LUDICS AND LOGICAL COMPLETENESS

Geometry of Interaction, Traced Monoidal Categories and
Implicit Complexity Workshop, Kyoto, Japan.
28 August 2009

Completeness (Godel 1929)

Duality proof — countermodels :

Completeness (Godel 1929)

Duality proof — countermodels :

» either there exists a proof P such that - A is provable;
» or there exists a countermodel M such that M |= —A.

Completeness (Godel 1929)

Duality proof — countermodels :

» either there exists a proof P such that - A is provable;
» or there exists a countermodel M such that M |= —A.

One can imagine a debate on a general proposition A, where

Completeness (Godel 1929)

Duality proof — countermodels :
» either there exists a proof P such that - A is provable;
» or there exists a countermodel M such that M |= —A.

One can imagine a debate on a general proposition A, where
» Player tries to justify A by giving a proof;

Completeness (Godel 1929)

Duality proof — countermodels :

» either there exists a proof P such that - A is provable;
» or there exists a countermodel M such that M |= —A.

One can imagine a debate on a general proposition A, where
» Player tries to justify A by giving a proof;
» Opponent tries to refute it by giving a countermodel.

Completeness (Godel 1929)

Duality proof — countermodels :

» either there exists a proof P such that - A is provable;
» or there exists a countermodel M such that M |= —A.

One can imagine a debate on a general proposition A, where
» Player tries to justify A by giving a proof;
» Opponent tries to refute it by giving a countermodel.
» The states that exactly one of them
wins.

Proofs,Models,Completeness

Proofs:
» Finite.
» Provability defined by induction on proofs.

Proofs,Models,Completeness

Proofs:

» Finite.

» Provability defined by induction on proofs.
Models:

» Infinite: arbitrary cardinality.

» Non standard models (L6wenheim — Skolem,
Compactness Theorem).

» Satisfiability defined by induction on formulas.

Proofs,Models,Completeness

Proofs:

» Finite.

» Provability defined by induction on proofs.
Models:

» Infinite: arbitrary cardinality.

» Non standard models (L6wenheim — Skolem,
Compactness Theorem).

» Satisfiability defined by induction on formulas.

» Nondeterministic principles: Konig Lemma (Schitte),
Zorn’s Lemma (Henkin).

Proofs,Models,Completeness

Proofs:

» Finite.

» Provability defined by induction on proofs.
Models:

» Infinite: arbitrary cardinality.

» Non standard models (L6wenheim — Skolem,
Compactness Theorem).

» Satisfiability defined by induction on formulas.

» Nondeterministic principles: Konig Lemma (Schitte),
Zorn’s Lemma (Henkin).
but ...there is no (clear) interaction between proofs and
models

An interactive account of completeness

» We are interested in (models of) proofs rather than
provability.

An interactive account of completeness

» We are interested in (models of) proofs rather than
provability.

» QUESTION : What about the duality proofs —
countermodels in Girard’s ludics?

An interactive account of completeness

» We are interested in (models of) proofs rather than
provability.

» QUESTION : What about the duality proofs —
countermodels in Girard’s ludics?
ANSWER : Proofs and models are objects of the same

kind (designs) only distinguished by their structural
properties.

Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

» either P is a proof of - A, or
» there exists a model M = A+ which rejects P.

Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

» either P is a proof of - A, or
» there exists a model M = A+ which rejects P.
M rejects P means that M /P and hence, P ¢ A.

Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

» either P is a proof of - A, or
» there exists a model M = A+ which rejects P.
M rejects P means that M /P and hence, P ¢ A.

Proofs : Finite, deterministic, "&-free designs

Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

» either P is a proof of - A, or
» there exists a model M = A+ which rejects P.
M rejects P means that M /P and hence, P ¢ A.

Proofs : Finite, deterministic, "&-free designs
Models : Infinite, nondeterministic, linear designs

Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

» either P is a proof of - A, or
» there exists a model M = A+ which rejects P.
M rejects P means that M /P and hence, P ¢ A.

Proofs : Finite, deterministic, "&-free designs
Models : Infinite, nondeterministic, linear designs

. a real interaction between proofs and
models.

In this talk:

» We show a completeness result: ludics is a model for a
variant of (propositional) polarized linear logic (with
exponentials) = a constructive version of classical
propositional logic.

In this talk:

» We show a completeness result: ludics is a model for a
variant of (propositional) polarized linear logic (with
exponentials) = a constructive version of classical
propositional logic.

» ...but before that: we explain what ludics is!

What is ludics? (1)

A purely interactive approach to logic.

What is ludics? (1)

A purely interactive approach to logic.

Ludics arose as the study of the interaction between
syntax and syntax, typically in cut-elimination. It was
necessary to replace syntax with something more
geometrical, and this is why ludics lies between syntax
and semantics, as a ‘semantics of syntax-as-syntax’, a
monist explanation of logic. The thesis of ludics, which
was already present in the programmatic paper
[Towards a geometry of interaction], is that logic
reflects the hidden geometrical properties of
something.

J.-Y. Girard, Locus Solum (2001).

What is ludics? (I1)

» Monism: An uniform framework in which syntax (proofs)
and semantics (counterproofs, models) can be uniformly
expressed.

What is ludics? (I1)

» Monism: An uniform framework in which syntax (proofs)
and semantics (counterproofs, models) can be uniformly
expressed.

» Designs: Untyped paraproofs

What is ludics? (I1)

» Monism: An uniform framework in which syntax (proofs)
and semantics (counterproofs, models) can be uniformly
expressed.

» Designs: Untyped paraproofs

» “untyped” : proofs from which the logical content has been

almost erased.
» “para” : proofs which might contain errors and might be

incomplete.

What is ludics? (I1)

» Monism: An uniform framework in which syntax (proofs)
and semantics (counterproofs, models) can be uniformly
expressed.

» Designs: Untyped paraproofs
» “untyped” : proofs from which the logical content has been
almost erased.
» “para” : proofs which might contain errors and might be
incomplete.

» Interaction : Designs interact together via normalization
which induces an orthogonality relation L between designs
in such a way that P LM holds if the normalization of P
applied to M terminates.

What is ludics? (I1)

» Monism: An uniform framework in which syntax (proofs)
and semantics (counterproofs, models) can be uniformly
expressed.

» Designs: Untyped paraproofs
» “untyped” : proofs from which the logical content has been
almost erased.
» “para” : proofs which might contain errors and might be
incomplete.

» Interaction : Designs interact together via normalization
which induces an orthogonality relation L between designs
in such a way that P LM holds if the normalization of P
applied to M terminates.

» A proof P and “its model” P+ := {N : PLN}.
» An automaton A and a datum D : A accepts D iff ALD.

Example

A= @ ; n=sssss...s0
start 0 N
() n times
s

A dialogue between the automata and the datum.

Example

@ @ n=sssss...s0
start 0 e

n times

A dialogue between the automata and the datum.

A = x|S(zero.OK + succ(x).A)
0 = S(x).x|zero
N+1 := S(x).x[succ(N)

Example

@ @ n—=sssss...s0
start 0 e

n times
A dialogue between the automata and the datum.

A = x|S(zero.OK + succ(x).A)
0 = S(x).x|zero
N+1 := S(x).x[succ(N)

Al0/x] = (S(x).x|zero)|S(zero.OK + succ(x).A)
— (zero.OK + succ(x).A)|zero
— OK.
AIN+1/x] = (S(x).x|[succ(N))|S(zero.OK + succ(x).A)
— (zero.OK + succ(x).A)[succ(N)
s AN/X].

What is ludics? (l11)

The core of ludics : focalization

What is ludics? (l11)

The core of ludics : focalization

Positive | Negative

SNFR, O ®
— R 3

What is ludics? (l11)

The core of ludics : focalization

Positive | Negative
® s
@ &
0 T
1 1
? !
F3¥,AB

» Negative = reversible, deterministic: mﬁ

What is ludics? (l11)

The core of ludics : focalization

Positive | Negative

VRO ®
- e

FY,A B
» Negative = reversible, deterministic: mﬁ

FXi, A F3,,B

» Positive = irreversible, nondeterministic:
FY,A®B

¢

What is ludics? (1V)

» ENg,...,Nn,P1,...,Pn a negative formula (if any)
and keep decomposing until one get to atoms or positive
subformulas;

» - Py,...,Py choose a positive formula and keep
decomposing it up to atoms or negative subformulas.

What is ludics? (1V)

» ENg,...,Nn,P1,...,Pn a negative formula (if any)
and keep decomposing until one get to atoms or positive
subformulas;

» - Py,...,Py choose a positive formula and keep
decomposing it up to atoms or negative subformulas.

(Andreoli 92) The focalization discipline is a complete
proof-search strategy.

What is ludics? (V)

Synthetic connectives

» Focalization allows synthetic connectives: clusters of
connectives of the same polarity.

» N ® (M1 & My) can be written as a(N, Mz, M,). Think a as
a “generalized” ternary connective _ ® (_ @® _).

What is ludics? (V)

Synthetic connectives

» Focalization allows synthetic connectives: clusters of
connectives of the same polarity.

» N ® (M1 & My) can be written as a(N, Mz, M,). Think a as
a “generalized” ternary connective _ ® (_ @® _).

F X5, Mg F 35, M,

21,N F32,M; &M, G 21,N H32,M1 &M G
I—Z,N@)(M]_EBMz) FZ,N@(M]_EBMz)
>1,N F3¥Xso M >1,N F3XoM

1, 2, Vi1 QD1 1, 2, VI2 QDo

FZ,N@(Ml@Mz) FZ,N@(Ml@Mz)

What is ludics? (V)

Synthetic connectives

» Focalization allows synthetic connectives: clusters of
connectives of the same polarity.

» N ® (M1 & My) can be written as a(N, Mz, M,). Think a as
a “generalized” ternary connective _ ® (_ @® _).

F X5, Mg F 35, M,

21,N F32,M; &M, G 21,N H32,M1 &M G
FX,N® (M & Mz) XN ® (M & Mz)
21,N FYX>, M

1, 2Mi o0, 21,N F32,M; RFa
FZ,N@(Ml@Mz) FZ,N@(Ml@Mz)

» Alternation of positive and negative layers.

Computational ludics (1)

Designs (Terui 08) = infinitary lambda terms (Bohm trees) +
named applications + named and superimposed abstractions.

cf.
» the "concrete syntax” (Curien 05) = abstract Bohm trees,

» the correspondence with linear r-calculus (Faggian-Piccolo 07).

Signature: A = (A, ar)

A is a set of names,
ar: A — N gives an arity to each name.

Computational ludics (I1)

The set of designs is coinductively defined by:

P

» where ar(a) =n, X =Xg,...

M
Q

Nofa(Ny. ..

X

>-a(X).Pa

-7Nn>

,Xn

Daimon
Divergence
Application
Variable
Abstraction

» > a(X).Pg is built from {a(X).Pa}aca.

Computational ludics (I1)

The set of designs is coinductively defined by:

P

» where ar(a) =n, X =Xg,...

M
Q

No|a(Ny, ...

X

>-a(X).Pa

b) Nn>

,Xn

Daimon
Divergence
Application
Variable
Abstraction

» > a(X).Pg is built from {a(X).Pa}aca.

Compare it with:

P = (NQ)Nan
N = X|XXg---Xp.P

Reduction

» Q allows partial branching:

a(X).P+b(y).Q := a(X).P+b(¥).Q+c(2).Q +d(2).Q

Reduction

» Q allows partial branching:
a(X).P+b(y).Q := a(X).P+b(y).Q+c(2).Q +d(2).Q
» Reduction rule:

(> a(X1,...,%n).Pa)|a@aNg,...,Nn) —> Pa[N1/X1,...,Nn/Xn].

Reduction

» Q allows partial branching:
a(X).P+b(y).Q := a(X).P+b(y).Q+c(2).Q +d(2).Q
» Reduction rule:
(> a(X1,...,%n).Pa)|a@aNg,...,Nn) —> Pa[N1/X1,...,Nn/Xn].
» Compare it with

Orthogonality

A positive design P is one of the following forms:

x[a{Nyg,...,Np) Head normal form
(Y a(X).Pa) [&(Nq, ..., Nn) Cut
d Daimon

Q Divergence

Orthogonality

A positive design P is one of the following forms:

x[a{Nyg,...,Np) Head normal form
(Y a(X)-Pa) [@N1,...,Na) Cut

b3 Daimon

Q Divergence

» Dichotomy: For any closed positive design P,

P —* »kor diverges.

Orthogonality

A positive design P is one of the following forms:

x[a{Nyg,...,Np) Head normal form
(Y a(X)-Pa) [@N1,...,Na) Cut

b3 Daimon

Q Divergence

» Dichotomy: For any closed positive design P,

P —* »kor diverges.

» Orthogonality: Suppose fv(P) C {Xo} and fv(M) = (.

PIM <« P[M/xq] —" .

Orthogonality

A positive design P is one of the following forms:

x[a{Nyg,...,Np) Head normal form
(Y a(X)-Pa) [@N1,...,Na) Cut

b3 Daimon

Q Divergence

» Dichotomy: For any closed positive design P,

P —* »kor diverges.

» Orthogonality: Suppose fv(P) C {Xo} and fv(M) = (.
PIM <« P[M/xq] —" .

Compare it with:

/

nln’ <= =’ is nilpotent.

Example: termination

@ Nn=sssss...s0
N——
SIEE n times

Example: termination

start @

N+1

.s0

N = SSSSS . .
—_———

n times

x|S(zero X + succ(x).A)
S(x).x|zero
S(x).x[succ(N)

Example: termination

@ Nn=sssss...s0
N———

I .

Sl n times

S

x|S(zero X + succ(x).A)
S(x).x|zero
S(x).x[succ(N)

R o X
[T

A[0/x] (S(x).x|zero) |S(zero . + succ(x).A)

(ero. X + succ(x).A)|zero

lln

AN + 1/x] (S(x).x[succ(N))|S (zero,X + succ(x).A)
(zeroX + succ(x).)\succ<N>

AIN/x].

Ll

Example: nontermination

x[a(N)
a(x).p
b(y).P

<z
[T

Example: nontermination

P = x[a(N)
N = a(x).P
M = b(y).P
PIN/X] = (a(x)-P)[a(N)
— P[N/x].
P[M/X] (b(x).P)[a(N)

— Q.

Ludics and Game Semantics

Ludics

Untyped strategies (designs)
1L

Types (Behaviours)

Game Semantics

Typed strategies

Types (Arenas, Games)

Ludics and Game Semantics

Ludics Game Semantics
Untyped strategies (designs) Typed strategies
1L
Types (Behaviours) Types (Arenas, Games)

» Game Semantics: All strategies are typed. Types
GUARANTEE that strategies compose well.

Ludics and Game Semantics

Ludics Game Semantics
Untyped strategies (designs) Typed strategies
1L
Types (Behaviours) Types (Arenas, Games)

» Game Semantics: All strategies are typed. Types
GUARANTEE that strategies compose well.

» Ludics : Strategies are untyped (all given on a universal

arena) Strategies can ALWAYS interact with each other,
and interaction may terminate well (L) or not (deadlock, 2)

Nondeterminism: why

» An interactive account and of contraction — duplication
rule:
P(x,y) F x:P,y:P
P(z,z) - z:P

where:
» P is a positive logical type;
» P(x,y) is a positive design with free variables in {x,y};
» P(z,z)is a positive design with free variable z.

Nondeterminism: why

» An interactive account and of contraction — duplication
rule:
P(x,y) F x:P,y:P
P(z,z) - z:P

where:
» P is a positive logical type;
» P(x,y) is a positive design with free variables in {x,y};
» P(z,z)is a positive design with free variable z.
» Two different readings of the rule:

Top Down Contraction: an identification of free variables.

Nondeterminism: why

» An interactive account and of contraction — duplication
rule:
P(x,y) F x:P,y:P
P(z,z) - z:P

where:
» P is a positive logical type;
» P(x,y) is a positive design with free variables in {x,y};
» P(z,z)is a positive design with free variable z.
» Two different readings of the rule:
Top Down Contraction: an identification of free variables.
Bottom Up Duplication: an arbitrary bi-patrtition of
occurrences of z.

Failure of completeness

Write P =T for the interpretation of the sequent P |- T.

Failure of completeness

Write P =T for the interpretation of the sequent P |- T.
Semantically, we have to show that:

* P(X,y)EX:P,y:P < P(z,z)=z:P

Failure of completeness

Write P =T for the interpretation of the sequent P |- T.
Semantically, we have to show that:

* P(X,y)EX:P,y:P < P(z,z)=z:P

In general, % does not hold in a uniform setting....

Failure of completeness

Write P =T for the interpretation of the sequent P |- T.
Semantically, we have to show that:

* P(X,y)EX:P,y:P < P(z,z)=z:P

In general, % does not hold in a uniform setting....
We need to enlarge the universe of designs.

Failure of completeness

Write P =T for the interpretation of the sequent P |- T.
Semantically, we have to show that:

* P(X,y)EX:P,y:P < P(z,z)=z:P

In general, % does not hold in a uniform setting....
We need to enlarge the universe of designs.
We introduce (universal) nondeterminism.

Designs

Coinductively defined terms given by the following grammar:
P = Q| AG positive designs
Qi == Npla(Nyg,...,N,) predesigns

N == x | Ya(X).Pa negative designs

Designs

Coinductively defined terms given by the following grammar:

P = Q| AG positive designs
Qi == Npla(Nyg,...,N,) predesigns
N == x | Ya(X).Pa negative designs

» Xis now defined as the empty conjunction A. /\{i} Qiis
simply written as Q;.

Designs

Coinductively defined terms given by the following grammar:

P = Q| AG positive designs
Qi == Npla(Nyg,...,N,) predesigns
N == x | Ya(X).Pa negative designs

» Xis now defined as the empty conjunction A. /\{i} Qiis
simply written as Q;.

» A designs is deterministic if in any occurrence of
subdesign A, Q;, | is either empty (and hence A, Q; =)
or a singleton.

Normalization; Reduction

The reduction relation — is defined over the set of positive
designs as follows:

_’Q — Q B
QAA(XaX).Pala(N)) — QAN (Pa[N/X]).

Normalization; Reduction

The reduction relation — is defined over the set of positive
designs as follows:

_’Q — Q B
QAA(XaX).Pala(N)) — QAN (Pa[N/X]).

Given two positive designs Q, R, we define:

Convergence : Q | R, ifQ —* R and R is a conjunction of
head normal forms (no cuts);

Divergence : Q 1, otherwise. Q —*Q,Q — ... — ...

Normalization: Normal Form

The normal form function [| : D — D is defined by
corecursion as follows:
xI = x
[P] = Q B if P 1);)
. = Axifai(INiD) P A X [ai (NG
[Ca(X).Pa] = Y. a(x).[Pal.

Normalization: Normal Form

The normal form function [| : D — D is defined by
corecursion as follows:

[x] = x;
PI = % DL ¢ .
) = AX@(IND) P4 A i@ (N;);
[Ca)Pa) = Yak) [Pl

> (a(X)2H)[@(N) = (a(X). A B)[E(N) = A D =X

Normalization: Normal Form

The normal form function [| : D — D is defined by
corecursion as follows:
xI = x
[P] = Q B if P 1);)
. = Axifai(INiD) P A X [ai (NG
[Ca(X).Pa] = Y. a(x).[Pal.

> (a(X)22)[aN) = (a(x). A 0)aN) = A0 = X
» The dichotomy between »« and Q in the closed case is
maintained: [/, Q;i] = X iff any reduction sequence from

any Q; is finite.

Normalization: Normal Form

The normal form function [| : D — D is defined by
corecursion as follows:
xI = x
[P] = Q B if P 1);)
. = Axifai(INiD) P A X [ai (NG
[Ca(X).Pa] = Y. a(x).[Pal.

> (a(x)2)/aN) = (a(x). AD)aN) = A0 =%

» The dichotomy between »« and Q in the closed case is
maintained: [/, Q;i] = X iff any reduction sequence from
any Q; is finite.

» Ais universal: [Q; A Q2] = X iff [Q1] = X and [Q,] = "&.

Example

x[ay) A a(x).x|bly) [alz) A b(x).(c(y) x| T{t) | b(u) —

x[afy) A z[b(y) A c(y)sz|cTlt) — x[aly) A z|bly).

Some definitions

» P istotal if P # Q.

» T is linear if for any subterm Ng|a(Ng,...,Np),
fv(No), ..., fv(Ny) are pairwise disjoint.

» X is an identity if it occurs as No|a(N1,...,X,...,Np).

Orthogonality

We consider only total, cut-free and identity free designs.

Orthogonality

We consider only total, cut-free and identity free designs.
» P is closed if fv(P) = (), atomic if fv(P) C {xo} for a
certain fixed variable Xg.
» N is atomic if fv(N) = 0.
» P,N are orthogonal P_LN when P[N /Xq] = "&.

Orthogonality

We consider only total, cut-free and identity free designs.
» P isclosed if fv(P) = (), atomic if fv(P) C {xo} for a
certain fixed variable Xg.
» N is atomic if fv(N) = 0.
» P,N are orthogonal P_LN when P[N /Xq] = "&.
» For X a set of atomic designs (same polarity):

X+ :={E:VDe X, DLE}.

Orthogonality

We consider only total, cut-free and identity free designs.
» P isclosed if fv(P) = (), atomic if fv(P) C {xo} for a

certain fixed variable Xg.

N is atomic if fv(N) = 0.

P,N are orthogonal P_LN when P[N /Xq] = "&.

For X a set of atomic designs (same polarity):

X+ :={E:VDe X, DLE}.

A behaviour (interactive type) G is a set of designs of the
same polarity such that

G+t =G.

v

v

v

v

Logical Connectives

Fix a linear order on variables: Xg, X1, X5....
» An n-ary logical connective « is a finite set of negative
actions a = {a1(X1), ..., an(Xn)}, where Xy, ..., X, are
taken over {xi,...,Xn}.

Logical Connectives
Fix a linear order on variables: Xg, X1, X5....

» An n-ary logical connective « is a finite set of negative
actions a = {a1(X1), ..., an(Xn)}, where Xy, ..., X, are
taken over {xi,...,Xn}.

» Given an n-ary logical connective « and behaviours
N1,...,Np,P1,..., P, we define:

§<N1,-~-,Nm> = {XO|§<N1,~--,Nm> “Ni € Nj, 1 <i< m}

_ — 11
PC:@(N1,...,Nn) := (Uacq @(Ni;, - .-, Ni,))
where i, ...,im € {1,...,n}

NC: a(Py,...,Pn) :=a(Pyt, ..., Pyt)L

Logical Connectives
Fix a linear order on variables: Xg, X1, X5....

» An n-ary logical connective « is a finite set of negative
actions a = {a1(X1), ..., an(Xn)}, where Xy, ..., X, are
taken over {xi,...,Xn}.

» Given an n-ary logical connective « and behaviours
N1,...,Np,P1,..., P, we define:

§<N1,-~-,Nm> = {XO|§<N1,~--,Nm> “Ni € Nj, 1 <i< m}

_ — 11
PC:@(N1,...,Nn) := (Uacq @(Ni;, - .-, Ni,))
where i, ...,im € {1,...,n}

NC: a(Py,...,Pn) :=a(Pyt, ..., Pyt)L

> (@(Ng,...,Np))Lt = a(Nyt, ... Npt).

Examples

Usual linear logic connectives can be defined by logical
connectives ®,&, 7T, T below;

» B ={ple=58:=7,;
& :={m,m}, 4 =7, O =&
=4 =7
» T:=0,0=T.
©, ® binary names, 7j, ¢, 1,/ unary names.

v

v

Examples

Usual linear logic connectives can be defined by logical

connectives ®,&, 7T, T below;

» B ={ple=58:=7,;
& :={m,m}, 4 =7, O =&
T {h =7

v

v

» T:=0,0=T.
©, ® binary names, 7j, ¢, 1,/ unary names.

NeM =
NoM =
IN
1 =

o(N, M)--+ P®Q
(ea(N) Usp(M))++ P& Q
LN 1P
KT L

o(P+, Q4+
t (PHLE Nt
LPH:

= LT+

Logical behaviours and semantical sequents

Logical behaviours: inductively defined by

P:=a(Ng,...,Np) N:i=a(P1,...,Pn)

» P |: X1 :Pq1,%X : Py if fV(P) - {Xl,Xz} and
P[N1/X1,Nn/Xz] = for any N; € P, Np € Py

» N =x:P,N iffvy(N) C {x} and P[N[M /x]/xo] = " for any
M e P+ P eNt

» Pl=xo:PiffP e P.

Duplication/ A

Any positive logical behaviour satisfies:

Duplicability: P[xo/X1,Xo/X2] EXo:P <= P E X1 :P,x2: P

Duplication/ A\

Any positive logical behaviour satisfies:
Duplicability: P[xo/X1,Xo/X2] EXo:P <= P E X1 :P,x2: P
Any negative logical behaviour satisfies:

Closure under A\: NN M eN<= NAM eN

N=3aX)P M=3aX).Q NAM=>a(X).PAQ.

About internal completeness (I)

» A purely monistic, local notion of completeness.

» A direct description of the elements in behaviours (built by
logical connectives) without using the orthogonality and
without referring to any proof system.

Internal completeness holds for negative logical connectives:

a(Pl, 500 g Pn) = {Za a(%).Pa : Pa): Xi1 : Pil,. - Xjy - Pim}

About internal completeness (I)

» A purely monistic, local notion of completeness.

» A direct description of the elements in behaviours (built by
logical connectives) without using the orthogonality and
without referring to any proof system.

Internal completeness holds for negative logical connectives:
a(Pl, 500 g Pn) = {Za a(%).Pa : Pa): Xi1 : Pil, e X Pim}

» Py, can be arbitrary when b(X) ¢ «.
» We have a lot of garbage...

Pi&P, = {7T1(X1).P1 +7T2(X2).P2 + -0 P |: Xj : Pi}
= {7T1(X0).P1 —|—7T2(X0).P2 +---: Pj € P|}

irrelevant components of the sum are suppressed by - - -
Up to incarnation (i.e. removal of irrelevant part), P;&P»,
which has been defined by intersection, is isomorphic to
the cartesian product of P; and P,: a phenomenon called
mystery of incarnation.

About internal completeness (II)

For positive logical behaviours, it only holds (in that simple
form) for linear and deterministic designs.

About internal completeness (II)

For positive logical behaviours, it only holds (in that simple
form) for linear and deterministic designs.

> Because any logical positive behaviour is built on linear and
deterministic designs...

About internal completeness (II)

For positive logical behaviours, it only holds (in that simple
form) for linear and deterministic designs.

> Because any logical positive behaviour is built on linear and
deterministic designs...

> But we want to take repetitions into account!

Proofs and Models

» A proof is a design in which all the conjunctions are unary.
In other words, a proof is a deterministic and »&-free
design.

» A model is an atomic linear design (in which conjunctions
of arbitrary cardinality may occur).

Proof-system

Mill—F,Nil Miml—F,Nim (ZZ@<N1,...,Nn>€r)
zla(M M)T

(@)

gy

{Pa F rﬂ?a : IE;a\}aea
Za(%)Pa l_ r, OZ(P]_, e eey Pn)

PHI,z:P NET,Pt (cut)
PIN/z] - T

(@)

where:
» Inthe rule (@,a), a € o, ar(a) = m, and
il,...,im € {l,,n}

> In (), X; : P, stands for x, : Pij, ..., Xy, : Piy-

Proof-system

Mill—F,Nil Miml—F,Nim (ZZ@<N1,...,Nn>€r)
zla(M M)T

(@)

gy

{Pa F r,)?a : IE;a\}aea
Za(%)Pa l_ r, OZ(P]_, ey Pn)

PHI,z:P NET,Pt (cut)
PIN/z] - T

(@)

where:
» Inthe rule (@,a), a € o, ar(a) = m, and
i1,...,im € {1,...,n}.
> In (), X, : P4 stands for Xi, : P
Notice that:

i17"'7Xim . Pim-

» Structural rules (weakening and contraction/duplication)
are implicit.

Example

My ET,N; My ET,Ny (ZZN1®N2€F) (®.)
Z|O<M1,M2> ET ’

MET,N (z:N;@&NyeTl
(2 ThOR D) (g,0)
z[,i (M) =T
Pl—r,Xlipl,Xzipz (78)
p(Xl,Xz).P + - T, P, %P,

Pll_r,X]_ZP]_ le—r,Xzipz (&)
7T1(X1).P]_ =+ 7T2(X2).P2 + .ok F, P]_ & Pz

Theorem (Soundness)

P-P—PEx:P.

The proof is given by induction on the depth of the type
derivation P - P.

Theorem (Soundness)

PFP=PEX:P.
The proof is given by induction on the depth of the type
derivation P - P.

Theorem (Completeness (for proofs))
If P is a proof:
PEx:P=PFP.

Likewise for negative logical behaviours.

Sketch of the proof

» Analogous to Schitte’s proof of Godel's completeness. We
consider the statement:

Pi/P— PHx:P.

1. Given an unprovable sequent + P, find an open branch in
the cut-free proof search tree.

2. From the open branch, build a countermodel M in which P
is false.

Sketch of the proof

» Analogous to Schitte’s proof of Godel's completeness. We
consider the statement:

Pi/P— PHx:P.

1. Given an unprovable sequent + P, find an open branch in
the cut-free proof search tree.

2. From the open branch, build a countermodel M in which P
is false.

» The countermodel is here an atomic linear design in which
conjunctions of arbitrary cardinality may occur. We can
explicitly construct the countermodel.

» Konig Lemma is here essential.

» Closure under A of P+ is essential to prove that the
countermodel belongs to P-.

Corollaries

Downward Lowenheim-Skolem Let P be a proof and P a
logical behaviour. If P ¢ P, then there is a
countable model M € P+ such that P M (M is
countable in the sense that it consists of countably
many actions #).

Finite model property If P is linear, there is a finite (and
deterministic) model M € P+ such that P /M.

Conclusions

» Godel's completeness revisited in terms of ludics.
» We have enlighten the duality between proofs and models.

» We can give an explicit construction of a countermodel to
any wrong proof attempt.

Related works

» Godel's incompleteness theorem.
» Recursive types (Mellieés-Vouillon 05).

Thank you!

Thank you!

Questions?

	Outline
	Main Talk
	Introduction
	What is ludics?
	Towards Ludics
	Universal Nondeterminism: Motivations
	Syntax and Behaviours
	Logical Connectives
	Completeness
	Conclusions

