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Our problem

GoI for MELL is almost sound. where almost means no ? in conclusion. . .

but after all, we don’t really need those why not... do we?

Take λ-calculus encoding into MELL: A⇒ B ≡ ?A⊥ � B

So GoI is sound for. . . computations to free variables applied to normal terms!

Functional programming without functions is quite limiting.
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Our problem

Is it really that bad?

Take t →∗β t ′ with ` t, t ′ : A1 → · · · → An → B where B is atomic.

Maybe Ex(t) 6= Ex(t ′).

With ` ui : Ai we will have ` (t)u1 · · · un : B and ` (t ′)u1 · · · un : B.

So Ex((t)u1 · · · un) = Ex((t ′)u1 · · · un).

Associativity of Ex ⇒ we can compute it with the left formula using Ex(t) or
with the right one using Ex(t ′).

So computationnaly Ex(t) ∼ Ex(t ′).
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Our problem

Focus on Danos-Regnier view of Geometry of Interaction.

GoI semantics sliced into a set of algebraic weights with a one-to-one
correspondence with meaningful paths in proofs/programs.

Problem

Can we deduce that Ex(t) ∼ Ex(t ′) by looking at weights only?

Equivalent Problem

Can we give a meaning to each weight such that the global meaning is preserved
by reduction?
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Outline

1 The Danos-Regnier theory

2 An involved example with λ-terms

3 Towards a theory of meaning
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Paths and reduction

Representation of a proof/program via a graph-like syntax: e.g. proofnets,
interaction nets.

We consider straights and maximal paths: P(R).

Cut-elimination is translated into a path reduction:

δR : P(R) 7→ P(R ′) for R
R−→ R ′.
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Persistent paths

Throughout reduction paths can be

deformed (possibly duplicated) or

destroyed.

P

→∗ P ′

Persistent paths: survive all possible reductions (needs a confluent and
normalizing system to make sense).
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Regular paths

M is an inverse monoid with zero (imz) iff

I M is a monoid
I with a zero element: ∀x , x0 = 0x = 0
I with an inverse for each element: ∀x , ∃x?, xx?x = x and x?xx? = x?.

Path weighting: a function w : P(R) 7→ M such that

I w(ϕ1ϕ2) = w(ϕ2)w(ϕ1)
I w(ϕr ) = w(ϕ)? where ϕr is the reversal of ϕ.

Regular paths: w(ϕ) 6= 0
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GoI from the Danos-Regnier point of view

Sketch of Definition
We call Geometry of Interaction for a logical system L a family of weighting
functions wR for all R ∈ L targetting the same imz and such that:

ϕ persistent ⇐⇒ ϕ regular

Let C[M] be the C-algebra generated by M where the zero of M is also the
zero of the algebra (its closure is a C?-algebra)

For any R we can define Ex(R) =
∑
ϕ∈P(R) w(ϕ)

We recover the standard definition of the geometry of interaction.

Ex(R) is not necessarily equal to Ex(R ′) when R → R ′
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Outline

1 The Danos-Regnier theory

2 An involved example with λ-terms

3 Towards a theory of meaning
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Nets for λ-calculus

We are going to represent λ-calculus via a translation into MELL proofnets

MELL proofnets are going to be presented via a mix between sharing graphs
(i.e. numbered interaction nets) and Regnier’s new syntax for MELL
proofnets

This syntax is a simplification for studying GoI without dealing with
unnecessary issues.

Disclaimer: it might be a little technical. . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 11 / 32



Nets for λ-calculus

We are going to represent λ-calculus via a translation into MELL proofnets

MELL proofnets are going to be presented via a mix between sharing graphs
(i.e. numbered interaction nets) and Regnier’s new syntax for MELL
proofnets

This syntax is a simplification for studying GoI without dealing with
unnecessary issues.

Disclaimer: it might be a little technical. . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 11 / 32



Nets for λ-calculus

We are going to represent λ-calculus via a translation into MELL proofnets

MELL proofnets are going to be presented via a mix between sharing graphs
(i.e. numbered interaction nets) and Regnier’s new syntax for MELL
proofnets

This syntax is a simplification for studying GoI without dealing with
unnecessary issues.

Disclaimer: it might be a little technical. . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 11 / 32



Nets for λ-calculus

We are going to represent λ-calculus via a translation into MELL proofnets

MELL proofnets are going to be presented via a mix between sharing graphs
(i.e. numbered interaction nets) and Regnier’s new syntax for MELL
proofnets

This syntax is a simplification for studying GoI without dealing with
unnecessary issues.

Disclaimer: it might be a little technical. . .

Marc de Falco (IML) On the Meaning of Algebraic Weights GTI Workshop, Kyoto 11 / 32



The translation

We construct nets made from numbered cells:

n λ @ x
n n n

where n ∈ N is called the level and x is a λ-calculus variable.

For t a λ-term, FVo(t) = the set of occurrences of free variables in t.

For any n ∈ N and λ-term t we build a net [t]n with a one-to-one labelling of
conclusions by FVo(t) ∪ {•}.
The translation of t will be the net [t] = [t]0.
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The translation

variable [x ]n =

x •

n

abstraction [λx .u]n =
•

[u]n
. . .. . .

FVo(u)− occx (u)

x

λ

•

n

n

where we have collected all free occurrences of x .

application [(u)v ]• = [v ]n+1 [u]n

@

. . .

FVo(v)

. . .

FVo(u)

• •

n•
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Some examples

nth Church integer: n = λf .λx .(f )nx

[λx .x ] = λ

x
0

•
0

0

, [0] = [λf .λx .x ] = λ

λf

x

0

0

0

0

0

•

,

[1] = [λf .λx .(f )x ] = λ

λf

x

0

0

0

0

@

0
0

0

•

, [2] = λ

λf

x

0

0

0

0

@ @

0

1 2

0 1

•

, . . .
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Reduction

We can mimic β-reduction with a big-step reduction coming from MELL
proofnets.

To do so we need to rebuild boxes: connected components of a minimum
level.

We can define in an obvious way paths and their reductions.
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The weighting imz

Let M be the imz generated

by constants: {p, q} ∪ {xn,c , x ∈ V , n, c ∈ N}
a morphism !

and relations:
p?p = q?q = 1

q?p = p?q = 0

x?i,cxj,d = δijδcd

!(u)xi,c = xi,c !c(u),∀u ∈ M

We define a weighting of paths with

λ @ x
n n n

l1 lm

where ci = li − n

!n(p) !n(q) !n(q) !n(p) !n(x1,c1 ) !n(xm,cm )
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Bentobako semantics

A bentobako is a finite sequence of elements of the form 0, 1 or xi [b] where
x ∈ V ,i ∈ N and b is a bentobako.

We write a ◦ b for the concatenate of a and b,

if b = e1, · · · , en, en+1, · · · , em, we write bn = e1, · · · , en and
bn = en+1, · · · , em.

We interpret weights by partial and reversible operations on bentobakos.
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Example: λx .x

[λx .x ] = λ

x
0

•
0

0

Two regular paths of weights: i = px1,0q
?

and i? = qx?1,0p
?.

Operations: i(1 ◦ b) = 0 ◦ x1[] ◦ b and i?(0 ◦ x1[] ◦ b) = 1 ◦ b.

The number of regular paths is always even. We will only present half of
them.
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Example: (λx .x)λx .x

[(λx .x)λx .x ] = λ

x

@

λ

x

0

1

•

0

0

0

1

1

1 ◦ b
q−→ 1 ◦ 1 ◦ b

i−→ 0 ◦ x1[] ◦ 1 ◦ b
p?

−→ x1[] ◦ 1 ◦ b
!(i)−−→ x1[] ◦ 0 ◦ x1[] ◦ b

p−→ 0 ◦ x1[] ◦ 0 ◦ x1[] ◦ b
i?−→ 1 ◦ 0 ◦ x1[] ◦ b

q?

−→ 0 ◦ x1[] ◦ b

q?i?p!(i)p?iq = q?qx?1,0p
?p!(px1,0q

?)p?px1,0q
?q = x?1,0!(px1,0q

?)x1,0 =
px1,0q

?x?1,0x1,0 = i

The two methods are equivalent thanks to

Lemma (Danos-Regnier)

If w and w ′ are weights of paths in a λ-term then w = w ′ ⇐⇒ w = w′
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Example: (λx .x)t

Direct generalization of the previous case.

[(λx .x)t] = λ

x

@

0
t•

0

0

0

1

For any path of weight w in t, we have:

b
p?iq−−→ x1[] ◦ b

!(w)−−→ x1[] ◦w(b) =
q?i?p−−−→ w(b)

q?i?p!(w)p?iq = q?qx?1,0p
?p!(w)p?px1,0q

?q = x?1,0!(w)x1,0 = wx?1,0x1,0 = w
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Example: (λx .x)t

Finding the meaning of i = px1,0q
?.

Interactive procedure:

• •

• •

• •

• •

i

i?

b 1 ◦ b

0 ◦ x1[] ◦ bx1[] ◦ b

x1[] ◦ w(b)

1 ◦ w(b)

0 ◦ x1[] ◦ w(b)

w(b)

λx .x acts as a perfect intermediary, it prepends and postpends any path, in a
reversible way.

During computation each part of the token has a meaning:

1 ◦ b → 0 ◦ x1[] ◦ b

Query for value

Query for argument value Internal state
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Example: 2

[2] = λ

λf

x

0

0

0

0

@ @

0

1 2

0 1

•
Regular weights: ws = pf1,0qq?q?, wi = pf2,1!(q)p?f ?1,0p

?,
we = qpx0,2!(p?)f ?2,1p

?

Operations: ws(1 ◦ 1 ◦ b) = 0 ◦ f1[] ◦ 1 ◦ b,
wi(0 ◦ f1[] ◦ 0 ◦ e ◦ b) = 0 ◦ f2[e] ◦ 1 ◦ b
we(0 ◦ f2[e] ◦ 0 ◦ e′ ◦ b) = 1 ◦ 0 ◦ x1[e, e′] ◦ b
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Example: (2)t

ws

wi

we

t

t′

1 ◦ b 1 ◦ 1 ◦ b

0 ◦ f1[] ◦ 1 ◦ bf1[] ◦ 1 ◦ b

f1[] ◦ 0 ◦ α ◦ b′ 0 ◦ f1[] ◦ 0 ◦ α ◦ b′

0 ◦ f2[α] ◦ 1 ◦ b′f2[α] ◦ 1 ◦ b′

f2[α] ◦ 0 ◦ β ◦ b′′ 0 ◦ f2[α] ◦ 0 ◦ β ◦ b′′

1 ◦ 0 ◦ x1[α, β] ◦ b′′0 ◦ x1[α, β] ◦ b′′

Paths in t are expected to be of the shape 1 ◦ b → 0 ◦ σ ◦ b′.

This is the case when t is a function answering to a query by querying the
value of its argument.

λx .x and 2 are of this kind.
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Example: (2)λz .z

ws

wi

we

i

i

1 ◦ b 1 ◦ 1 ◦ b

0 ◦ f1[] ◦ 1 ◦ bf1[] ◦ 1 ◦ b

f1[] ◦ 0 ◦ z1[] ◦ b 0 ◦ f1[] ◦ 0 ◦ z1[] ◦ b

0 ◦ f2[z1[]] ◦ 1 ◦ bf2[z1[]] ◦ 1 ◦ b

f2[z1[]] ◦ 0 ◦ z1[] ◦ b 0 ◦ f2[z1[]] ◦ 0 ◦ z1[] ◦ b

1 ◦ 0 ◦ x1[z1[], z1[]] ◦ b0 ◦ x1[z1[], z1[]] ◦ b

(2)λz .z → λx .(λz .z)(λz .z)x →2 λx .x

px1,2z1,0z1,0q
? is different from i = px1,0q

?.

But they have the same meaning!
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Example: (2)2

ws

wi

we

we

we

1 ◦ 1 ◦ b 1 ◦ 1 ◦ 1 ◦ b

0 ◦ f1[] ◦ 1 ◦ 1 ◦ bf1[] ◦ 1 ◦ 1 ◦ b

f1[] ◦ 0 ◦ f1[] ◦ 1 ◦ b 0 ◦ f1[] ◦ 0 ◦ f1[] ◦ 1 ◦ b

0 ◦ f2[f1[]] ◦ 1 ◦ 1 ◦ bf2[f1[]] ◦ 1 ◦ 1 ◦ b

f2[f1[]] ◦ 0 ◦ f1[] ◦ 1 ◦ b 0 ◦ f2[f1[]] ◦ 0 ◦ f1[] ◦ 1 ◦ b

1 ◦ 0 ◦ x1[f1[], f1[]] ◦ 1 ◦ b0 ◦ x1[f1[], f1[]] ◦ 1 ◦ b

Computation: q?wep!(ws)p?wip!(ws)p?wsq

Weight: wss = px1,2f1,0f1,0qq?q?
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Example: (2)2

I Computation: q?wep!(ws)p
?wip!(ws)p

?wsq
I Weight: wss = px1,2f1,0f1,0qq?q?

I Operation: 1 ◦ 1 ◦ b → 0 ◦ x1[f1[], f1[]] ◦ 1 ◦ b

The other paths are a lot more complicated. Let’s use a program!
I Computation: q?wep!(wi )p

?w?
e q

I Weight: w.i = px1,2!(f2,1!(q)p?f ?
1,0)x

?
1,2p

?

I Operation: 0 ◦ x1[α, f1[]] ◦ 0 ◦ β ◦ b → 0 ◦ x1[α, f2[β]] ◦ 1 ◦ b

I Computation: q?wep!(ws)p
?wip!(wi )p

?w?
i p!(we)p

?w?
e q

I Weight: wi. = px1,2f2,1x1,2!(!(f1,0q)p?)f ?
2,1f

?
1,0x

?
1,2p

?.
I Operation: 0 ◦ x1[f1[], f2[α]] ◦ 0 ◦ β ◦ b → 0 ◦ x1[f2[x1[α, β]], f1[]] ◦ 1 ◦ b

I Computation: q?w?
s p!(we)p

?w?
i p!(we)p

?w?
e q

I Weight: wee = qpx1,2!(x1,2!(p
?)f ?

2,1)f
?

2,1x
?
1,2p

?

I Operation: 0 ◦ x1[f2[α], f2[β]] ◦ 0 ◦ γ ◦ b → 1 ◦ 0 ◦ x1[α, x1[β, γ]] ◦ b
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Example: 4

vs = pf1,0qq?q?, 1 ◦ 1 ◦ b → 0 ◦ f1[] ◦ 1 ◦ b

vi1 = pf2,1!(q)p?f ?1,0p
?, 0 ◦ f1[] ◦ 0 ◦ α ◦ b → 0 ◦ f2[α] ◦ 1 ◦ b

vi2 = pf3,2!(!(q)p?)f ?2,1p
?, 0 ◦ f2[α] ◦ 0 ◦ β ◦ b → 0 ◦ f3[α, β] ◦ 1 ◦ b

vi3 = pf4,3!2(!(q)p?)f ?3,2p
?, 0 ◦ f3[α, β] ◦ 0 ◦ γ ◦ b → 0 ◦ f4[α, β, γ] ◦ 1 ◦ b

ve = qpx1,4!3(p?)f ?4,3p
?, 0 ◦ f4[α, β, γ] ◦ 0 ◦ δ ◦ b → 1 ◦ 0 ◦ x1[α, β, γ, δ] ◦ b

It has the same meaning as (2)2 while using an extra path: w.i is a
compression of vi1 and vi3.
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General situation

Theorem

There are 4 + 2n(n − 1) regular paths in (n)n of weight:

σn = px1,nf
n

1,0qq?q?

for k < n − 1 and l ≤ n − 1:

ιn(k , l) = px1,n!n−l−1(fk+2,k+1!k(βl(!(f l
1,0q)p?))f ?k+1,k)x?1,np

?

εn = qpβn(p?)x?1,np
?

with β(w) = x1,n!n−1(w)f ?n,n−1.

Sketch of proof:

Show that there exists regular paths of these weights by computation.

Show that they are the only ones by showing that there is no room for others
in a semantics.
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What is the meaning of weights

From the previous example we have a candidate notion for the meaning.

Sketch of definition
E ,F ⊆ M, we have E ∼ F if they lead to the same kind of computations.
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First try at a definition

What we would like to define as having the same meaning:

Definition
Let E ,F ⊆ M be self-dual, we say that E ∼ F when for all g ∈ M there exists a
bijective function from {e ∈ E , eg 6= 0} to {f ∈ F , fg 6= 0}

Unfortunately it is too restrictive because g can be anything:

i = px1,0q
?

j = px1,2z1,0z1,0q
?

Take g = px1,0, we have i?g , ig 6= 0 but j?g = 0.

So {i , i?} 6∼ {j , j?}.
The problem comes from the fact that g can never appear in the context of
λ-terms.
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A proper definition for λ-caclulus

Lemma

Let t be a λ-term and C 〈〉 a context with one hole. For all path ϕ in C 〈t〉, long
enough with respect to t, there is a function of maximal arity fϕ : Mn → M such
that there exists e1, · · · , en ∈ Ex([t]) with w(ϕ) = fϕ(e1, · · · , en).

Definition

Let t and t be λ-term and C 〈〉 a context with one hole. We say that t ≤ t ′ when
for all ϕ in C 〈t〉, long enough with respect to t, there exists e′1, · · · , e′n ∈ Ex([t ′])
such that

fϕ(e1, · · · , en) = 0 ⇐⇒ fϕ(e′1, · · · , e′n) = 0

t ∼ t ′ when t ≤ t ′ and t ′ ≤ t

Can we decide this relation?
Is t ∼ t ′ implying that there exists t0 such that t →∗ t0 and t ′ →∗ t0?
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