## LUDICS AND LOGICAL COMPLETENESS

Geometry of Interaction, Traced Monoidal Categories and Implicit Complexity Workshop, Kyoto, Japan.

28 August 2009

## Completeness (Gödel 1929)

Duality proof - countermodels :
either there exists a proof $P$ such that $\vdash A$ is provable;

- or there exists a countermodel $\mathcal{M}$ such that $\mathcal{M} \models \neg A$.

One can imagine a dehate on a general nranacition $\Delta$ where
states that exactly one of them

## Completeness (Gödel 1929)

Duality proof — countermodels :

- either there exists a proof $P$ such that $\vdash A$ is provable;
- or there exists a countermodel $\mathcal{M}$ such that $\mathcal{M} \models \neg A$.

One can imagine a debate on a general proposition $A$, where - Player tries to justify $A$ by giving a proof;

## Completeness (Gödel 1929)

Duality proof - countermodels :

- either there exists a proof $P$ such that $\vdash A$ is provable;
- or there exists a countermodel $\mathcal{M}$ such that $\mathcal{M} \models \neg A$.

One can imagine a debate on a general proposition $A$, where

- Opponent tries to refute it by giving a countermodel.


## Completeness (Gödel 1929)

Duality proof - countermodels :

- either there exists a proof $P$ such that $\vdash A$ is provable;
- or there exists a countermodel $\mathcal{M}$ such that $\mathcal{M} \models \neg A$.

One can imagine a debate on a general proposition $A$, where

- Player tries to justify $A$ by giving a proof;


## Completeness (Gödel 1929)

Duality proof - countermodels :

- either there exists a proof $P$ such that $\vdash A$ is provable;
- or there exists a countermodel $\mathcal{M}$ such that $\mathcal{M} \models \neg A$.

One can imagine a debate on a general proposition $A$, where

- Player tries to justify $A$ by giving a proof;
- Opponent tries to refute it by giving a countermodel.


## Completeness (Gödel 1929)

Duality proof — countermodels :

- either there exists a proof $P$ such that $\vdash A$ is provable;
- or there exists a countermodel $\mathcal{M}$ such that $\mathcal{M} \models \neg A$.

One can imagine a debate on a general proposition $A$, where

- Player tries to justify $A$ by giving a proof;
- Opponent tries to refute it by giving a countermodel.
- The completeness theorem states that exactly one of them wins.


## Proofs,Models,Completeness

## Proofs:

- Finite.
- Provability defined by induction on proofs.



## Proofs,Models,Completeness

Proofs:

- Finite.
- Provability defined by induction on proofs.

Models:

- Infinite: arbitrary cardinality.
- Non standard models (Löwenheim - Skolem, Compactness Theorem).
- Satisfiability defined by induction on formulas.
- Nondeterministic principles: König Lemma (Schütte), Zorn's Lemma (Henkin).
but . . . there is no (clear) interaction between proofs and
models


## Proofs,Models,Completeness

Proofs:

- Finite.
- Provability defined by induction on proofs.

Models:

- Infinite: arbitrary cardinality.
- Non standard models (Löwenheim - Skolem, Compactness Theorem).
- Satisfiability defined by induction on formulas.

Completeness proof:

- Nondeterministic principles: König Lemma (Schütte), Zorn's Lemma (Henkin).
but . . . there is no (clear) interaction between proofs and
models


## Proofs,Models,Completeness

Proofs:

- Finite.
- Provability defined by induction on proofs.

Models:

- Infinite: arbitrary cardinality.
- Non standard models (Löwenheim - Skolem, Compactness Theorem).
- Satisfiability defined by induction on formulas.

Completeness proof:

- Nondeterministic principles: König Lemma (Schütte), Zorn's Lemma (Henkin).
but ... there is no (clear) interaction between proofs and models....


## An interactive account of completeness

- We are interested in (models of) proofs rather than provability.



## An interactive account of completeness

- We are interested in (models of) proofs rather than provability.
- Question : What about the duality proofs countermodels in Girard's ludics?
ANSWER: Proofs and models are objects of the same kind (designs) only distinguished by their structural properties.


## An interactive account of completeness

- We are interested in (models of) proofs rather than provability.
- Question : What about the duality proofs countermodels in Girard's ludics?
ANSWER : Proofs and models are objects of the same kind (designs) only distinguished by their structural properties.


## Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any design $P$ either:

- either $P$ is a proof of $\vdash \mathbf{A}$, or
- there exists a model $M \models \mathbf{A}^{\perp}$ which rejects $P$.


## Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any design $P$ either:

- either $P$ is a proof of $\vdash \mathbf{A}$, or
- there exists a model $M \models \mathbf{A}^{\perp}$ which rejects $P$. $M$ rejects $P$ means that $M \nsucceq P$ and hence, $P \notin \mathbf{A}$.


## Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any design $P$ either:

- either $P$ is a proof of $\vdash \mathbf{A}$, or
- there exists a model $M \models \mathbf{A}^{\perp}$ which rejects $P$.
$M$ rejects $P$ means that $M \nsucceq P$ and hence, $P \notin \mathbf{A}$.
Proofs : Finite, deterministic, $\mathbb{W}$-free designs
a real interaction between proofs and
models.


## Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any design $P$ either:

- either $P$ is a proof of $\vdash \mathbf{A}$, or
- there exists a model $M \models \mathbf{A}^{\perp}$ which rejects $P$.
$M$ rejects $P$ means that $M \nsucceq P$ and hence, $P \notin \mathbf{A}$.
Proofs : Finite, deterministic, $\downarrow$-free designs
Models : Infinite, nondeterministic, linear designs
models.


## Completeness revisited (ludics, game semantics)

For any logical behaviour A (semantical type) and for any design $P$ either:

- either $P$ is a proof of $\vdash \mathbf{A}$, or
- there exists a model $M \models \mathbf{A}^{\perp}$ which rejects $P$.
$M$ rejects $P$ means that $M \nsucceq P$ and hence, $P \notin \mathbf{A}$.
Proofs : Finite, deterministic, $\mathbb{W}$-free designs
Models : Infinite, nondeterministic, linear designs
Completeness proof : a real interaction between proofs and models.


## In this talk:

- We show a completeness result: ludics is a model for a variant of (propositional) polarized linear logic (with exponentials) = a constructive version of classical propositional logic.
> ...but before that: we explain what ludics is!


## In this talk:

- We show a completeness result: ludics is a model for a variant of (propositional) polarized linear logic (with exponentials) = a constructive version of classical propositional logic.
- ...but before that: we explain what ludics is!

A purely interactive approach to logic.
Ludics arose as the study of the interaction between syntax and syntax, typically in cut-elimination. It was necessarv to replace svntax with somethind more geometrical, and this is why Iudics lies between syntax and semantics, as a 'semantics of syntax-as-syntax', a monist explanation of logic. The thesis of ludics, which was already present in the programmatic paper [Towards a geometry of interaction], is that logic reflects the hidden aeometrical properties of
something.

## What is ludics? (I)

A purely interactive approach to logic.
Ludics arose as the study of the interaction between syntax and syntax, typically in cut-elimination. It was necessary to replace syntax with something more geometrical, and this is why ludics lies between syntax and semantics, as a 'semantics of syntax-as-syntax', a monist explanation of logic. The thesis of ludics, which was already present in the programmatic paper [Towards a geometry of interaction], is that logic reflects the hidden geometrical properties of something.
J.-Y. Girard, Locus Solum (2001).

## What is ludics? (II)

- Monism: An uniform framework in which syntax (proofs) and semantics (counterproofs, models) can be uniformly expressed.


## What is ludics? (II)

- Monism: An uniform framework in which syntax (proofs) and semantics (counterproofs, models) can be uniformly expressed.
- Designs: Untyped paraproofs



## What is ludics? (II)

- Monism: An uniform framework in which syntax (proofs) and semantics (counterproofs, models) can be uniformly expressed.
- Designs: Untyped paraproofs
- "untyped" : proofs from which the logical content has been almost erased.
- "para" : proofs which might contain errors and might be incomplete.



## What is ludics? (II)

- Monism: An uniform framework in which syntax (proofs) and semantics (counterproofs, models) can be uniformly expressed.
- Designs: Untyped paraproofs
- "untyped" : proofs from which the logical content has been almost erased.
- "para" : proofs which might contain errors and might be incomplete.
- Interaction : Designs interact together via normalization which induces an orthogonality relation $\perp$ between designs in such a way that $P \perp M$ holds if the normalization of $P$ applied to $M$ terminates.


## What is ludics? (II)

- Monism: An uniform framework in which syntax (proofs) and semantics (counterproofs, models) can be uniformly expressed.
- Designs: Untyped paraproofs
- "untyped" : proofs from which the logical content has been almost erased.
- "para" : proofs which might contain errors and might be incomplete.
- Interaction : Designs interact together via normalization which induces an orthogonality relation $\perp$ between designs in such a way that $P \perp M$ holds if the normalization of $P$ applied to $M$ terminates.
- A proof $P$ and "its model" $P^{\perp}:=\{N: P \perp N\}$.
- An automaton $A$ and a datum $D: A$ accepts $D$ iff $A \perp D$.


## Example

$$
A=\underset{s t a r t}{S} \underbrace{\mathcal{S}}_{s} \rightarrow O K \quad n=\underbrace{\operatorname{sssss} \ldots s}_{n \text { times }} 0
$$

A dialogue between the automata and the datum.


## Example

$$
A=\underset{s t a r t}{S} \underbrace{\mathcal{S}}_{s} \rightarrow O K \quad n=\underbrace{\operatorname{sssss} \ldots s}_{n \text { times }} 0
$$

A dialogue between the automata and the datum.

$$
\begin{aligned}
\mathrm{A} & :=x \mid \overline{\mathcal{S}}\langle\text { zero.OK }+\operatorname{succ}(x) \cdot \mathrm{A}\rangle \\
0 & :=\mathcal{S}(x) \cdot x \mid \overline{\text { zero }} \\
\mathrm{N}+1 & :=\mathcal{S}(x) \cdot x \mid \overline{\operatorname{succ}}\langle\mathrm{N}\rangle
\end{aligned}
$$

## Example

$$
A=\underset{s t a r t}{ } \underbrace{\mathcal{S}}_{s} \rightarrow O K \quad n=\underbrace{s s s s s \ldots s}_{n \text { times }} 0
$$

A dialogue between the automate and the datum.

$$
\begin{aligned}
\mathrm{A} & :=x \mid \overline{\mathcal{S}}\langle\text { zero.OK }+\operatorname{succ}(x) \cdot \mathrm{A}\rangle \\
0 & :=\mathcal{S}(x) \cdot x \mid \overline{\text { zero }} \\
\mathrm{N}+1 & :=\mathcal{S}(x) \cdot x \mid \overline{\operatorname{succ}}\langle\mathrm{N}\rangle \\
\mathrm{A}[0 / x] \quad & (\mathcal{S}(x) \cdot x \mid \overline{\text { zero }}) \mid \overline{\mathcal{S}}\langle\text { zero.OK }+\operatorname{succ}(x) \cdot \mathrm{A}\rangle \\
\longrightarrow & (\text { zero.OK }+\operatorname{succ}(x) \cdot \mathrm{A}) \mid \overline{\text { zero }} \\
\longrightarrow & O K .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}[\mathrm{~N}+1 / x] & =(\mathcal{S}(x) \cdot x \mid \overline{\operatorname{succ}}\langle\mathrm{N}\rangle) \mid \overline{\mathcal{S}}\langle\text { zero. OK }+\operatorname{succ}(x) \cdot \mathrm{A}\rangle \\
& \longrightarrow(\text { zero. OK }+\operatorname{succ}(x) \cdot \mathrm{A}) \mid \overline{\operatorname{succ}}\langle\mathrm{N}\rangle \\
& \longrightarrow \mathrm{A}[\mathrm{~N} / x] .
\end{aligned}
$$

The core of ludics : focalization


The core of ludics: focalization

| Positive | Negative |
| :---: | :---: |
|  | $>$ |
| $\otimes$ | $>$ |
| $\oplus$ | $\&$ |
| $\mathbf{0}$ | $\top$ |
| $\mathbf{1}$ | $\perp$ |
| $?$ | $!$ |

## What is ludics? (III)

The core of ludics: focalization

| Positive | Negative |
| :---: | :---: |
|  |  |
| $\otimes$ | $>$ |
| $\oplus$ | $\&$ |
| $\mathbf{0}$ | $\top$ |
| $\mathbf{1}$ | $\perp$ |
| $?$ | $!$ |

- Negative $=$ reversible, deterministic: $\frac{\vdash \Sigma, A, B}{\vdash \Sigma, A \ngtr A} \hat{\mathbb{}}$


## What is ludics? (III)

## The core of ludics: focalization

| Positive | Negative |
| :---: | :---: |
|  | $\ngtr$ |
| $\otimes$ | $\&$ |
| $\oplus$ | $\perp$ |
| $\mathbf{0}$ | $\perp$ |
| $\mathbf{1}$ | $\perp$ |
| $?$ | $!$ |

- Negative $=$ reversible, deterministic: $\frac{\vdash \Sigma, A, B}{\vdash \Sigma, A \nmid} \Uparrow$
- Positive $=$ irreversible, nondeterministic: $\frac{\vdash \Sigma_{1}, A \vdash \Sigma_{2}, B}{\vdash \Sigma, A \otimes B} \Downarrow$


## What is ludics? (IV)

$-\vdash N_{1}, \ldots, N_{m}, P_{1}, \ldots, P_{n}$ choose a negative formula (if any) and keep decomposing until one get to atoms or positive subformulas;
$-\vdash P_{1}, \ldots, P_{n}$ choose a positive formula and keep decomposing it up to atoms or negative subformulas.
(Andreoli 92) The focalization discipline is a complete proof-search strategy.

## What is ludics? (IV)

$-\vdash N_{1}, \ldots, N_{m}, P_{1}, \ldots, P_{n}$ choose a negative formula (if any) and keep decomposing until one get to atoms or positive subformulas;
$-\vdash P_{1}, \ldots, P_{n}$ choose a positive formula and keep decomposing it up to atoms or negative subformulas.
(Andreoli 92) The focalization discipline is a complete proof-search strategy.

## What is ludics? (V)

## Synthetic connectives

- Focalization allows synthetic connectives: clusters of connectives of the same polarity.
- $N \otimes\left(M_{1} \oplus M_{2}\right)$ can be written as $\bar{a}\left\langle N, M_{1}, M_{2}\right\rangle$. Think $\bar{a}$ as a "generalized" ternary connective _ $\otimes\left(\_\oplus\right.$ _ $)$.
- Alternation of positive and negative layers.


## What is ludics? (V)

## Synthetic connectives

- Focalization allows synthetic connectives: clusters of connectives of the same polarity.
- $N \otimes\left(M_{1} \oplus M_{2}\right)$ can be written as $\bar{a}\left\langle N, M_{1}, M_{2}\right\rangle$. Think $\bar{a}$ as a "generalized" ternary connective _ $\otimes\left(\_^{\oplus} \_\right)$.

$$
\begin{aligned}
& \frac{\Sigma_{1}, N}{\vdash \Sigma, N \otimes\left(M_{1} \oplus M_{2}\right)} \quad \frac{\vdash \Sigma_{2}, M_{1}}{\vdash \Sigma_{2} M_{1} \oplus M_{2}} \oplus_{1} \quad \frac{\Sigma_{1}, N}{\vdash \Sigma, N \otimes\left(M_{1} \oplus M_{2}\right)} \otimes \\
& \frac{\Sigma_{1}, N \quad \vdash \Sigma_{2}, M_{1}}{\vdash \Sigma, N \otimes\left(M_{1} \oplus M_{2}\right)} \otimes \oplus_{1} \\
& \frac{\Sigma_{1}, N \quad \vdash \Sigma_{2}, M_{2}}{\vdash \Sigma, N \otimes\left(M_{1} \oplus M_{2}\right)} \otimes \oplus_{2}
\end{aligned}
$$

## What is ludics? (V)

## Synthetic connectives

- Focalization allows synthetic connectives: clusters of connectives of the same polarity.
- $N \otimes\left(M_{1} \oplus M_{2}\right)$ can be written as $\overline{\bar{a}}\left\langle N, M_{1}, M_{2}\right\rangle$. Think $\bar{a}$ as a "generalized" ternary connective _ $\otimes\left(\_\oplus\right.$ _).

$$
\begin{aligned}
& \frac{\Sigma_{1}, N \quad \frac{\vdash \Sigma_{2}, M_{1}}{\vdash \Sigma \Sigma_{2}, M_{1} \oplus M_{2}} \oplus_{1}}{\vdash N \otimes\left(M_{1} \oplus M_{2}\right)} \otimes \\
& \frac{\Sigma_{1}, N \quad \vdash \Sigma_{2}, M_{1}}{\vdash \Sigma, N \otimes\left(M_{1} \oplus M_{2}\right)} \otimes \oplus_{1} \\
& \frac{\Sigma_{1}, N \frac{\vdash \Sigma_{2}, M_{2}}{\vdash \Sigma_{2}, M_{1} \oplus M_{2}} \oplus_{2}}{\vdash \Sigma, N \otimes\left(M_{1} \oplus M_{2}\right)} \otimes \\
& \frac{\Sigma_{1}, N \quad \vdash \Sigma_{2}, M_{2}}{\vdash \Sigma, N \otimes\left(M_{1} \oplus M_{2}\right)} \otimes \oplus_{2}
\end{aligned}
$$

- Alternation of positive and negative layers.


## Computational ludics (I)

Designs (Terui 08) $\approx$ infinitary lambda terms (Böhm trees) + named applications + named and superimposed abstractions.
cf.

- the "concrete syntax" (Curien 05) $\approx$ abstract Böhm trees,
- the correspondence with linear $\pi$-calculus (Faggian-Piccolo 07).

Signature: $\mathcal{A}=(A$, ar $)$
$A$ is a set of names,
ar : $A \longrightarrow \mathbb{N}$ gives an arity to each name.

## Computational ludics (II)

The set of designs is coinductively defined by:

| $P$ : $=$ | W | Daimon |
| :---: | :---: | :---: |
| \| | $\Omega$ | Divergence |
| \| | $N_{0} \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle$ | Application |
| $N$ : $=$ | $x$ | Variable |
|  | $\sum a(\vec{x}) \cdot P_{a}$ | Abstraction |

- where $\operatorname{ar}(a)=n, \vec{x}=x_{1}, \ldots, x_{n}$
- $\sum a(\vec{x}) . P_{a}$ is built from $\left\{a(\vec{x}) \cdot P_{a}\right\}_{a \in A}$.


## Computational ludics (II)

The set of designs is coinductively defined by:

| $P$ : $=$ | W | Daimon |
| :---: | :---: | :---: |
| \| | $\Omega$ | Divergence |
| \| | $N_{0} \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle$ | Application |
| $N$ : $=$ | $x$ | Variable |
|  | $\sum a(\vec{x}) \cdot P_{a}$ | Abstraction |

- where $\operatorname{ar}(a)=n, \vec{x}=x_{1}, \ldots, x_{n}$
- $\sum a(\vec{x}) . P_{a}$ is built from $\left\{a(\vec{x}) \cdot P_{a}\right\}_{a \in A}$.

Compare it with:

$$
\begin{aligned}
P & ::=\left(N_{0}\right) N_{1} \ldots N_{n} \\
N & ::=x \mid \lambda x_{1} \cdots x_{n} . P
\end{aligned}
$$

## Reduction

- $\Omega$ allows partial branching:

$$
a(\vec{x}) \cdot P+b(\vec{y}) \cdot Q:=a(\vec{x}) \cdot P+b(\vec{y}) \cdot Q+c(\vec{z}) \cdot \Omega+d(\vec{z}) \cdot \Omega+\cdots
$$

## Reduction

- $\Omega$ allows partial branching:

$$
a(\vec{x}) \cdot P+b(\vec{y}) \cdot Q:=a(\vec{x}) \cdot P+b(\vec{y}) \cdot Q+c(\vec{z}) \cdot \Omega+d(\vec{z}) \cdot \Omega+\cdots
$$

- Reduction rule:

$$
\left(\sum a\left(x_{1}, \ldots, x_{n}\right) \cdot P_{a}\right) \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle \longrightarrow P_{a}\left[N_{1} / x_{1}, \ldots, N_{n} / x_{n}\right]
$$

## Reduction

- $\Omega$ allows partial branching:

$$
a(\vec{x}) \cdot P+b(\vec{y}) \cdot Q:=a(\vec{x}) \cdot P+b(\vec{y}) \cdot Q+c(\vec{z}) \cdot \Omega+d(\vec{z}) \cdot \Omega+\cdots
$$

- Reduction rule:

$$
\left(\sum a\left(x_{1}, \ldots, x_{n}\right) \cdot P_{a}\right) \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle \longrightarrow P_{a}\left[N_{1} / x_{1}, \ldots, N_{n} / x_{n}\right] .
$$

- Compare it with

$$
\left(\lambda x_{1} \cdots x_{n} \cdot P\right) N_{1} \cdots N_{n} \longrightarrow P\left[N_{1} / x_{1}, \ldots, N_{n} / x_{n}\right]
$$

## Orthogonality

A positive design $P$ is one of the following forms:

$$
\begin{array}{ll}
x \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle & \text { Head normal form } \\
\left(\sum_{\mathrm{N}} a(\vec{x}) . P_{a}\right) \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle & \text { Cut } \\
\Omega & \text { Daimon } \\
\Omega & \text { Divergence }
\end{array}
$$

## Orthogonality

A positive design $P$ is one of the following forms:

$$
\begin{array}{ll}
x \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle & \text { Head normal form } \\
\left(\sum_{2} a(\vec{x}) \cdot P_{a}\right) \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle & \text { Cut } \\
\Omega & \text { Daimon } \\
\Omega & \text { Divergence }
\end{array}
$$

- Dichotomy: For any closed positive design $P$, $P \longrightarrow^{*}$ or diverges. - Orthogonality: Suppose $f v(P) \subseteq\left\{x_{0}\right\}$ and $f v(M)=\emptyset$.


## Orthogonality

A positive design $P$ is one of the following forms:

| $x \mid \overline{\mathrm{a}}\left\langle N_{1}, \ldots, N_{n}\right\rangle$ | Head normal form |
| :--- | :--- |
| $\left(\sum_{\mathrm{a}} a(\vec{x}) . P_{a}\right) \mid \overline{\mathrm{a}}\left\langle N_{1}, \ldots, N_{n}\right\rangle$ | Cut |
| $\Omega$ | Daimon |
| $\Omega$ | Divergence |

- Dichotomy: For any closed positive design $P$,

$$
P \longrightarrow^{*} \text { or diverges. }
$$

- Orthogonality: Suppose $f v(P) \subseteq\left\{x_{0}\right\}$ and $f v(M)=\emptyset$.

$$
P \perp M \quad \Longleftrightarrow \quad P\left[M / x_{0}\right] \longrightarrow^{*}{ }^{*} .
$$

Compare it with:

## Orthogonality

A positive design $P$ is one of the following forms:

| $x \mid \overline{\mathrm{a}}\left\langle N_{1}, \ldots, N_{n}\right\rangle$ | Head normal form |
| :--- | :--- |
| $\left(\sum_{\mathrm{a}} a(\vec{x}) . P_{a}\right) \mid \overline{\mathrm{a}}\left\langle N_{1}, \ldots, N_{n}\right\rangle$ | Cut |
| $\Omega$ | Daimon |
| $\Omega$ | Divergence |

- Dichotomy: For any closed positive design $P$,

$$
P \longrightarrow^{*} \text { or diverges. }
$$

- Orthogonality: Suppose $f v(P) \subseteq\left\{x_{0}\right\}$ and $f v(M)=\emptyset$.

$$
P \perp M \quad \Longleftrightarrow \quad P\left[M / x_{0}\right] \longrightarrow^{*}{ }^{*} .
$$

Compare it with:

$$
\pi \perp \pi^{\prime} \quad \Longleftrightarrow \quad \pi \pi^{\prime} \text { is nilpotent. }
$$

## Example: termination

$$
A=\underset{s \operatorname{tart}}{\mathcal{S}} \underset{\sim}{\longrightarrow} \quad n=\underbrace{s s s s s \ldots s}_{n \text { times }} 0
$$

## Example: termination

$$
A=\underset{s \operatorname{start}}{\mathcal{S}} \underset{\sim}{\longrightarrow} \quad n=\underbrace{s s s s s \ldots s}_{n \text { times }} 0
$$

$$
\begin{aligned}
\mathrm{A} & :=x \mid \overline{\mathcal{S}}\langle\text { zero. } \mathbf{W}+\operatorname{succ}(x) \cdot \mathrm{A}\rangle \\
0 & :=\mathcal{S}(x) \cdot x \mid \text { zero } \\
\mathrm{N}+1 & :=\mathcal{S}(x) \cdot x \mid \overline{\operatorname{succ}}\langle\mathrm{N}\rangle
\end{aligned}
$$

## Example：termination

$$
\begin{aligned}
& A=\underset{\operatorname{start}}{\longrightarrow} \underset{0}{\longrightarrow} \quad n=\underbrace{\text { sssss } \ldots s}_{n \text { times }} 0 \\
& \mathrm{~A}:=x \mid \overline{\mathcal{S}}\langle\text { zero. } \mathrm{Y}+\operatorname{succ}(x) . \mathrm{A}\rangle \\
& 0:=\mathcal{S}(x) \cdot x \mid \overline{\text { zero }} \\
& \mathrm{N}+1:=\mathcal{S}(x) \cdot x \mid \overline{\operatorname{succ}}\langle\mathrm{N}\rangle \\
& \mathrm{A}[0 / x]=(\mathcal{S}(x) \cdot x \mid \overline{\text { zero }}) \mid \overline{\mathcal{S}}\langle\text { zero. } \mathrm{x}+\operatorname{succ}(x) . \mathrm{A}\rangle \\
& \longrightarrow \quad(\text { zero. } \mathrm{L}+\operatorname{succ}(x) . A) \mid \overline{\text { zero }} \\
& \longrightarrow \text { 国。 } \\
& \mathrm{A}[\mathrm{~N}+1 / x]=(\mathcal{S}(x) \cdot x \mid \overline{\operatorname{succ}}\langle\mathrm{N}\rangle) \mid \overline{\mathcal{S}}\langle\text { zero. } \mathbf{W}+\operatorname{succ}(x) . \mathrm{A}\rangle \\
& \longrightarrow \quad(\text { zero. }+\operatorname{succ}(x) . A) \mid \overline{\operatorname{succ}}\langle N\rangle \\
& \longrightarrow \mathrm{A}[\mathrm{~N} / x] \text {. }
\end{aligned}
$$

## Example: nontermination

$$
\begin{aligned}
P & :=x \mid \bar{a}\langle N\rangle \\
N & :=a(x) \cdot P \\
M & :=b(y) . P
\end{aligned}
$$

## Example: nontermination

$$
\begin{aligned}
P & :=x \mid \bar{a}\langle N\rangle \\
N & :=a(x) \cdot P \\
M & :=b(y) \cdot P \\
P[N / x] & =(a(x) \cdot P) \mid \bar{a}\langle N\rangle \\
& \longrightarrow P[N / x] . \\
P[M / x] & =(b(x) \cdot P) \mid \bar{a}\langle N\rangle \\
& \longrightarrow \Omega .
\end{aligned}
$$

## Ludics and Game Semantics

## Ludics

Untyped strategies (designs)


## Game Semantics

Typed strategies<br>Types (Arenas, Games)

## Ludics and Game Semantics

## Ludics

Untyped strategies (designs)


## Game Semantics



Types (Arenas, Games)

- Game Semantics: All strategies are typed. Types GUARANTEE that strategies compose well.



## Ludics and Game Semantics

## Ludics

Untyped strategies (designs)

Types (Behaviours)

## Game Semantics



- Game Semantics: All strategies are typed. Types GUARANTEE that strategies compose well.
- Ludics: Strategies are untyped (all given on a universal arena) Strategies can ALWAYS interact with each other, and interaction may terminate well $(\perp)$ or not (deadlock, $\Omega$ )


## Nondeterminism: why

- An interactive account and of contraction - duplication rule:

$$
\frac{P(x, y) \vdash x: \mathbf{P}, y: \mathbf{P}}{P(z, z) \vdash z: \mathbf{P}}
$$

where:

- $\mathbf{P}$ is a positive logical type;
- $P(x, y)$ is a positive design with free variables in $\{x, y\}$;
- $P(z, z)$ is a positive design with free variable $z$.
- Two different readings of the rule:

Top Down Contraction: an identification of free variables.
Bottom Up Duplication: an arbitrary bi-partition of
occurrences of $z$.

## Nondeterminism: why

- An interactive account and of contraction - duplication rule:

$$
\frac{P(x, y) \vdash x: \mathbf{P}, y: \mathbf{P}}{P(z, z) \vdash z: \mathbf{P}}
$$

where:

- $\mathbf{P}$ is a positive logical type;
- $P(x, y)$ is a positive design with free variables in $\{x, y\}$;
- $P(z, z)$ is a positive design with free variable $z$.
- Two different readings of the rule:

Top Down Contraction: an identification of free variables.
occurrences of $z$.

## Nondeterminism: why

- An interactive account and of contraction - duplication rule:

$$
\frac{P(x, y) \vdash x: \mathbf{P}, y: \mathbf{P}}{P(z, z) \vdash z: \mathbf{P}}
$$

where:

- $\mathbf{P}$ is a positive logical type;
- $P(x, y)$ is a positive design with free variables in $\{x, y\}$;
- $P(z, z)$ is a positive design with free variable $z$.
- Two different readings of the rule:

Top Down Contraction: an identification of free variables.
Bottom Up Duplication: an arbitrary bi-partition of occurrences of $z$.

## Failure of completeness

Write $P \models \Gamma$ for the interpretation of the sequent $P \vdash \Gamma$.

## Failure of completeness

Write $P \models \Gamma$ for the interpretation of the sequent $P \vdash \Gamma$. Semantically, we have to show that:

$$
\star \quad P(x, y) \models x: \mathbf{P}, y: \mathbf{P} \Longleftrightarrow P(z, z) \models z: \mathbf{P}
$$

## Failure of completeness

Write $P \models \Gamma$ for the interpretation of the sequent $P \vdash \Gamma$. Semantically, we have to show that:

$$
\star \quad P(x, y) \models x: \mathbf{P}, y: \mathbf{P} \Longleftrightarrow P(z, z) \models z: \mathbf{P}
$$

In general, $\star$ does not hold in a uniform setting....
We need to enlarge the universe of designs.
We introduce (universal) nondeterminism.

## Failure of completeness

Write $P \models \Gamma$ for the interpretation of the sequent $P \vdash \Gamma$. Semantically, we have to show that:

$$
\star P(x, y) \models x: \mathbf{P}, y: \mathbf{P} \Longleftrightarrow P(z, z) \models z: \mathbf{P}
$$

In general, $\star$ does not hold in a uniform setting....
We need to enlarge the universe of designs.

## Failure of completeness

Write $P \models \Gamma$ for the interpretation of the sequent $P \vdash \Gamma$. Semantically, we have to show that:

$$
\star \quad P(x, y) \models x: \mathbf{P}, y: \mathbf{P} \Longleftrightarrow P(z, z) \models z: \mathbf{P}
$$

In general, $\star$ does not hold in a uniform setting....
We need to enlarge the universe of designs.
We introduce (universal) nondeterminism.

## Designs

Coinductively defined terms given by the following grammar:

$$
\begin{array}{rll}
P & ::=\Omega \mid \Lambda_{1} Q_{i} & \text { positive designs } \\
Q_{i} & ::=N_{0} \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle & \text { predesigns } \\
N & ::=x \mid \sum a(\vec{x}) \cdot P_{a} & \text { negative designs }
\end{array}
$$

## Designs

Coinductively defined terms given by the following grammar:

$$
\begin{array}{rll}
P & ::=\Omega \mid \wedge_{I} Q_{i} & \text { positive designs } \\
Q_{i} & ::=N_{0} \mid \overline{\mathrm{a}}\left\langle N_{1}, \ldots, N_{n}\right\rangle & \text { predesigns } \\
N & ::=x \mid \sum a(\vec{x}) \cdot P_{a} & \text { negative designs }
\end{array}
$$

- is now defined as the empty conjunction $\bigwedge_{\emptyset} . \bigwedge_{\{i\}} Q_{i}$ is simply written as $Q_{i}$.


## Designs

Coinductively defined terms given by the following grammar:

$$
\begin{array}{rll}
P & ::=\Omega \mid \wedge_{I} Q_{i} & \text { positive designs } \\
Q_{i} & ::=N_{0} \mid \bar{a}\left\langle N_{1}, \ldots, N_{n}\right\rangle & \text { predesigns } \\
N & ::=x \mid \sum a(\vec{x}) \cdot P_{a} & \text { negative designs }
\end{array}
$$

- is now defined as the empty conjunction $\bigwedge_{\emptyset} . \bigwedge_{\{i\}} Q_{i}$ is simply written as $Q_{i}$.
- A designs is deterministic if in any occurrence of subdesign $\bigwedge_{I} Q_{i}, I$ is either empty (and hence $\bigwedge_{I} Q_{i}={ }_{M}$ ) or a singleton.


## Normalization: Reduction

The reduction relation $\longrightarrow$ is defined over the set of positive designs as follows:

$$
Q \wedge \wedge\left(\sum a(\vec{x}) \cdot P_{a} \mid \bar{a}\langle\vec{N}\rangle\right) \quad \longrightarrow \Omega ;
$$

## Normalization: Reduction

The reduction relation $\longrightarrow$ is defined over the set of positive designs as follows:

$$
\begin{aligned}
\Omega & \longrightarrow \Omega ; \\
Q \wedge \wedge\left(\sum a(\vec{x}) \cdot P_{a} \mid \overline{\mathbf{a}}\langle\vec{N}\rangle\right) & \longrightarrow Q \wedge \wedge\left(P_{a}[\vec{N} / \vec{x}]\right) .
\end{aligned}
$$

Given two positive designs $Q, R$, we define:
Convergence : $Q \Downarrow R$, if $Q \longrightarrow{ }^{*} R$ and $R$ is a conjunction of head normal forms (no cuts);
Divergence : $Q \Uparrow$, otherwise. $Q \longrightarrow * \Omega, Q \longrightarrow \ldots \longrightarrow \ldots$

## Normalization: Normal Form

The normal form function $\llbracket \rrbracket: \mathcal{D} \longrightarrow \mathcal{D}$ is defined by corecursion as follows:

$$
\begin{aligned}
\llbracket x \rrbracket & =x ; & & \\
\llbracket P \rrbracket & =\Omega, & & \text { if } P \Uparrow ; \\
& =\Lambda_{1} x_{i} \mid \bar{a}_{i}\left\langle\llbracket \vec{N}_{i} \rrbracket\right\rangle & & \text { if } P \Downarrow \Lambda_{l} x_{i} \mid \bar{a}_{i}\left\langle\vec{N}_{i}\right\rangle ; \\
\llbracket \sum a(\vec{x}) \cdot P_{a} \rrbracket & =\sum a(\vec{x}) \cdot \llbracket P_{a} \rrbracket . & &
\end{aligned}
$$

## Normalization: Normal Form

The normal form function $\llbracket \rrbracket: \mathcal{D} \longrightarrow \mathcal{D}$ is defined by corecursion as follows:

$$
\begin{array}{rlrl}
\llbracket x \rrbracket & =x ; & & \\
\llbracket P \rrbracket & =\Omega, & & \text { if } P \Uparrow ; \\
& =\Lambda_{1} x_{i} \mid \bar{a}_{i}\left\langle\llbracket \vec{N}_{i} \rrbracket\right\rangle & \text { if } P \Downarrow \Lambda_{l} x_{i} \mid \bar{a}_{i}\left\langle\vec{N}_{i}\right\rangle ;
\end{array}
$$

$$
\text { - }(a(\vec{x}) \cdot \vec{N})|\bar{a}\langle\vec{N}\rangle=(a(\vec{x}) \cdot \wedge \emptyset)| \bar{a}\langle\vec{N}\rangle=\Lambda \emptyset=\square
$$

## Normalization: Normal Form

The normal form function $\llbracket \rrbracket: \mathcal{D} \longrightarrow \mathcal{D}$ is defined by corecursion as follows:

$$
\begin{aligned}
\llbracket x \rrbracket & =x ; & & \\
\llbracket P \rrbracket & =\Omega, & & \text { if } P \Uparrow ; \\
& =\Lambda_{1} x_{i} \mid \bar{a}_{i}\left\langle\llbracket \vec{N}_{i} \rrbracket\right\rangle & & \text { if } P \Downarrow \Lambda_{1} x_{i} \mid \bar{a}_{i}\left\langle\vec{N}_{i}\right\rangle ; \\
\llbracket \sum a(\vec{x}) \cdot P_{a} \rrbracket & =\sum a(\vec{x}) \cdot \llbracket P_{a} \rrbracket . & &
\end{aligned}
$$

- $(a(\vec{x}) \cdot \overrightarrow{2})|\bar{a}\langle\vec{N}\rangle=(a(\vec{x}) \cdot \wedge \emptyset)| \bar{a}\langle\vec{N}\rangle=\Lambda \emptyset=\cdots$
- The dichotomy between $w$ and $\Omega$ in the closed case is maintained: $\llbracket \wedge, Q_{i} \rrbracket=$ iff any reduction sequence from any $Q_{i}$ is finite.


## Normalization: Normal Form

The normal form function $\llbracket \rrbracket: \mathcal{D} \longrightarrow \mathcal{D}$ is defined by corecursion as follows:

$$
\begin{aligned}
\llbracket x \rrbracket & =x ; & & \\
\llbracket P \rrbracket & =\Omega, & & \text { if } P \Uparrow ; \\
& =\Lambda_{1} x_{i} \mid \vec{a}_{i}\left\langle\llbracket \vec{N}_{i} \rrbracket\right\rangle & & \text { if } P \Downarrow \Lambda_{l} x_{i} \mid \bar{a}_{i}\left\langle\vec{N}_{i}\right\rangle ; \\
\llbracket \sum a(\vec{x}) \cdot P_{a} \rrbracket & =\sum a(\vec{x}) \cdot \llbracket P_{a} \rrbracket . & &
\end{aligned}
$$

- $(a(\vec{x}) \cdot \vec{W})|\bar{a}\langle\vec{N}\rangle=(a(\vec{x}) \cdot \wedge \emptyset)| \bar{a}\langle\vec{N}\rangle=\Lambda \emptyset=\cdots$
- The dichotomy between $w$ and $\Omega$ in the closed case is maintained: $\llbracket \Lambda_{,} Q_{i} \rrbracket=$ iff any reduction sequence from any $Q_{i}$ is finite.
- $\wedge$ is universal: $\llbracket Q_{1} \wedge Q_{2} \rrbracket=$ iff $\llbracket Q_{1} \rrbracket=$ and $\llbracket Q_{2} \rrbracket=$.


## Example

$$
x|\bar{a}\langle y\rangle \wedge a(x) \cdot x| \bar{b}\langle y\rangle|\bar{a}\langle z\rangle \wedge b(x) \cdot(c(y) \cdot \mathbf{x} \mid \bar{c}\langle t\rangle)| \bar{b}\langle u\rangle \longrightarrow
$$

$$
x|\bar{a}\langle y\rangle \wedge z| \bar{b}\langle y\rangle \wedge c(y) . \bar{c}\langle t\rangle \longrightarrow x|\bar{a}\langle y\rangle \wedge z| \bar{b}\langle y\rangle .
$$

## Some definitions

- $P$ is total if $P \neq \Omega$.
- $T$ is linear if for any subterm $N_{0} \mid a\left\langle N_{1}, \ldots, N_{n}\right\rangle$, $f v\left(N_{0}\right), \ldots, f v\left(N_{n}\right)$ are pairwise disjoint.
- $x$ is an identity if it occurs as $N_{0} \mid \bar{a}\left\langle N_{1}, \ldots, x, \ldots, N_{n}\right\rangle$.


## Orthogonality

We consider only total, cut-free and identity free designs.


## Orthogonality

We consider only total, cut-free and identity free designs.

- $P$ is closed if $\mathrm{fv}(P)=\emptyset$, atomic if $\mathrm{fv}(P) \subseteq\left\{x_{0}\right\}$ for a certain fixed variable $x_{0}$.
- $N$ is atomic if $\mathrm{fv}(N)=\emptyset$.
- $P, N$ are orthogonal $P \perp N$ when $P\left[N / x_{0}\right]=1$.
- A behaviour (interactive type) $\mathbf{G}$ is a set of designs of the same polarity such that


## Orthogonality

We consider only total, cut-free and identity free designs.

- $P$ is closed if $f v(P)=\emptyset$, atomic if $f v(P) \subseteq\left\{x_{0}\right\}$ for a certain fixed variable $x_{0}$.
- $N$ is atomic if $f v(N)=\emptyset$.
- $P, N$ are orthogonal $P \perp N$ when $P\left[N / x_{0}\right]=$.
- For $\mathbf{X}$ a set of atomic designs (same polarity):

$$
\mathbf{X}^{\perp}:=\{E: \forall D \in \mathbf{X}, D \perp E\} .
$$

- A behaviour (interactive type) G is a set of designs of the same polarity such that


## Orthogonality

We consider only total, cut-free and identity free designs.

- $P$ is closed if $f v(P)=\emptyset$, atomic if $f v(P) \subseteq\left\{x_{0}\right\}$ for a certain fixed variable $x_{0}$.
- $N$ is atomic if $f v(N)=\emptyset$.
- $P, N$ are orthogonal $P \perp N$ when $P\left[N / x_{0}\right]=$.
- For $\mathbf{X}$ a set of atomic designs (same polarity):

$$
\mathbf{X}^{\perp}:=\{E: \forall D \in \mathbf{X}, D \perp E\} .
$$

- A behaviour (interactive type) $\mathbf{G}$ is a set of designs of the same polarity such that

$$
\mathbf{G}^{\perp \perp}=\mathbf{G} .
$$

## Logical Connectives

Fix a linear order on variables: $x_{0}, x_{1}, x_{2} \ldots$

- An $n$-ary logical connective $\alpha$ is a finite set of negative actions $\alpha=\left\{a_{1}\left(\vec{x}_{1}\right), \ldots, a_{n}\left(\vec{x}_{n}\right)\right\}$, where $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are taken over $\left\{x_{1}, \ldots, x_{n}\right\}$.


## Logical Connectives

Fix a linear order on variables: $x_{0}, x_{1}, x_{2} \ldots$

- An $n$-ary logical connective $\alpha$ is a finite set of negative actions $\alpha=\left\{a_{1}\left(\vec{x}_{1}\right), \ldots, a_{n}\left(\vec{x}_{n}\right)\right\}$, where $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are taken over $\left\{x_{1}, \ldots, x_{n}\right\}$.
- Given an $n$-ary logical connective $\alpha$ and behaviours $\mathbf{N}_{1}, \ldots, \mathbf{N}_{n}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{n}$ we define:

$$
\bar{a}\left\langle\mathbf{N}_{1}, \ldots, \mathbf{N}_{m}\right\rangle:=\left\{x_{0} \mid \overline{\mathbf{a}}\left\langle N_{1}, \ldots, N_{m}\right\rangle: N_{i} \in \mathbf{N}_{i}, 1 \leq i \leq m\right\}
$$

PC: $\bar{\alpha}\left\langle\mathbf{N}_{1}, \ldots, \mathbf{N}_{n}\right\rangle:=\left(\bigcup_{a \in \alpha} \overline{\mathrm{a}}\left\langle\mathbf{N}_{i_{1}}, \ldots, \mathbf{N}_{i_{m}}\right\rangle\right)^{\perp \perp}$ where $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$

NC: $\alpha\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right):=\bar{\alpha}\left\langle\mathbf{P}_{1}{ }^{\perp}, \ldots, \mathbf{P}_{n}{ }^{\perp}\right\rangle^{\perp}$

## Logical Connectives

Fix a linear order on variables: $x_{0}, x_{1}, x_{2} \ldots$

- An $n$-ary logical connective $\alpha$ is a finite set of negative actions $\alpha=\left\{a_{1}\left(\vec{x}_{1}\right), \ldots, a_{n}\left(\vec{x}_{n}\right)\right\}$, where $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are taken over $\left\{x_{1}, \ldots, x_{n}\right\}$.
- Given an $n$-ary logical connective $\alpha$ and behaviours $\mathbf{N}_{1}, \ldots, \mathbf{N}_{n}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{n}$ we define:
$\bar{a}\left\langle\mathbf{N}_{1}, \ldots, \mathbf{N}_{m}\right\rangle:=\left\{x_{0} \mid \overline{\mathrm{a}}\left\langle N_{1}, \ldots, N_{m}\right\rangle: N_{i} \in \mathbf{N}_{i}, 1 \leq i \leq m\right\}$
PC: $\bar{\alpha}\left\langle\mathbf{N}_{1}, \ldots, \mathbf{N}_{n}\right\rangle:=\left(\bigcup_{a \in \alpha} \overline{\mathrm{a}}\left\langle\mathbf{N}_{i_{1}}, \ldots, \mathbf{N}_{i_{m}}\right\rangle\right)^{\perp \perp}$
where $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$
NC: $\alpha\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right):=\bar{\alpha}\left\langle\mathbf{P}_{1}{ }^{\perp}, \ldots, \mathbf{P}_{n}{ }^{\perp}\right\rangle^{\perp}$
- $\left(\bar{\alpha}\left\langle\mathbf{N}_{1}, \ldots, \mathbf{N}_{n}\right\rangle\right)^{\perp}=\alpha\left\langle\mathbf{N}_{1}{ }^{\perp}, \ldots, \mathbf{N}_{n}{ }^{\perp}\right\rangle$.


## Examples

Usual linear logic connectives can be defined by logical connectives $\mathcal{8}, \&, \uparrow, \top$ below;

- $8:=\{\wp\}, \bullet:=\bar{\wp}, \otimes:=\overline{8}$;
- \& $:=\left\{\pi_{1}, \pi_{2}\right\}, \iota_{i}:=\overline{\pi_{i}}, \oplus:=\overline{\&} ;$
- $\uparrow:=\{\uparrow\}, \downarrow:=\bar{\uparrow}$.
- $\mathrm{T}:=\emptyset, \mathbf{0}=\overline{\mathrm{T}}$.
$\wp, \bullet$ binary names, $\pi_{i}, \iota_{i}, \uparrow, \downarrow$ unary names.


## Examples

Usual linear logic connectives can be defined by logical connectives $\mathcal{8}, \&, \uparrow, \top$ below;

- $8:=\{\wp\}, \bullet:=\bar{\wp}, \otimes:=\overline{8}$;
- \& $:=\left\{\pi_{1}, \pi_{2}\right\}, \iota_{i}:=\overline{\pi_{i}}, \oplus:=\overline{\&} ;$
- $\uparrow:=\{\uparrow\}, \downarrow:=\bar{\uparrow}$.
- $\mathrm{T}:=\emptyset, \mathbf{0}=\overline{\mathrm{T}}$.
$\wp, \bullet$ binary names, $\pi_{i}, \iota_{i}, \uparrow, \downarrow$ unary names.

$$
\left.\begin{array}{rlrl}
\mathbf{N} \otimes \mathbf{M} & =\bullet\langle\mathbf{N}, \mathbf{M}\rangle^{\perp \perp} & \mathbf{P} 8 \mathbf{Q} & =\bullet\left\langle\mathbf{P}^{\perp}, \mathbf{Q}^{\perp}\right\rangle^{\perp} \\
\mathbf{N} \oplus \mathbf{M} & =\left(\iota_{1}\langle\mathbf{N}\rangle \cup \iota_{2}\langle\mathbf{M}\rangle\right)^{\perp \perp} & \mathbf{P} \& \mathbf{Q} & =\iota_{1}\left\langle\mathbf{P}^{\left.\mathbf{P}^{\perp}\right\rangle^{\perp} \cap \iota_{2}\left\langle\mathbf{Q}^{\perp}\right\rangle^{\perp}}\right. \\
\downarrow \mathbf{N} & =\downarrow\langle\mathbf{N}\rangle^{\perp \perp} & \uparrow \mathbf{P} & =\downarrow\left\langle\mathbf{P}^{\perp}\right\rangle^{\perp} \\
\mathbf{1} & =\downarrow\left\langle\langle \rangle^{\perp \perp}\right. & & \perp
\end{array}\right)=\downarrow\langle T\rangle^{\perp} .
$$

## Logical behaviours and semantical sequents

Logical behaviours: inductively defined by

$$
\mathbf{P}::=\bar{\alpha}\left\langle\mathbf{N}_{1}, \ldots, \mathbf{N}_{n}\right\rangle \quad \mathbf{N}::=\alpha\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right)
$$

- $P \models x_{1}: \mathbf{P}_{1}, x_{2}: \mathbf{P}_{2}$ if $\mathrm{fv}(P) \subseteq\left\{x_{1}, x_{2}\right\}$ and $P\left[N_{1} / x_{1}, N_{n} / x_{2}\right]=\mathbf{w}_{1}$ for any $N_{1} \in \mathbf{P}_{1}^{\perp}, N_{2} \in \mathbf{P}_{2}^{\perp}$.
- $N \models x: \mathbf{P}, \mathbf{N}$ if $\mathrm{fv}(N) \subseteq\{x\}$ and $P\left[N[M / x] / x_{0}\right]=\mathbf{x}$ for any $M \in \mathbf{P}^{\perp}, P \in \mathbf{N}^{\perp}$.
- $\mathbf{P} \models x_{0}: \mathbf{P}$ iff $P \in \mathbf{P}$.


## Duplication/ $\wedge$

Any positive logical behaviour satisfies:
Duplicability: $P\left[x_{0} / x_{1}, x_{0} / x_{2}\right] \models x_{0}: \mathbf{P} \Longleftrightarrow P \models x_{1}: \mathbf{P}, x_{2}: \mathbf{P}$ Any negative logical behaviour satisfies:

## Duplication/ $\wedge$

Any positive logical behaviour satisfies:
Duplicability: $P\left[x_{0} / x_{1}, x_{0} / x_{2}\right] \models x_{0}: \mathbf{P} \Longleftrightarrow P \models x_{1}: \mathbf{P}, x_{2}: \mathbf{P}$
Any negative logical behaviour satisfies:
Closure under $\wedge: N, M \in \mathbf{N} \Longleftrightarrow N \wedge M \in \mathbf{N}$

$$
N=\sum a(\vec{x}) \cdot P \quad M=\sum a(\vec{x}) \cdot Q \quad N \wedge M=\sum a(\vec{x}) \cdot P \wedge Q .
$$

## About internal completeness (I)

- A purely monistic, local notion of completeness.
- A direct description of the elements in behaviours (built by logical connectives) without using the orthogonality and without referring to any proof system.
Internal completeness holds for negative logical connectives:

$$
\alpha\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right)=\left\{\sum_{\alpha} a(\vec{x}) \cdot P_{a}: P_{a} \models x_{i_{1}}: \mathbf{P}_{i_{1}}, \ldots x_{i_{m}}: \mathbf{P}_{i_{m}}\right\}
$$


mystery of incarnation.

## About internal completeness (I)

- A purely monistic, local notion of completeness.
- A direct description of the elements in behaviours (built by logical connectives) without using the orthogonality and without referring to any proof system.
Internal completeness holds for negative logical connectives:

$$
\alpha\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right)=\left\{\sum_{\alpha} a(\vec{x}) \cdot P_{a}: P_{a} \models x_{i_{1}}: \mathbf{P}_{i_{1}}, \ldots x_{i_{m}}: \mathbf{P}_{i_{m}}\right\}
$$

- $P_{b}$ can be arbitrary when $b(\vec{x}) \notin \alpha$.
- We have a lot of garbage...

$$
\begin{aligned}
\mathbf{P}_{1} \& \mathbf{P}_{2} & =\left\{\pi_{1}\left(x_{1}\right) \cdot P_{1}+\pi_{2}\left(x_{2}\right) \cdot P_{2}+\cdots: P_{i} \models x_{i}: \mathbf{P}_{i}\right\} \\
& =\left\{\pi_{1}\left(x_{0}\right) \cdot P_{1}+\pi_{2}\left(x_{0}\right) \cdot P_{2}+\cdots: P_{i} \in \mathbf{P}_{i}\right\}
\end{aligned}
$$

irrelevant components of the sum are suppressed by $\ldots$ Up to incarnation (i.e. removal of irrelevant part), $\mathbf{P}_{1} \& \mathbf{P}_{2}$, which has been defined by intersection, is isomorphic to the cartesian product of $\mathbf{P}_{1}$ and $\mathbf{P}_{2}$ : a phenomenon called mystery of incarnation.

## About internal completeness (II)

For positive logical behaviours, it only holds (in that simple form) for linear and deterministic designs.

- Because any logical positive behaviour is built on linear and deterministic designs.
- Rut we want to take rene


## About internal completeness (II)

For positive logical behaviours, it only holds (in that simple form) for linear and deterministic designs.

- Because any logical positive behaviour is built on linear and deterministic designs...
- But we want to take repetitions into account!


## About internal completeness (II)

For positive logical behaviours, it only holds (in that simple form) for linear and deterministic designs.

- Because any logical positive behaviour is built on linear and deterministic designs...
- But we want to take repetitions into account!


## Proofs and Models

- A proof is a design in which all the conjunctions are unary. In other words, a proof is a deterministic and $\mathbb{Z}$-free design.
- A model is an atomic linear design (in which conjunctions of arbitrary cardinality may occur).


## Proof-system

$$
\begin{aligned}
& \frac{M_{i_{1}} \vdash \Gamma, \mathbf{N}_{i_{1}} \ldots \quad M_{i_{m}} \vdash \Gamma, \mathbf{N}_{i_{m}} \quad\left(z: \bar{\alpha}\left\langle\mathbf{N}_{1}, \ldots, \mathbf{N}_{n}\right\rangle \in \Gamma\right)}{z \mid \overline{\mathbf{a}}\left\langle M_{i_{1}}, \ldots, M_{i_{m}}\right\rangle \vdash \Gamma}(\bar{\alpha}, \bar{a}) \\
& \frac{\left\{P_{a} \vdash \Gamma, \vec{x}_{a}: \overrightarrow{\mathbf{P}}_{a}\right\}_{a \in \alpha}}{\sum a(\vec{x}) \cdot P_{a} \vdash \Gamma, \alpha\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right)}(\alpha) \quad \frac{P \vdash \Gamma, z: \mathbf{P} \quad N \vdash \Gamma, \mathbf{P}^{\perp}}{P[N / z] \vdash \Gamma}(c u t)
\end{aligned}
$$

where:

- In the rule $(\bar{\alpha}, \bar{a}), a \in \alpha, \operatorname{ar}(a)=m$, and $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$.
$-\operatorname{In}(\alpha), \vec{x}_{a}: \overrightarrow{\mathbf{P}}_{a}$ stands for $x_{i_{1}}: \mathbf{P}_{i_{1}}, \ldots, x_{i_{m}}: \mathbf{P}_{i_{m}}$.


## Proof-system

$$
\begin{gathered}
\frac{M_{i_{1}} \vdash \Gamma, \mathbf{N}_{i_{1}} \ldots \quad M_{i_{m}} \vdash \Gamma, \mathbf{N}_{i_{m}}\left(z: \bar{\alpha}\left\langle\mathbf{N}_{1}, \ldots, \mathbf{N}_{n}\right\rangle \in \Gamma\right)}{z \mid \bar{a}\left\langle M_{i_{1}}, \ldots, M_{i_{m}}\right\rangle \vdash \Gamma}(\bar{\alpha}, \bar{a}) \\
\frac{\left\{P_{a} \vdash \Gamma, \vec{x}_{a}: \overrightarrow{\mathbf{P}}_{a}\right\}_{a \in \alpha}}{\sum a(\vec{x}) \cdot P_{a} \vdash \Gamma, \alpha\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right)}(\alpha) \quad \frac{P \vdash \Gamma, z: \mathbf{P} \quad N \vdash \Gamma, \mathbf{P}^{\perp}}{P[N / z] \vdash \Gamma}(c u t)
\end{gathered}
$$

where:

- In the rule $(\bar{\alpha}, \bar{a}), a \in \alpha, \operatorname{ar}(a)=m$, and $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$.
$-\ln (\alpha), \vec{x}_{a}: \overrightarrow{\mathbf{P}}_{a}$ stands for $x_{i_{1}}: \mathbf{P}_{i_{1}}, \ldots, x_{i_{m}}: \mathbf{P}_{i_{m}}$.
Notice that:
- Structural rules (weakening and contraction/duplication) are implicit.


## Example

$$
\begin{gathered}
\frac{M_{1} \vdash \Gamma, \mathbf{N}_{1} \quad M_{2} \vdash \Gamma, \mathbf{N}_{2} \quad\left(z: \mathbf{N}_{1} \otimes \mathbf{N}_{2} \in \Gamma\right)}{z \mid \bullet\left\langle M_{1}, M_{2}\right\rangle \vdash \Gamma}(\otimes, \bullet) \\
\frac{M \vdash \Gamma, \mathbf{N}_{i} \quad\left(z: \mathbf{N}_{1} \oplus \mathbf{N}_{2} \in \Gamma\right)}{z \mid \iota_{i}\langle M\rangle \vdash \Gamma}\left(\oplus, \iota_{i}\right) \\
\frac{P \vdash \Gamma, x_{1}: \mathbf{P}_{1}, x_{2}: \mathbf{P}_{2}}{\wp\left(x_{1}, x_{2}\right) \cdot P+\cdots \vdash \Gamma, \mathbf{P}_{1} \ngtr \mathbf{P}_{2}}(8) \\
\frac{P_{1} \vdash \Gamma, x_{1}: \mathbf{P}_{1} \quad P_{2} \vdash \Gamma, x_{2}: \mathbf{P}_{2}}{\pi_{1}\left(x_{1}\right) \cdot P_{1}+\pi_{2}\left(x_{2}\right) \cdot P_{2}+\cdots \vdash \Gamma, \mathbf{P}_{1} \& \mathbf{P}_{2}}(\&)
\end{gathered}
$$

## Theorem (Soundness)

$$
P \vdash \mathbf{P} \Longrightarrow P \models x: \mathbf{P} .
$$

The proof is given by induction on the depth of the type derivation $P \vdash \mathbf{P}$.

Theorem (Completeness (for proofs)) If $P$ is a proof:

Likewise for negative logical behaviours.

## Theorem (Soundness)

$$
P \vdash \mathbf{P} \Longrightarrow P \models x: \mathbf{P} .
$$

The proof is given by induction on the depth of the type derivation $P \vdash \mathbf{P}$.

Theorem (Completeness (for proofs)) If $P$ is a proof:

$$
P \models x: \mathbf{P} \Longrightarrow P \vdash \mathbf{P} .
$$

Likewise for negative logical behaviours.

## Sketch of the proof

- Analogous to Schütte's proof of Gödel's completeness. We consider the statement:

$$
P \nvdash \mathbf{P} \Longrightarrow P \nLeftarrow x: \mathbf{P}
$$

1. Given an unprovable sequent $\vdash \mathbf{P}$, find an open branch in the cut-free proof search tree.
2. From the open branch, build a countermodel $M$ in which $\mathbf{P}$ is false.

- The countermodel is here an atomic linear design in which conjunctions of arbitrary cardinality may occur. We can explicitly construct the countermodel.
- König Lemma is here essential.
- Closure under $\wedge$ of $\mathbf{P}^{+}$is essential to prove that the countermodel belongs to $\mathbf{P}$


## Sketch of the proof

- Analogous to Schütte's proof of Gödel's completeness. We consider the statement:

$$
P \nvdash \mathbf{P} \Longrightarrow P \nLeftarrow x: \mathbf{P}
$$

1. Given an unprovable sequent $\vdash \mathbf{P}$, find an open branch in the cut-free proof search tree.
2. From the open branch, build a countermodel $M$ in which $\mathbf{P}$ is false.

- The countermodel is here an atomic linear design in which conjunctions of arbitrary cardinality may occur. We can explicitly construct the countermodel.
- König Lemma is here essential.
- Closure under $\bigwedge$ of $\mathbf{P}^{\perp}$ is essential to prove that the countermodel belongs to $\mathbf{P}^{\perp}$.


## Corollaries

Downward Löwenheim-Skolem Let $P$ be a proof and $\mathbf{P}$ a logical behaviour. If $P \notin \mathbf{P}$, then there is a countable model $M \in \mathbf{P}^{\perp}$ such that $P \nsucceq M$ ( $M$ is countable in the sense that it consists of countably many actions $\neq \Omega$ ).
Finite model property If $P$ is linear, there is a finite (and deterministic) model $M \in \mathbf{P}^{\perp}$ such that $P \nsucceq M$.

## Conclusions

- Gödel's completeness revisited in terms of ludics.
- We have enlighten the duality between proofs and models.
- We can give an explicit construction of a countermodel to any wrong proof attempt.


## Related works

- Gödel's incompleteness theorem.
- Recursive types (Melliès-Vouillon 05).


## Thank you!

anemp

## Thank you!

Questions?

