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Completeness (Gödel 1929)

Duality proof — countermodels :

▶ either there exists a proof P such that ⊢ A is provable;
▶ or there exists a countermodel ℳ such that ℳ ∣= ¬A.

One can imagine a debate on a general proposition A, where
▶ Player tries to justify A by giving a proof;
▶ Opponent tries to refute it by giving a countermodel.
▶ The completeness theorem states that exactly one of them

wins.
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Proofs,Models,Completeness

Proofs:
▶ Finite.
▶ Provability defined by induction on proofs.

Models:
▶ Infinite: arbitrary cardinality.
▶ Non standard models (Löwenheim — Skolem,

Compactness Theorem).
▶ Satisfiability defined by induction on formulas.

Completeness proof:
▶ Nondeterministic principles: König Lemma (Schütte),

Zorn’s Lemma (Henkin).

but . . . there is no (clear) interaction between proofs and
models . . . .



Proofs,Models,Completeness

Proofs:
▶ Finite.
▶ Provability defined by induction on proofs.

Models:
▶ Infinite: arbitrary cardinality.
▶ Non standard models (Löwenheim — Skolem,
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An interactive account of completeness

▶ We are interested in (models of) proofs rather than
provability.

▶ QUESTION : What about the duality proofs —
countermodels in Girard’s ludics?
ANSWER : Proofs and models are objects of the same
kind (designs) only distinguished by their structural
properties.
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Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

▶ either P is a proof of ⊢ A, or
▶ there exists a model M ∣= A⊥ which rejects P.

M rejects P means that M ∕⊥P and hence, P /∈ A.

Proofs : Finite, deterministic, ✠-free designs

Models : Infinite, nondeterministic, linear designs

Completeness proof : a real interaction between proofs and
models.



Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

▶ either P is a proof of ⊢ A, or
▶ there exists a model M ∣= A⊥ which rejects P.

M rejects P means that M ∕⊥P and hence, P /∈ A.

Proofs : Finite, deterministic, ✠-free designs

Models : Infinite, nondeterministic, linear designs

Completeness proof : a real interaction between proofs and
models.



Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

▶ either P is a proof of ⊢ A, or
▶ there exists a model M ∣= A⊥ which rejects P.

M rejects P means that M ∕⊥P and hence, P /∈ A.

Proofs : Finite, deterministic, ✠-free designs

Models : Infinite, nondeterministic, linear designs

Completeness proof : a real interaction between proofs and
models.



Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

▶ either P is a proof of ⊢ A, or
▶ there exists a model M ∣= A⊥ which rejects P.

M rejects P means that M ∕⊥P and hence, P /∈ A.

Proofs : Finite, deterministic, ✠-free designs

Models : Infinite, nondeterministic, linear designs

Completeness proof : a real interaction between proofs and
models.



Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any
design P either:

▶ either P is a proof of ⊢ A, or
▶ there exists a model M ∣= A⊥ which rejects P.

M rejects P means that M ∕⊥P and hence, P /∈ A.

Proofs : Finite, deterministic, ✠-free designs

Models : Infinite, nondeterministic, linear designs

Completeness proof : a real interaction between proofs and
models.



In this talk:

▶ We show a completeness result: ludics is a model for a
variant of (propositional) polarized linear logic (with
exponentials) = a constructive version of classical
propositional logic.

▶ ...but before that: we explain what ludics is!
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What is ludics? (I)

A purely interactive approach to logic.

Ludics arose as the study of the interaction between
syntax and syntax, typically in cut-elimination. It was
necessary to replace syntax with something more
geometrical, and this is why ludics lies between syntax
and semantics, as a ‘semantics of syntax-as-syntax’, a
monist explanation of logic. The thesis of ludics, which
was already present in the programmatic paper
[Towards a geometry of interaction], is that logic
reflects the hidden geometrical properties of
something.

J.-Y. Girard, Locus Solum (2001).
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What is ludics? (II)

▶ Monism: An uniform framework in which syntax (proofs)
and semantics (counterproofs, models) can be uniformly
expressed.

▶ Designs: Untyped paraproofs
▶ “untyped” : proofs from which the logical content has been

almost erased.
▶ “para” : proofs which might contain errors and might be

incomplete.
▶ Interaction : Designs interact together via normalization

which induces an orthogonality relation ⊥ between designs
in such a way that P⊥M holds if the normalization of P
applied to M terminates.

▶ A proof P and “its model” P⊥ := {N : P⊥N}.
▶ An automaton A and a datum D : A accepts D iff A⊥D.
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Example

A = S OK
start 0

s

n = sssss . . . s
︸ ︷︷ ︸

n times

0

A dialogue between the automata and the datum.

A := x ∣S
〈
zero.OK + succ(x).A⟩

0 := S(x).x ∣zero
N + 1 := S(x).x ∣succ

〈
N
〉

A[0/x ] =
(
S(x).x ∣zero

)
∣S⟨zero.OK + succ(x).A⟩

−→ (zero.OK + succ(x).A)∣zero
−→ OK .

A[N + 1/x ] =
(
S(x).x ∣succ⟨N⟩

)
∣S⟨zero.OK + succ(x).A⟩

−→
(
zero.OK + succ(x).A

)
∣succ⟨N⟩

−→ A[N/x ].
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What is ludics? (III)

The core of ludics : focalization

Positive Negative

⊗ `

⊕ &
0 ⊤
1 ⊥
? !

▶ Negative = reversible, deterministic:
⊢ Σ,A,B

⇕
⊢ Σ,A` A

▶ Positive = irreversible, nondeterministic:
⊢ Σ1,A ⊢ Σ2,B

⇓
⊢ Σ,A ⊗ B
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What is ludics? (IV)

▶ ⊢ N1, . . . ,Nm,P1, . . . ,Pn choose a negative formula (if any)
and keep decomposing until one get to atoms or positive
subformulas;

▶ ⊢ P1, . . . ,Pn choose a positive formula and keep
decomposing it up to atoms or negative subformulas.

(Andreoli 92) The focalization discipline is a complete
proof-search strategy.



What is ludics? (IV)

▶ ⊢ N1, . . . ,Nm,P1, . . . ,Pn choose a negative formula (if any)
and keep decomposing until one get to atoms or positive
subformulas;

▶ ⊢ P1, . . . ,Pn choose a positive formula and keep
decomposing it up to atoms or negative subformulas.

(Andreoli 92) The focalization discipline is a complete
proof-search strategy.



What is ludics? (V)

Synthetic connectives

▶ Focalization allows synthetic connectives: clusters of
connectives of the same polarity.

▶ N ⊗ (M1 ⊕ M2) can be written as a⟨N,M1,M2⟩. Think a as
a “generalized” ternary connective ⊗ ( ⊕ ).

Σ1,N
⊢ Σ2,M1 ⊕1

⊢ Σ2,M1 ⊕ M2 ⊗
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N
⊢ Σ2,M2 ⊕2

⊢ Σ2,M1 ⊕ M2 ⊗
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N ⊢ Σ2,M1 ⊗⊕1
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N ⊢ Σ2,M2 ⊗⊕2
⊢ Σ,N ⊗ (M1 ⊕ M2)

▶ Alternation of positive and negative layers.



What is ludics? (V)

Synthetic connectives

▶ Focalization allows synthetic connectives: clusters of
connectives of the same polarity.

▶ N ⊗ (M1 ⊕ M2) can be written as a⟨N,M1,M2⟩. Think a as
a “generalized” ternary connective ⊗ ( ⊕ ).

Σ1,N
⊢ Σ2,M1 ⊕1

⊢ Σ2,M1 ⊕ M2 ⊗
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N
⊢ Σ2,M2 ⊕2

⊢ Σ2,M1 ⊕ M2 ⊗
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N ⊢ Σ2,M1 ⊗⊕1
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N ⊢ Σ2,M2 ⊗⊕2
⊢ Σ,N ⊗ (M1 ⊕ M2)

▶ Alternation of positive and negative layers.



What is ludics? (V)

Synthetic connectives

▶ Focalization allows synthetic connectives: clusters of
connectives of the same polarity.

▶ N ⊗ (M1 ⊕ M2) can be written as a⟨N,M1,M2⟩. Think a as
a “generalized” ternary connective ⊗ ( ⊕ ).

Σ1,N
⊢ Σ2,M1 ⊕1

⊢ Σ2,M1 ⊕ M2 ⊗
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N
⊢ Σ2,M2 ⊕2

⊢ Σ2,M1 ⊕ M2 ⊗
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N ⊢ Σ2,M1 ⊗⊕1
⊢ Σ,N ⊗ (M1 ⊕ M2)

Σ1,N ⊢ Σ2,M2 ⊗⊕2
⊢ Σ,N ⊗ (M1 ⊕ M2)

▶ Alternation of positive and negative layers.



Computational ludics (I)

Designs (Terui 08) ≈ infinitary lambda terms (Böhm trees) +
named applications + named and superimposed abstractions.

cf.

▶ the ”concrete syntax” (Curien 05) ≈ abstract Böhm trees,

▶ the correspondence with linear �-calculus (Faggian-Piccolo 07).

Signature: A = (A,ar)

A is a set of names,
ar : A −→ ℕ gives an arity to each name.



Computational ludics (II)

The set of designs is coinductively defined by:

P ::= ✠ Daimon
∣ Ω Divergence
∣ N0∣a⟨N1, . . . ,Nn⟩ Application

N ::= x Variable
∣

∑
a(x⃗).Pa Abstraction

▶ where ar(a) = n, x⃗ = x1, . . . , xn

▶
∑

a(x⃗).Pa is built from {a(x⃗).Pa}a∈A.

Compare it with:

P ::= (N0)N1 . . .Nn

N ::= x ∣ �x1 ⋅ ⋅ ⋅ xn.P
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Reduction

▶ Ω allows partial branching:

a(x⃗).P+b(y⃗).Q := a(x⃗).P+b(y⃗).Q+c(z⃗).Ω + d(z⃗).Ω+ ⋅ ⋅ ⋅

▶ Reduction rule:

(
∑

a(x1, . . . , xn).Pa) ∣a⟨N1, . . . ,Nn⟩ −→ Pa[N1/x1, . . . ,Nn/xn].

▶ Compare it with

(�x1 ⋅ ⋅ ⋅ xn.P)N1 ⋅ ⋅ ⋅Nn −→ P[N1/x1, . . . ,Nn/xn]
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Orthogonality
A positive design P is one of the following forms:

x ∣a⟨N1, . . . ,Nn⟩ Head normal form
(
∑

a(x⃗).Pa) ∣a⟨N1, . . . ,Nn⟩ Cut
✠ Daimon
Ω Divergence

▶ Dichotomy: For any closed positive design P,

P −→∗ ✠ or diverges.

▶ Orthogonality: Suppose fv(P) ⊆ {x0} and fv(M) = ∅.

P⊥M ⇐⇒ P[M/x0] −→
∗ ✠.

Compare it with:

�⊥�′ ⇐⇒ ��′ is nilpotent.
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P −→∗ ✠ or diverges.

▶ Orthogonality: Suppose fv(P) ⊆ {x0} and fv(M) = ∅.

P⊥M ⇐⇒ P[M/x0] −→
∗ ✠.

Compare it with:

�⊥�′ ⇐⇒ ��′ is nilpotent.



Example: termination

A = S ✠
start 0

s

n = sssss . . . s
︸ ︷︷ ︸

n times

0

A := x ∣S
〈
zero.✠+ succ(x).A⟩

0 := S(x).x ∣zero
N + 1 := S(x).x ∣succ

〈
N
〉

A[0/x ] =
(
S(x).x ∣zero

)
∣S⟨zero.✠+ succ(x).A⟩

−→ (zero.✠+ succ(x).A)∣zero
−→ ✠.

A[N + 1/x ] =
(
S(x).x ∣succ⟨N⟩

)
∣S⟨zero.✠ + succ(x).A⟩

−→
(
zero.✠+ succ(x).A

)
∣succ⟨N⟩

−→ A[N/x ].
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Example: nontermination

P := x ∣a
〈
N
〉

N := a(x).P
M := b(y).P

P[N/x ] =
(
a(x).P

)
∣a
〈
N
〉

−→ P[N/x ].

P[M/x ] =
(
b(x).P

)
∣a
〈
N
〉

−→ Ω.
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Ludics and Game Semantics

Ludics Game Semantics

Untyped strategies (designs) Typed strategies

Types (Behaviours) Types (Arenas, Games)

⊥⊥

▶ Game Semantics: All strategies are typed. Types
GUARANTEE that strategies compose well.

▶ Ludics : Strategies are untyped (all given on a universal
arena) Strategies can ALWAYS interact with each other,
and interaction may terminate well (⊥) or not (deadlock, Ω)
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Nondeterminism: why

▶ An interactive account and of contraction — duplication
rule:

P(x , y) ⊢ x : P, y : P
P(z, z) ⊢ z : P

where:
▶ P is a positive logical type;
▶ P(x , y) is a positive design with free variables in {x , y};
▶ P(z, z) is a positive design with free variable z.

▶ Two different readings of the rule:
Top Down Contraction: an identification of free variables.

Bottom Up Duplication: an arbitrary bi-partition of
occurrences of z.
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Failure of completeness

Write P ∣= Γ for the interpretation of the sequent P ⊢ Γ.
Semantically, we have to show that:

★ P(x , y) ∣= x : P, y : P ⇐⇒ P(z, z) ∣= z : P

In general, ★ does not hold in a uniform setting....
We need to enlarge the universe of designs.
We introduce (universal) nondeterminism.
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Designs

Coinductively defined terms given by the following grammar:

P ::= Ω
∣
∣

⋀

I Qi positive designs

Qi ::= N0∣a⟨N1, . . . ,Nn⟩ predesigns

N ::= x
∣
∣

∑
a(x⃗).Pa negative designs

▶ ✠ is now defined as the empty conjunction
⋀

∅.
⋀

{i} Qi is
simply written as Qi .

▶ A designs is deterministic if in any occurrence of
subdesign

⋀

I Qi , I is either empty (and hence
⋀

I Qi = ✠)
or a singleton.
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Normalization: Reduction

The reduction relation −→ is defined over the set of positive
designs as follows:

Ω −→ Ω;

Q ∧
⋀(∑

a(x⃗).Pa ∣ a⟨N⃗⟩
)

−→ Q ∧
⋀(

Pa[N⃗/x⃗ ]
)
.

Given two positive designs Q,R, we define:

Convergence : Q ⇓ R, if Q −→∗ R and R is a conjunction of
head normal forms (no cuts);

Divergence : Q ⇑, otherwise. Q −→∗ Ω, Q −→ . . . −→ . . .
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Normalization: Normal Form

The normal form function J K : D −→ D is defined by
corecursion as follows:

JxK = x ;
JPK = Ω, if P ⇑;

=
⋀

I xi ∣ai⟨JN⃗iK⟩ if P ⇓
⋀

I xi ∣ai⟨N⃗i⟩;
J
∑

a(x⃗).PaK =
∑

a(x⃗).JPaK.

▶ (a(x⃗).✠)∣a⟨N⃗⟩ = (a(x⃗).
⋀

∅)∣a⟨N⃗⟩ =
⋀
∅ = ✠

▶ The dichotomy between ✠ and Ω in the closed case is
maintained: J

⋀

I QiK = ✠ iff any reduction sequence from
any Qi is finite.

▶
⋀

is universal: JQ1
⋀

Q2K = ✠ iff JQ1K = ✠ and JQ2K = ✠.
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Example

x ∣a⟨y⟩ ∧ a(x).x ∣b⟨y⟩ ∣ a⟨z⟩ ∧ b(x).(c(y).✠ ∣ c⟨t⟩) ∣ b⟨u⟩ −→

x ∣a⟨y⟩ ∧ z∣b⟨y⟩ ∧ c(y).✠ ∣ c⟨t⟩ −→ x ∣a⟨y⟩ ∧ z∣b⟨y⟩.



Some definitions

▶ P is total if P ∕= Ω.
▶ T is linear if for any subterm N0∣a⟨N1, . . . ,Nn⟩,

fv(N0), . . . , fv(Nn) are pairwise disjoint.
▶ x is an identity if it occurs as N0∣a⟨N1, . . . , x , . . . ,Nn⟩.



Orthogonality

We consider only total, cut-free and identity free designs.

▶ P is closed if fv(P) = ∅, atomic if fv(P) ⊆ {x0} for a
certain fixed variable x0.

▶ N is atomic if fv(N) = ∅.
▶ P,N are orthogonal P⊥N when P[N/x0] = ✠.
▶ For X a set of atomic designs (same polarity):

X⊥ := {E : ∀D ∈ X, D⊥E}.

▶ A behaviour (interactive type) G is a set of designs of the
same polarity such that

G⊥⊥ = G.
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Logical Connectives
Fix a linear order on variables: x0, x1, x2....

▶ An n-ary logical connective � is a finite set of negative
actions � = {a1(x⃗1), . . . ,an(x⃗n)}, where x⃗1, . . . , x⃗n are
taken over {x1, . . . , xn}.

▶ Given an n-ary logical connective � and behaviours
N1, . . . ,Nn,P1, . . . ,Pn we define:

a⟨N1, . . . ,Nm⟩ := {x0∣a⟨N1, . . . ,Nm⟩ : Ni ∈ Ni ,1 ≤ i ≤ m}

PC: �⟨N1, . . . ,Nn⟩ :=
(∪

a∈� a⟨Ni1 , . . . ,Nim⟩
)⊥⊥

where i1, . . . , im ∈ {1, . . . , n}

NC: �(P1, . . . ,Pn) := �⟨P1
⊥, . . . ,Pn

⊥⟩⊥

▶
(
�⟨N1, . . . ,Nn⟩

)
⊥ = �⟨N1

⊥, . . . ,Nn
⊥⟩.
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Examples

Usual linear logic connectives can be defined by logical
connectives

&

,&, ↑,⊤ below;
▶

&

:= {℘}, ∙ := ℘, ⊗ :=

&

;
▶ & := {�1, �2}, �i := �i , ⊕ := &;
▶ ↑ := {↑}, ↓ := ↑.
▶ ⊤ := ∅, 0 = ⊤.

℘, ∙ binary names, �i , �i , ↑, ↓ unary names.

N ⊗ M = ∙⟨N,M⟩⊥⊥ P

&

Q = ∙⟨P⊥,Q⊥⟩⊥

N ⊕ M = (�1⟨N⟩ ∪ �2⟨M⟩)⊥⊥ P & Q = �1⟨P⊥⟩⊥ ∩ �2⟨Q⊥⟩⊥

↓N = ↓⟨N⟩⊥⊥ ↑P = ↓⟨P⊥⟩⊥

1 = ↓⟨⊤⟩⊥⊥ ⊥ = ↓⟨⊤⟩⊥
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Logical behaviours and semantical sequents

Logical behaviours: inductively defined by

P ::= �⟨N1, . . . ,Nn⟩ N ::= �(P1, . . . ,Pn)

▶ P ∣= x1 : P1, x2 : P2 if fv(P) ⊆ {x1, x2} and
P[N1/x1,Nn/x2] = ✠ for any N1 ∈ P⊥

1 , N2 ∈ P⊥
2 .

▶ N ∣= x : P,N if fv(N) ⊆ {x} and P[N[M/x ]/x0] = ✠ for any
M ∈ P⊥, P ∈ N⊥.

▶ P ∣= x0 : P iff P ∈ P.



Duplication/
⋀

Any positive logical behaviour satisfies:

Duplicability: P[x0/x1, x0/x2] ∣= x0 : P ⇐⇒ P ∣= x1 : P, x2 : P

Any negative logical behaviour satisfies:

Closure under
⋀

: N,M ∈ N ⇐⇒ N ∧ M ∈ N

N =
∑

a(x⃗).P M =
∑

a(x⃗).Q N ∧ M =
∑

a(x⃗).P ∧ Q.
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: N,M ∈ N ⇐⇒ N ∧ M ∈ N

N =
∑

a(x⃗).P M =
∑

a(x⃗).Q N ∧ M =
∑

a(x⃗).P ∧ Q.



About internal completeness (I)
▶ A purely monistic, local notion of completeness.
▶ A direct description of the elements in behaviours (built by

logical connectives) without using the orthogonality and
without referring to any proof system.

Internal completeness holds for negative logical connectives:

�(P1, . . . ,Pn) = {
∑

�
a(x⃗).Pa : Pa ∣= xi1 : Pi1 , . . . xim : Pim}

▶ Pb can be arbitrary when b(x⃗) /∈ �.
▶ We have a lot of garbage...

P1 & P2 = {�1(x1).P1 + �2(x2).P2 + ⋅ ⋅ ⋅ : Pi ∣= xi : Pi}
= {�1(x0).P1 + �2(x0).P2 + ⋅ ⋅ ⋅ : Pi ∈ Pi}

irrelevant components of the sum are suppressed by ⋅ ⋅ ⋅
Up to incarnation (i.e. removal of irrelevant part), P1&P2,
which has been defined by intersection, is isomorphic to
the cartesian product of P1 and P2: a phenomenon called
mystery of incarnation.
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About internal completeness (II)

For positive logical behaviours, it only holds (in that simple
form) for linear and deterministic designs.

▶ Because any logical positive behaviour is built on linear and
deterministic designs...

▶ But we want to take repetitions into account!
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Proofs and Models

▶ A proof is a design in which all the conjunctions are unary.
In other words, a proof is a deterministic and ✠-free
design.

▶ A model is an atomic linear design (in which conjunctions
of arbitrary cardinality may occur).



Proof-system

Mi1 ⊢ Γ,Ni1 . . . Mim ⊢ Γ,Nim (z : �⟨N1, . . . ,Nn⟩ ∈ Γ)

z∣a⟨Mi1 , . . . ,Mim⟩ ⊢ Γ
(�,a)

{Pa ⊢ Γ, x⃗a : P⃗a}a∈�
∑

a(x⃗).Pa ⊢ Γ, �(P1, . . . ,Pn)
(�)

P ⊢ Γ, z : P N ⊢ Γ,P⊥

P[N/z] ⊢ Γ
(cut)

where:
▶ In the rule (�,a), a ∈ �, ar(a) = m, and

i1, . . . , im ∈ {1, . . . ,n}.

▶ In (�), x⃗a : P⃗a stands for xi1 : Pi1 , . . . , xim : Pim .

Notice that:

▶ Structural rules (weakening and contraction/duplication)
are implicit.
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Example

M1 ⊢ Γ,N1 M2 ⊢ Γ,N2 (z : N1 ⊗ N2 ∈ Γ)

z∣ ∙ ⟨M1,M2⟩ ⊢ Γ
(⊗, ∙)

M ⊢ Γ,Ni (z : N1 ⊕ N2 ∈ Γ)

z∣�i ⟨M⟩ ⊢ Γ
(⊕, �i)

P ⊢ Γ, x1 : P1, x2 : P2

℘(x1, x2).P + ⋅ ⋅ ⋅ ⊢ Γ,P1

&

P2
(

&

)

P1 ⊢ Γ, x1 : P1 P2 ⊢ Γ, x2 : P2

�1(x1).P1 + �2(x2).P2 + ⋅ ⋅ ⋅ ⊢ Γ,P1 & P2
(&)



Theorem (Soundness)

P ⊢ P =⇒ P ∣= x : P.

The proof is given by induction on the depth of the type
derivation P ⊢ P.

Theorem (Completeness (for proofs))
If P is a proof:

P ∣= x : P =⇒ P ⊢ P.

Likewise for negative logical behaviours.
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Sketch of the proof

▶ Analogous to Schütte’s proof of Gödel’s completeness. We
consider the statement:

P ∕⊢ P =⇒ P ∕∣= x : P.

1. Given an unprovable sequent ⊢ P, find an open branch in
the cut-free proof search tree.

2. From the open branch, build a countermodel M in which P
is false.

▶ The countermodel is here an atomic linear design in which
conjunctions of arbitrary cardinality may occur. We can
explicitly construct the countermodel.

▶ König Lemma is here essential.
▶ Closure under

⋀
of P⊥ is essential to prove that the

countermodel belongs to P⊥.
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Corollaries

Downward Löwenheim-Skolem Let P be a proof and P a
logical behaviour. If P ∕∈ P, then there is a
countable model M ∈ P⊥ such that P ∕⊥M (M is
countable in the sense that it consists of countably
many actions ∕= Ω).

Finite model property If P is linear, there is a finite (and
deterministic) model M ∈ P⊥ such that P ∕⊥M.



Conclusions

▶ Gödel’s completeness revisited in terms of ludics.
▶ We have enlighten the duality between proofs and models.
▶ We can give an explicit construction of a countermodel to

any wrong proof attempt.



Related works

▶ Gödel’s incompleteness theorem.
▶ Recursive types (Melliès-Vouillon 05).
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Questions?
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