako semantics

- A bentobako is a finite sequence of elements of the form 0,1 or $x_{i}[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b=e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{m}$, we write $b_{n}=e_{1}, \cdots, e_{n}$ and $b^{n}=e_{n+1}, \cdots, e_{m}$.
- We interpret weights by partial and reversible operations on bentobakos.

Bentobako semantics

- A bentobako is a finite sequence of elements of the form 0,1 or $x_{i}[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b=e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{m}$, we write $b_{n}=e_{1}, \cdots, e_{n}$ and $b^{n}=e_{n+1}, \cdots, e_{m}$.
- We interpret weights by partial and reversible operations on bentobakos.
- $\mathbf{p}(b)=0 \circ b, \mathbf{q}(b)=1 \circ b$

Bentobako semantics

- A bentobako is a finite sequence of elements of the form 0,1 or $x_{i}[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b=e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{m}$, we write $b_{n}=e_{1}, \cdots, e_{n}$ and $b^{n}=e_{n+1}, \cdots, e_{m}$.
- We interpret weights by partial and reversible operations on bentobakos.
- $\mathbf{p}(b)=0 \circ b, \mathbf{q}(b)=1 \circ b$
- $\mathbf{x}_{\mathbf{i}, \mathrm{c}}(b)=x_{i}\left[b_{c}\right] \circ b^{c}$

Bentobako semantics

- A bentobako is a finite sequence of elements of the form 0,1 or $x_{i}[b]$ where $x \in V, i \in \mathbb{N}$ and b is a bentobako.
- We write $a \circ b$ for the concatenate of a and b,
- if $b=e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{m}$, we write $b_{n}=e_{1}, \cdots, e_{n}$ and $b^{n}=e_{n+1}, \cdots, e_{m}$.
- We interpret weights by partial and reversible operations on bentobakos.
- $\mathbf{p}(b)=0 \circ b, \mathbf{q}(b)=1 \circ b$
- $\mathbf{x}_{\mathbf{i}, \mathbf{c}}(b)=x_{i}\left[b_{c}\right] \circ b^{c}$
-! ${ }^{\mathbf{n}}(\mathbf{w})(b)=b_{n} \circ \mathbf{w}\left(b^{n}\right)$

Example: $\lambda x . x$

- $[\lambda x . x]=\left[\begin{array}{c}r^{0} \\ x \\ 0 \\ \lambda \\ 1\end{array}\right.$

Example: $\lambda x . x$

- $[\lambda x . x]=\left|\begin{array}{c}r^{0} \\ \times 1 \\ x_{0} \\ \lambda \\ \vdots \\ 0\end{array}\right|$
- Two regular paths of weights: $i=p x_{1,0} q^{\star}$

Example: $\lambda x . x$

$-[\lambda x . x]=\begin{gathered}\pi^{0} \\ x / \\ 0 \\ \lambda \\ \vdots \\ 0\end{gathered} \downarrow$

- Two regular paths of weights: $i=p x_{1,0} q^{\star}$ and $i^{\star}=q x_{1,0}^{\star} p^{\star}$.

Example: $\lambda x . x$

- Two regular paths of weights: $i=p x_{1,0} q^{\star}$ and $i^{\star}=q x_{1,0}^{\star} p^{\star}$.
- Operations: $\mathbf{i}(1 \circ b)=0 \circ x_{1}[] \circ b$ and $\mathbf{i}^{\star}\left(0 \circ x_{1}[] \circ b\right)=1 \circ b$.

Example: $\lambda x . x$

- Two regular paths of weights: $i=p x_{1,0} q^{\star}$ and $i^{\star}=q x_{1,0}^{\star} p^{\star}$.
- Operations: $\mathbf{i}(1 \circ b)=0 \circ x_{1}[] \circ b$ and $\mathbf{i}^{\star}\left(0 \circ x_{1}[] \circ b\right)=1 \circ b$.
- The number of regular paths is always even. We will only present half of them.

Example: $(\lambda x \cdot x) \lambda x \cdot x$

- $[(\lambda x . x) \lambda x \cdot x]=@ 1$
- $1 \circ b \xrightarrow{\mathbf{q}} 1 \circ 1 \circ b \xrightarrow{\mathbf{i}} 0 \circ x_{1}[] \circ 1 \circ b$
$\xrightarrow{\mathbf{p}^{\star}} x_{1}[] \circ 1 \circ b \xrightarrow{!(i)} x_{1}[] \circ 0 \circ x_{1}[] \circ b \xrightarrow{\mathbf{p}} 0 \circ x_{1}[] \circ 0 \circ x_{1}[] \circ b$ $\xrightarrow{\mathrm{i}^{\star}} 1 \circ 0 \circ x_{1}[] \circ b \xrightarrow{\mathbf{q}^{\star}} 0 \circ x_{1}[] \circ b$
- $q^{\star} i^{\star} p!(i) p^{\star} i q=q^{\star} q x_{1,0}^{\star} p^{\star} p!\left(p x_{1,0} q^{\star}\right) p^{\star} p x_{1,0} q^{\star} q=x_{1,0}^{\star}!\left(p x_{1,0} q^{\star}\right) x_{1,0}=$ $p x_{1,0} q^{\star} x_{1,0}^{\star} x_{1,0}=i$
- The two methods are equivalent thanks to

Lemma (Danos-Regnier)

If w and w^{\prime} are weights of paths in a λ-term then $w=w^{\prime} \Longleftrightarrow \mathbf{w}=\mathbf{w}^{\prime}$

Example: $(\lambda x . x) t$

- Direct generalization of the previous case.

- For any path of weight w in t, we have:
- $b \xrightarrow{\mathbf{p}^{\star} \mathbf{i} \mathbf{q}} x_{1}[] \circ b \xrightarrow{!(\mathbf{w})} x_{1}[] \circ \mathbf{w}(b)=\xrightarrow{\mathbf{q}^{*} \mathbf{i}^{*} \mathbf{p}} \mathbf{w}(b)$
- $q^{\star} i^{\star} p!(w) p^{\star} i q=q^{\star} q x_{1,0}^{\star} p^{\star} p!(w) p^{\star} p x_{1,0} q^{\star} q=x_{1,0}^{\star}!(w) x_{1,0}=w x_{1,0}^{\star} x_{1,0}=w$

Example: $(\lambda x . x) t$

- Finding the meaning of $i=p x_{1,0} q^{\star}$.
- Interactive procedure:

- $\lambda x . x$ acts as a perfect intermediary, it prepends and postpends any path, in a reversible way.
- During computation each part of the token has a meaning:

Query for argument value Internal state

Example: $\overline{2}$

- Regular weights: $w_{s}=p f_{1,0} q q^{\star} q^{\star}, w_{i}=p f_{2,1}!(q) p^{\star} f_{1,0}^{\star} p^{\star}$, $w_{e}=q p x_{0,2}!\left(p^{\star}\right) f_{2,1}^{\star} p^{\star}$
- Operations: $\mathbf{w}_{\mathbf{s}}(1 \circ 1 \circ b)=0 \circ f_{1}[] \circ 1 \circ b$, $\mathbf{w}_{\mathbf{i}}\left(0 \circ f_{1}[] \circ 0 \circ e \circ b\right)=0 \circ f_{2}[e] \circ 1 \circ b$ $\mathbf{w}_{\mathbf{e}}\left(0 \circ f_{2}[e] \circ 0 \circ e^{\prime} \circ b\right)=1 \circ 0 \circ x_{1}\left[e, e^{\prime}\right] \circ b$

Example: $(\overline{2}) t$

- Paths in t are expected to be of the shape $1 \circ b \rightarrow 0 \circ \sigma \circ b^{\prime}$.
- This is the case when t is a function answering to a query by querying the value of its argument.
- $\lambda x . x$ and $\overline{2}$ are of this kind.

Example: ($\overline{2}) \lambda z . z$

- ($\overline{2}) \lambda z . z \rightarrow \lambda x .(\lambda z . z)(\lambda z . z) x \rightarrow^{2} \lambda x . x$
- $p x_{1,2} z_{1,0} z_{1,0} q^{\star}$ is different from $i=p x_{1,0} q^{\star}$.
- But they have the same meaning!

Example: $(\overline{2}) \overline{2}$

- Computation: $q^{\star} w_{e} p!\left(w_{s}\right) p^{\star} w_{i} p!\left(w_{s}\right) p^{\star} w_{s} q$
- Weight: $w_{s s}=p x_{1,2} f_{1,0} f_{1,0} q q^{\star} q^{\star}$

Example: $(\overline{2}) \overline{2}$

- Computation: $q^{\star} w_{e} p!\left(w_{s}\right) p^{\star} w_{i} p!\left(w_{s}\right) p^{\star} w_{s} q$
- Weight: $w_{s s}=p x_{1,2} f_{1,0} f_{1,0} q q^{\star} q^{\star}$
- Operation: $1 \circ 1 \circ b \rightarrow 0 \circ x_{1}\left[f_{1}[], f_{1}[]\right] \circ 1 \circ b$
- The other paths are a lot more complicated. Let's use a program!
- Computation: $q^{\star} w_{e} p!\left(w_{i}\right) p^{\star} w_{e}^{\star} q$
- Weight: $w_{. i}=p x_{1,2}!\left(f_{2,1}!(q) p^{\star} f_{1,0}^{\star}\right) x_{1,2}^{\star} p^{\star}$
- Operation: $0 \circ x_{1}\left[\alpha, f_{1}[]\right] \circ 0 \circ \beta \circ b \rightarrow 0 \circ x_{1}\left[\alpha, f_{2}[\beta]\right] \circ 1 \circ b$
- Computation: $q^{\star} w_{e} p!\left(w_{s}\right) p^{\star} w_{i} p!\left(w_{i}\right) p^{\star} w_{i}^{\star} p!\left(w_{e}\right) p^{\star} w_{e}^{\star} q$
- Weight: $w_{i .}=p x_{1,2} f_{2,1} x_{1,2}!\left(!\left(f_{1,0} q\right) p^{\star}\right) f_{2,1}^{\star} f_{1,0}^{\star} x_{1,2}^{\star} p^{\star}$.
- Operation: $0 \circ x_{1}\left[f_{1}[], f_{2}[\alpha]\right] \circ 0 \circ \beta \circ b \rightarrow 0 \circ x_{1}\left[f_{2}\left[x_{1}[\alpha, \beta]\right], f_{1}[]\right] \circ 1 \circ b$
- Computation: $q^{\star} w_{s}^{\star} p!\left(w_{e}\right) p^{\star} w_{i}^{\star} p!\left(w_{e}\right) p^{\star} w_{e}^{\star} q$
- Weight: $w_{e e}=q p x_{1,2}!\left(x_{1,2}!\left(p^{\star}\right) f_{2,1}^{\star}\right) f_{2,1}^{\star} x_{1,2}^{\star} p^{\star}$
- Operation: $0 \circ x_{1}\left[f_{2}[\alpha], f_{2}[\beta]\right] \circ 0 \circ \gamma \circ b \rightarrow 1 \circ 0 \circ x_{1}\left[\alpha, x_{1}[\beta, \gamma]\right] \circ b$

Example: $\overline{4}$

- $v_{s}=p f_{1,0 q q^{\star}} q^{\star}, 1 \circ 1 \circ b \rightarrow 0 \circ f_{1}[] \circ 1 \circ b$
- $v_{i 1}=p f_{2,1}!(q) p^{\star} f_{1,0}^{\star} p^{\star}, 0 \circ f_{1}[] \circ 0 \circ \alpha \circ b \rightarrow 0 \circ f_{2}[\alpha] \circ 1 \circ b$
- $v_{i 2}=p f_{3,2}!\left(!(q) p^{\star}\right) f_{2,1}^{\star} p^{\star}, 0 \circ f_{2}[\alpha] \circ 0 \circ \beta \circ b \rightarrow 0 \circ f_{3}[\alpha, \beta] \circ 1 \circ b$
- $v_{i 3}=p f_{4,3}!^{2}\left(!(q) p^{\star}\right) f_{3,2}^{\star} p^{\star}, 0 \circ f_{3}[\alpha, \beta] \circ 0 \circ \gamma \circ b \rightarrow 0 \circ f_{4}[\alpha, \beta, \gamma] \circ 1 \circ b$
- $v_{e}=q p x_{1,4}!^{3}\left(p^{\star}\right) f_{4,3}^{\star} p^{\star}, 0 \circ f_{4}[\alpha, \beta, \gamma] \circ 0 \circ \delta \circ b \rightarrow 1 \circ 0 \circ x_{1}[\alpha, \beta, \gamma, \delta] \circ b$
- It has the same meaning as ($\overline{2}) \overline{2}$ while using an extra path: $w_{. i}$ is a compression of $v_{i 1}$ and $v_{i 3}$.

General situation

Theorem

There are $4+2 n(n-1)$ regular paths in $(\bar{n}) \bar{n}$ of weight:

$$
\sigma_{n}=p x_{1, n} f_{1,0}^{n} q q^{\star} q^{\star}
$$

for $k<n-1$ and $I \leq n-1$:

$$
\begin{gathered}
\iota_{n}(k, l)=p x_{1, n}!^{n-l-1}\left(f_{k+2, k+1}!^{k}\left(\beta^{\prime}\left(!\left(f_{1,0}^{\prime} q\right) p^{\star}\right)\right) f_{k+1, k}^{\star}\right) x_{1, n}^{\star} p^{\star} \\
\epsilon_{n}=q p \beta^{n}\left(p^{\star}\right) x_{1, n}^{\star} p^{\star}
\end{gathered}
$$

with $\beta(w)=x_{1, n}!^{n-1}(w) f_{n, n-1}^{\star}$.
Sketch of proof:

- Show that there exists regular paths of these weights by computation.
- Show that they are the only ones by showing that there is no room for others in a semantics.

Outline

(1) The Danos-Regnier theory

(2) An involved example with λ-terms
(3) Towards a theory of meaning

What is the meaning of weights

From the previous example we have a candidate notion for the meaning.

Sketch of definition

$E, F \subseteq \mathrm{M}$, we have $E \sim F$ if they lead to the same kind of computations.

First try at a definition

What we would like to define as having the same meaning:

Definition

Let $E, F \subseteq \mathrm{M}$ be self-dual, we say that $E \sim F$ when for all $g \in \mathrm{M}$ there exists a bijective function from $\{e \in E, e g \neq 0\}$ to $\{f \in F, f g \neq 0\}$

Unfortunately it is too restrictive because g can be anything:

- $i=p x_{1,0} q^{\star}$
- $j=p x_{1,2} z_{1,0} z_{1,0} q^{\star}$
- Take $g=p x_{1,0}$, we have $i^{\star} g, i g \neq 0$ but $j^{\star} g=0$.
- So $\left\{i, i^{\star}\right\} \nsim\left\{j, j^{\star}\right\}$.

The problem comes from the fact that g can never appear in the context of λ-terms.

A proper definition for λ-caclulus

Lemma

Let t be a λ-term and $C\rangle$ a context with one hole. For all path φ in $C\langle t\rangle$, long enough with respect to t, there is a function of maximal arity $f_{\varphi}: \mathrm{M}^{n} \rightarrow \mathrm{M}$ such that there exists $e_{1}, \cdots, e_{n} \in \operatorname{Ex}([t])$ with $\mathrm{w}(\varphi)=f_{\varphi}\left(e_{1}, \cdots, e_{n}\right)$.

Definition

Let t and t be λ-term and $C\left\rangle\right.$ a context with one hole. We say that $t \leq t^{\prime}$ when for all φ in $C\langle t\rangle$, long enough with respect to t, there exists $e_{1}^{\prime}, \cdots, e_{n}^{\prime} \in \operatorname{Ex}\left(\left[t^{\prime}\right]\right)$ such that

$$
f_{\varphi}\left(e_{1}, \cdots, e_{n}\right)=0 \Longleftrightarrow f_{\varphi}\left(e_{1}^{\prime}, \cdots, e_{n}^{\prime}\right)=0
$$

$t \sim t^{\prime}$ when $t \leq t^{\prime}$ and $t^{\prime} \leq t$
Can we decide this relation?
Is $t \sim t^{\prime}$ implying that there exists t_{0} such that $t \rightarrow^{*} t_{0}$ and $t^{\prime} \rightarrow^{*} t_{0}$?

