Rogers-Ramanujan type identities

Andrew Sills

Georgia Southern University

Seminar for Kyoto University October 6, 2020

L. Euler (1707–1783) C. G. J. Jacobi (1804–1851) L. J. Rogers (1862–1933)

Precursors to the RR identities

Precursors to the RR identities

$$\sum_{n \ge 0} \frac{q^n}{(1-q)(1-q^2)\cdots(1-q^n)} = \prod_{m=1}^{\infty} \frac{1}{1-q^m}$$
(Euler)

Precursors to the RR identities

$$\sum_{n\geq 0} \frac{q^n}{(1-q)(1-q^2)\cdots(1-q^n)} = \prod_{m=1}^{\infty} \frac{1}{1-q^m}$$
(Euler)

$$\sum_{n\geq 0} \frac{q^{n^2}}{(1-q)^2(1-q^2)^2\cdots(1-q^n)^2} = \prod_{m\geq 1} \frac{1}{1-q^m} \quad \text{(Jacobi)}$$

$$\sum_{n\geq 0} \frac{q^n}{(1-q)(1-q^2)\cdots(1-q^n)} = \prod_{m=1}^{\infty} \frac{1}{1-q^m}$$
(Euler)

$$\sum_{n\geq 0} \frac{q^{n^2}}{(1-q)^2(1-q^2)^2\cdots(1-q^n)^2} = \prod_{m\geq 1} \frac{1}{1-q^m} \quad \text{(Jacobi)}$$

$$\sum_{n \ge 0} \frac{q^{n^2}}{(1-q)(1-q^2)\cdots(1-q^n)} = \prod_{\substack{m \ge 1 \\ m \equiv \pm 1 \pmod{5}}} \frac{1}{1-q^m}$$
(Rogers)

Rising q-factorial notation

$$(a)_n = (a; q)_n := (1 - a)(1 - aq)(1 - aq^2) \cdots (1 - aq^{n-1}),$$

Rising q-factorial notation

$$(a)_n = (a; q)_n := (1 - a)(1 - aq)(1 - aq^2) \cdots (1 - aq^{n-1}),$$

$$(a)_{\infty} = (a; q)_{\infty} := (1 - a)(1 - aq)(1 - aq^2) \cdots,$$

Rising q-factorial notation

$$(a)_n = (a; q)_n := (1 - a)(1 - aq)(1 - aq^2) \cdots (1 - aq^{n-1}),$$

 $(a)_{\infty} = (a; q)_{\infty} := (1 - a)(1 - aq)(1 - aq^2) \cdots,$
 $(a_1, a_2, \dots a_r; q)_{\infty} := (a_1)_{\infty} (a_2)_{\infty} (a_3)_{\infty} \cdots (a_r)_{\infty}$

S. Ramanujan (1887–1920)

For |*ab*| < 1,

$$f(a,b) := \sum_{n \in \mathbb{Z}} a^{n(n+1)/2} b^{n(n-1)/2}.$$

For |ab| < 1,

$$f(a,b) := \sum_{n \in \mathbb{Z}} a^{n(n+1)/2} b^{n(n-1)/2}.$$

Jacobi's triple product identity

$$f(a,b) = (a,b,ab;ab)_{\infty}.$$

Ramanujan's notation

$$f(-q) := f(-q, -q^2) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n(3n-1)/2} = (q)_\infty$$
 (Euler's pentagonal numbers thm)

Ramanujan's notation

$$egin{aligned} f(-q) &:= f(-q,-q^2) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n(3n-1)/2} = (q)_\infty \ (Euler's ext{ pentagonal numbers thm}) \end{aligned}$$

$$\varphi(-q) := f(-q, -q) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2} = \frac{(q)_{\infty}}{(-q)_{\infty}}$$

(Gauss's square numbers thm)

Ramanujan's notation

$$f(-q) := f(-q, -q^2) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n(3n-1)/2} = (q)_\infty$$

(Euler's pentagonal numbers thm)

$$\varphi(-q) := f(-q, -q) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2} = \frac{(q)_{\infty}}{(-q)_{\infty}}$$

(Gauss's square numbers thm)

$$\psi(-q) := f(-q, -q^3) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n(2n-1)} = \frac{(q^2; q^2)_{\infty}}{(-q; q^2)_{\infty}}$$
(Gauss's hexagonal numbers thm)

Rogers-Ramanujan identities

$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_{\infty}}.$$
$$\sum_{n\geq 0} \frac{q^{n(n+1)}}{(q)_n} = \frac{f(-q, -q^4)}{(q)_{\infty}}.$$

Rogers-Ramanujan identities

$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_{\infty}}.$$
$$\sum_{n\geq 0} \frac{q^{n(n+1)}}{(q)_n} = \frac{f(-q, -q^4)}{(q)_{\infty}}.$$

Ramanujan really enjoyed identities of this type.

Rogers-Ramanujan identities

$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_{\infty}}.$$
$$\sum_{n\geq 0} \frac{q^{n(n+1)}}{(q)_n} = \frac{f(-q, -q^4)}{(q)_{\infty}}.$$

Ramanujan really enjoyed identities of this type. Over 50 are recorded in the lost notebook.

Bailey pairs, Bailey's lemma

If $(\alpha_n(a,q),\beta_n(a,q))$ satisfies

$$\beta_n = \sum_{r=0}^n \frac{\alpha_r}{(q)_{n-r}(aq)_{n+r}},$$

then (α_n, β_n) is called a *Bailey pair with respect to a*,

Bailey pairs, Bailey's lemma

If $(\alpha_n(a,q),\beta_n(a,q))$ satisfies

$$\beta_n = \sum_{r=0}^n \frac{\alpha_r}{(q)_{n-r}(aq)_{n+r}},$$

then (α_n, β_n) is called a *Bailey pair with respect to a*, and $(\alpha'_n(a, q), \beta'_n(a, q))$ is also a Bailey pair, where

$$\alpha_r'(\boldsymbol{a},\boldsymbol{q}) = \frac{(\rho_1)_r(\rho_2)_r}{(\boldsymbol{a}\boldsymbol{q}/\rho_1)_r(\boldsymbol{a}\boldsymbol{q}/\rho_2)_r} \left(\frac{\boldsymbol{a}\boldsymbol{q}}{\rho_1\rho_2}\right)^r \alpha_r$$

and

$$\beta'_n(a,q) = \sum_{j=0}^n \frac{(\rho_1)_j(\rho_2)_j(aq/\rho_1\rho_2)_{n-j}}{(aq/\rho_1)_n(aq/\rho_2)_n(q)_{n-j}} \left(\frac{aq}{\rho_1\rho_2}\right)^j \beta_j(a,q).$$

Limiting cases of Bailey's lemma

$$\sum_{n\geq 0} q^{n^2} \beta_n(1,q) = \frac{1}{(q)_{\infty}} \sum_{r\geq 0} q^{r^2} \alpha_r(1,q) \quad (PBL)$$

$$\sum_{n\geq 0} q^{n^2} (-q;q^2)_n \beta_n(1,q^2) = \frac{1}{\psi(-q)} \sum_{r\geq 0} q^{r^2} \alpha_r(1,q^2) \quad (HBL)$$

$$\sum_{n\geq 0} q^{n(n+1)/2} (-1)_n \beta_n(1,q) = \frac{2}{\varphi(-q)} \sum_{r\geq 0} \frac{q^{r(r+1)/2}}{1+q^r} \alpha_r(1,q) \quad (SBL)$$

Bailey, Dyson, and Slater

 In the 1940's, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities.

Bailey, Dyson, and Slater

 In the 1940's, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities.

Freeman Dyson contributed a number of RR type identities to Bailey's papers.

Bailey, Dyson, and Slater

 In the 1940's, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities.

Freeman Dyson contributed a number of RR type identities to Bailey's papers.

• Lucy Slater found many Bailey pairs, and used them to generate a list of 130 RR type identities.

For $d \mid n$, define

$$\begin{aligned} \alpha_n^{(d,e,k)}(a,q) &:= \frac{(-1)^{n/d} a^{(k/d-1)n/e} q^{(k/d-1+1/2d)n^2/e-n/2e}}{(1-a^{1/e})(q^{d/e};q^{d/e})_{n/d}}, \\ &\times (1-a^{1/e}q^{2n/e})(a^{1/e};q^{d/e})_{n/d}, \end{aligned}$$

For $d \mid n$, define

$$\begin{aligned} \alpha_n^{(d,e,k)}(a,q) &:= \frac{(-1)^{n/d} a^{(k/d-1)n/e} q^{(k/d-1+1/2d)n^2/e-n/2e}}{(1-a^{1/e})(q^{d/e};q^{d/e})_{n/d}}, \\ &\times (1-a^{1/e}q^{2n/e})(a^{1/e};q^{d/e})_{n/d}, \end{aligned}$$

$$\tilde{\alpha}_{n}^{(d,e,k)}(a,q) := q^{n(d-n)/2de} a^{-n/de} \frac{(-a^{1/e};q^{d/e})_{n/d}}{(-q^{d/e};q^{d/e})_{n/d}} \alpha_{n}^{(d,e,k)}(a,q),$$

For $d \mid n$, define

$$\alpha_n^{(d,e,k)}(a,q) := \frac{(-1)^{n/d} a^{(k/d-1)n/e} q^{(k/d-1+1/2d)n^2/e-n/2e}}{(1-a^{1/e})(q^{d/e};q^{d/e})_{n/d}},$$
$$\times (1-a^{1/e} q^{2n/e})(a^{1/e};q^{d/e})_{n/d},$$

$$\tilde{\alpha}_{n}^{(d,e,k)}(a,q) := q^{n(d-n)/2de} a^{-n/de} \frac{(-a^{1/e}; q^{d/e})_{n/d}}{(-q^{d/e}; q^{d/e})_{n/d}} \alpha_{n}^{(d,e,k)}(a,q),$$

$$\bar{\alpha}_n^{(d,e,k)}(a,q) := (-1)^{n/d} q^{n^2/2de} \frac{(q^{d/2e};q^{d/e})_{n/d}}{(a^{1/e}q^{d/2e};q^{d/e})_{n/d}} \alpha_n^{(d,e,k)}(a,q).$$

For $d \mid n$, define

$$\alpha_n^{(d,e,k)}(a,q) := \frac{(-1)^{n/d} a^{(k/d-1)n/e} q^{(k/d-1+1/2d)n^2/e-n/2e}}{(1-a^{1/e})(q^{d/e};q^{d/e})_{n/d}},$$
$$\times (1-a^{1/e} q^{2n/e})(a^{1/e};q^{d/e})_{n/d},$$

$$\tilde{\alpha}_{n}^{(d,e,k)}(a,q) := q^{n(d-n)/2de} a^{-n/de} \frac{(-a^{1/e};q^{d/e})_{n/d}}{(-q^{d/e};q^{d/e})_{n/d}} \alpha_{n}^{(d,e,k)}(a,q),$$

$$\bar{\alpha}_n^{(d,e,k)}(a,q) := (-1)^{n/d} q^{n^2/2de} \frac{(q^{d/2e}; q^{d/e})_{n/d}}{(a^{1/e}q^{d/2e}; q^{d/e})_{n/d}} \alpha_n^{(d,e,k)}(a,q).$$

Let the corresponding $\beta_n^{(d,e,k)}(a,q)$, $\tilde{\beta}_n^{(d,e,k)}(a,q)$, and $\bar{\beta}_n^{(d,e,k)}(a,q)$ be determined by the Bailey pair relation.

For any positive integer triples (d, e, k), upon inserting any of these α's into any of the limiting cases of Bailey's lemma with a = 1, the resulting series is summable via Jacobi's triple product identity.

- For any positive integer triples (d, e, k), upon inserting any of these α's into any of the limiting cases of Bailey's lemma with a = 1, the resulting series is summable via Jacobi's triple product identity.
- For certain (*d*, *e*, *k*), the resulting expression for β is a very well-poised ₆φ₅, summable by a theorem of F. H. Jackson.

- For any positive integer triples (d, e, k), upon inserting any of these α's into any of the limiting cases of Bailey's lemma with a = 1, the resulting series is summable via Jacobi's triple product identity.
- For certain (*d*, *e*, *k*), the resulting expression for β is a very well-poised ₆φ₅, summable by a theorem of F. H. Jackson.
- Using only this, and an associated families of *q*-difference equations, one can recover the majority of Slater's list, as well as other identities.

$$\begin{pmatrix} \alpha_n^{(1,1,2)}(a,q), \beta_n^{(1,1,2)}(a,q) \end{pmatrix}$$

= $\begin{pmatrix} (-1)^n a^n q^{n(3n-1)/2} (1-aq^{2n})(a)_n \\ (1-a)(q)_n \end{pmatrix}$, $\frac{1}{(q)_n} \end{pmatrix}$

$$\begin{pmatrix} \alpha_n^{(1,1,2)}(a,q), \beta_n^{(1,1,2)}(a,q) \end{pmatrix}$$

= $\begin{pmatrix} (-1)^n a^n q^{n(3n-1)/2} (1-aq^{2n})(a)_n \\ (1-a)(q)_n \end{pmatrix}$, $\frac{1}{(q)_n} \end{pmatrix}$

•
$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_{\infty}}$$
 upon insertion into (PBL),

$$\begin{pmatrix} \alpha_n^{(1,1,2)}(a,q), \beta_n^{(1,1,2)}(a,q) \end{pmatrix}$$

= $\begin{pmatrix} (-1)^n a^n q^{n(3n-1)/2} (1-aq^{2n})(a)_n \\ (1-a)(q)_n \end{pmatrix}, \frac{1}{(q)_n} \end{pmatrix}$

•
$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_{\infty}}$$
 upon insertion into (PBL),
• $\sum_{n\geq 0} \frac{q^{n(n+1)}(-1)_n}{(q)_n} = \frac{\varphi(-q^2)}{\varphi(-q)}$ upon insertion into (SBL), and

$$\begin{pmatrix} \alpha_n^{(1,1,2)}(a,q), \beta_n^{(1,1,2)}(a,q) \end{pmatrix}$$

= $\begin{pmatrix} (-1)^n a^n q^{n(3n-1)/2} (1-aq^{2n})(a)_n \\ (1-a)(q)_n \end{pmatrix}$

•
$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_{\infty}}$$
 upon insertion into (PBL),
• $\sum_{n\geq 0} \frac{q^{n(n+1)}(-1)_n}{(q)_n} = \frac{\varphi(-q^2)}{\varphi(-q)}$ upon insertion into (SBL), and
• $\sum_{n\geq 0} \frac{q^{n^2}(-q;q^2)_n}{(q^2;q^2)_n} = \frac{f(-q^3, -q^5)}{\psi(-q)}$ upon insertion into (HBL).

New identities arising from this framework (S.)

$$\sum_{n,r\geq 0} \frac{q^{n^2+2nr+2r^2}(-q;q^2)_r}{(q)_{2r}(q)_n} = \frac{f(-q^{10},-q^{10})}{(q)_{\infty}}$$
by insertion of $(\tilde{\alpha}_n^{(2,1,5)}(1,q), \tilde{\beta}_n^{(2,1,5)}(1,q))$ into (PBL).

New identities arising from this framework (S.)

$$\sum_{n,r\geq 0} \frac{q^{n^2+2nr+2r^2}(-q;q^2)_r}{(q)_{2r}(q)_n} = \frac{f(-q^{10},-q^{10})}{(q)_{\infty}}$$

by insertion of $(\tilde{\alpha}_{n}^{(2,1,5)}(1,q), \tilde{\beta}_{n}^{(2,1,5)}(1,q))$ into (PBL).

$$\sum_{n,r\geq 0} \frac{q^{4n^2+8nr+8r^2}(-q;q^2)_{2r}}{(q^4;q^4)_{2r}(q^4;q^4)_n} = \frac{f(q^9,q^{11})}{(q^4;q^4)_{\infty}}$$

by insertion of $(\bar{\alpha}_n^{(1,2,4)}(1,q), \bar{\beta}_n^{(1,2,4)}(1,q))$ into (PBL).

New identities arising from this framework (S.)

$$\sum_{n,r\geq 0} \frac{q^{n^2+2nr+2r^2}(-q;q^2)_r}{(q)_{2r}(q)_n} = \frac{f(-q^{10},-q^{10})}{(q)_{\infty}}$$

by insertion of $(\tilde{\alpha}_{n}^{(2,1,5)}(1,q), \tilde{\beta}_{n}^{(2,1,5)}(1,q))$ into (PBL).

$$\sum_{n,r\geq 0} \frac{q^{4n^2+8nr+8r^2}(-q;q^2)_{2r}}{(q^4;q^4)_{2r}(q^4;q^4)_n} = \frac{f(q^9,q^{11})}{(q^4;q^4)_{\infty}}$$

by insertion of $(\bar{\alpha}_n^{(1,2,4)}(1,q), \bar{\beta}_n^{(1,2,4)}(1,q))$ into (PBL).

Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

A *partition* λ of *n* is a tuple $(\lambda_1, \lambda_2, ..., \lambda_l)$ of weakly decreasing positive integers (called the *parts* of λ) that sum to *n*.

Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

A *partition* λ of *n* is a tuple $(\lambda_1, \lambda_2, ..., \lambda_l)$ of weakly decreasing positive integers (called the *parts* of λ) that sum to *n*. The seven partitions of 5 are

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

The number of partitions of *n* into odd parts equals the number of partitions of *n* into distinct parts.

The number of partitions of *n* into odd parts equals the number of partitions of *n* into distinct parts.

Example:

9,711,531,51111,333,33111,3111111,11111111

The number of partitions of n into odd parts equals the number of partitions of n into distinct parts.

Example:

9,711,531,51111,333,33111,3111111,11111111

9, 81, 72, 63, 621, 54, 531, 432

Combinatorial Rogers–Ramanujan (due to MacMahon and Schur)

The number of partitions of *n* into parts that mutually differ by at least 2 equals the number of partitions of *n* into parts congruent to $\pm 1 \pmod{5}$.

Combinatorial Rogers–Ramanujan (due to MacMahon and Schur)

The number of partitions of *n* into parts that mutually differ by at least 2 equals the number of partitions of *n* into parts congruent to $\pm 1 \pmod{5}$.

The number of partitions of *n* into parts greater than 1 that mutually differ by at least 2 equals the number of partitions of *n* into parts congruent to $\pm 2 \pmod{5}$.

Let k be a positive integer and $1 \le i \le k$.

Let *k* be a positive integer and $1 \le i \le k$. Let $A_{k,i}(n)$ denote the number of partitions of *n* into parts $\ne 0, \pm i \pmod{2k+1}$.

Let k be a positive integer and $1 \le i \le k$.

Let $A_{k,i}(n)$ denote the number of partitions of *n* into parts $\not\equiv 0, \pm i \pmod{2k+1}$.

Let $B_{k,i}(n)$ denote the number of partitions λ of n where

• at most i - 1 of the parts of λ equal 1,

•
$$\lambda_j - \lambda_{j+k-1} \ge 2$$
 for $j = 1, 2, ..., l(\lambda) + 1 - k$.

Let k be a positive integer and $1 \le i \le k$.

Let $A_{k,i}(n)$ denote the number of partitions of *n* into parts $\not\equiv 0, \pm i \pmod{2k+1}$.

Let $B_{k,i}(n)$ denote the number of partitions λ of n where

• at most i - 1 of the parts of λ equal 1,

•
$$\lambda_j - \lambda_{j+k-1} \ge 2$$
 for $j = 1, 2, ..., l(\lambda) + 1 - k$.

Then $A_{k,i}(n) = B_{k,i}(n)$ for all n.

Let k be a positive integer and $1 \le i \le k$.

Let $A_{k,i}(n)$ denote the number of partitions of *n* into parts $\not\equiv 0, \pm i \pmod{2k+1}$.

Let $B_{k,i}(n)$ denote the number of partitions λ of n where

• at most i - 1 of the parts of λ equal 1,

•
$$\lambda_j - \lambda_{j+k-1} \ge 2$$
 for $j = 1, 2, ..., l(\lambda) + 1 - k$.

Then $A_{k,i}(n) = B_{k,i}(n)$ for all n.

Note: The case k = 2 gives the standard combinatorial interpretation of the two RR identities.

G. Andrews' analytic counterpart to Gordon's theorem

$$\sum_{\substack{n_{k-1} \ge n_{k-2} \ge \dots \ge n_1 \ge 0}} \frac{q^{n_1^2 + n_2^2 + \dots + n_{k-1}^2 + n_i + n_{i+1} + \dots + n_{k-1}}}{(q)_{n_1}(q)_{n_2 - n_1}(q)_{n_3 - n_2} \cdots (q)_{n_{k-1} - n_{k-2}}} = \frac{f(-q^i, -q^{2k+1-i})}{(q)_{\infty}}.$$

Let $d \in \mathbb{N}$ and let $1 \leq i \leq k$. Let $G_{d,k,i}(n)$ denote the number of partitions π of n such that $m_d(\pi) \leq i - 1$ and $m_{dj}(\pi) + m_{dj+d}(\pi) \leq k - 1$ for any $i \in \mathbb{N}$.

for any $j \in \mathbb{N}$.

Let $d \in \mathbb{N}$ and let $1 \leq i \leq k$. Let $G_{d,k,i}(n)$ denote the number of partitions π of n such that $m_d(\pi) \leq i - 1$ and $m_{dj}(\pi) + m_{dj+d}(\pi) \leq k - 1$ for any $j \in \mathbb{N}$. Let $H_{d,k,i}(n)$ denote the number of partitions of n into parts $\neq 0, \pm di \pmod{2d(k+1)}$.

Let $d \in \mathbb{N}$ and let $1 \le i \le k$. Let $G_{d,k,i}(n)$ denote the number of partitions π of *n* such that

$$m_d(\pi) \leq i-1$$
 and $m_{dj}(\pi) + m_{dj+d}(\pi) \leq k-1$

for any $j \in \mathbb{N}$. Let $H_{d,k,i}(n)$ denote the number of partitions of n into parts $\not\equiv 0, \pm di \pmod{2d(k+1)}$. Then $G_{d,k,i}(n) = H_{d,k,i}(n)$ for all integers n.

Let $d \in \mathbb{N}$ and let $1 \leq i \leq k$.

Let $G_{d,k,i}(n)$ denote the number of partitions π of n such that

$$m_d(\pi) \leq i-1$$
 and $m_{dj}(\pi) + m_{dj+d}(\pi) \leq k-1$

for any $j \in \mathbb{N}$. Let $H_{d,k,i}(n)$ denote the number of partitions of n into parts $\not\equiv 0, \pm di \pmod{2d(k+1)}$. Then $G_{d,k,i}(n) = H_{d,k,i}(n)$ for all integers n. This is a combinatorial interpretation of of the identity obtained by inserting the Bailey pair $(\alpha_n^{(d,1,k)}(1,q), \beta_n^{(d,1,k)}(1,q))$ into (PBL) (along with associated systems of q-difference equations).

(outside the partitions and *q*-series community)

Connections to Lie algebras

 In the 1980's J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of A₁⁽¹⁾ are given by the The Andrews–Gordon identity.

Connections to Lie algebras

- In the 1980's J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of A₁⁽¹⁾ are given by the The Andrews–Gordon identity.
- The two Rogers–Ramanujan identities occur at level 3.

Connections to Lie algebras

- In the 1980's J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of A₁⁽¹⁾ are given by the The Andrews–Gordon identity.
- The two Rogers–Ramanujan identities occur at level 3.
- The even levels of A₁⁽¹⁾ correspond to D. Bressoud's even modulus analog of Andrews–Gordon.

Capparelli's identities (1988)

The Rogers–Ramanujan identities also occur at level 2 of $A_2^{(2)}$.

Capparelli's identities (1988)

The Rogers–Ramanujan identities also occur at level 2 of $A_2^{(2)}$.

Performing an analogous analysis of the level 3 modules of $A_2^{(2)}$, S. Capparelli discovered:

Capparelli's identities (1988)

The Rogers–Ramanujan identities also occur at level 2 of $A_2^{(2)}$.

Performing an analogous analysis of the level 3 modules of $A_2^{(2)}$, S. Capparelli discovered:

The number of partitions of *n* into parts $\equiv \pm 2, \pm 3 \pmod{12}$ equals the number of partitions $(\lambda_1, \lambda_2, \dots, \lambda_l)$ of *n* where

•
$$\lambda_i - \lambda_{i+1} \geq 2$$
,

•
$$\lambda_i - \lambda_{i+1} = 2 \implies \lambda_i \equiv 1 \pmod{3}$$
,

•
$$\lambda_i - \lambda_{i+1} = 3 \implies \lambda_i \equiv 0 \pmod{3}$$

Analytic versions of Capparelli's identity (S.)

$$1 + \sum_{\substack{n,j,r \ge 0 \\ (n,j,r) \neq (0,0,0)}} \frac{q^{3n^2 + \frac{9}{2}r^2 + 3j^2 + 6nj + 6nr + 6rj - \frac{5}{2}r - j}(1 + q^{2r+2j})(1 - q^{6r+6j})}{(q^3; q^3)_n (q^3; q^3)_r (q^3; q^3)_j (-1; q^3)_{j+1} (q^3; q^3)_{n+2r+2j}}$$

$$=\frac{1}{(q^2,q^3,q^9,q^{10};q^{12})_{\infty}}$$

Analytic versions of Capparelli's identity (S.)

$$1 + \sum_{\substack{n,j,r \ge 0 \\ (n,j,r) \neq (0,0,0)}} \frac{q^{3n^2 + \frac{9}{2}r^2 + 3j^2 + 6nj + 6nr + 6rj - \frac{5}{2}r - j}(1 + q^{2r+2j})(1 - q^{6r+6j})}{(q^3; q^3)_n (q^3; q^3)_r (q^3; q^3)_j (-1; q^3)_{j+1} (q^3; q^3)_{n+2r+2j}} = \frac{1}{(q^2, q^3, q^9, q^{10}; q^{12})_\infty}$$

$$\sum_{n,j\geq 0} \frac{1}{(q)_{2n-j}(q)_j} = \frac{1}{(q^2, q^3, q^9, q^{10}; q^{12})_{\infty}}.$$

In an analogous study of the level 4 modules of $A_2^{(2)}$, D. Nandi (2014) conjectured three partition identities.

$A_2^{(2)}$ level 4 identities

In an analogous study of the level 4 modules of $A_2^{(2)}$, D. Nandi (2014) conjectured three partition identities. Proved by Motoki Takigiku and Shunsuke Tsuchioka (2019).

A₂⁽²⁾ level 4 identities

In an analogous study of the level 4 modules of $A_2^{(2)}$, D. Nandi (2014) conjectured three partition identities. Proved by Motoki Takigiku and Shunsuke Tsuchioka (2019). One of these identities is:

Andrew Sills Rogers-Ramanujan type identities

A₂⁽²⁾ level 4 identities

In an analogous study of the level 4 modules of $A_2^{(2)}$, D. Nandi (2014) conjectured three partition identities. Proved by Motoki Takigiku and Shunsuke Tsuchioka (2019). One of these identities is:

The number of partitions of *n* into parts $\equiv \pm 2, \pm 3, \pm 4 \pmod{14}$ equals the number of partitions $(\lambda_1, \lambda_2, \dots, \lambda_l)$ of *n* where

•
$$\lambda_i - \lambda_{i+1} \ge 2$$

• $\lambda_i - \lambda_{i+2} \ge 3$
• $\lambda_i - \lambda_{i+2} = 3 \implies \lambda_i \ne \lambda_{i+1},$
• $\lambda_i - \lambda_{i+2} = 3 \text{ and } 2 \nmid \lambda_i \implies \lambda_{i+1} \ne \lambda_{i+2}.$
• $\lambda_i - \lambda_{i+2} = 4 \text{ and } 2 \nmid \lambda_i \implies \lambda_i \ne \lambda_{i+1},$
• Consider the first differences
 $\Delta \lambda := (\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \dots, \lambda_{l-1} - \lambda_l).$ None of the following subwords are permitted in $\Delta \lambda$:
(3,3,0), (3,2,3,0), (3,2,2,3,0), \dots, (3,2,2,2,2,\dots,2,3,0)

Shashank Kanade and Matthew Russell (2014)

Related to level 3 standard modules of $D_4^{(3)}$, Kandade and Russell conjectured several partition identities, including:

Shashank Kanade and Matthew Russell (2014)

Related to level 3 standard modules of $D_4^{(3)}$, Kandade and Russell conjectured several partition identities, including:

The number of partitions of *n* into parts $\equiv \pm 1, \pm 3 \pmod{9}$ equals the number of partitions λ of *n* such that

•
$$\lambda_j - \lambda_{j+2} \ge 3$$
,
• $\lambda_j - \lambda_{j+1} \le 1 \implies 3 \mid (\lambda_j + \lambda_{j+1})$.

Kanade and Russell have released a steady stream of *q*-series and partition identity conjectures over the past six years.

Kanade and Russell have released a steady stream of q-series and partition identity conjectures over the past six years. Many have been proved by

- Katherin Bringmann, Chris Jennings-Shaffer, and Karl Mahlburg;
- Kagan Kurşungöz;
- Hjalmar Rosengren;
- Kanade and Russell themselves.

WHO ELSE CARES?

Andrew Sills Rogers-Ramanujan type identities

$$D_0(q) = D_1(q) = 1$$

 $D_n(q) = D_{n-1}(q) + q^{n-1}D_{n-2}$ if $n \ge 2$

$$D_{0}(q) = D_{1}(q) = 1$$

$$D_{n}(q) = D_{n-1}(q) + q^{n-1}D_{n-2} \text{ if } n \ge 2$$

$$D_{n}(q) = \sum_{j \ge 0} q^{j^{2}} {n-j \brack j}_{q} \qquad \text{(MacMahon)}$$

$$D_{0}(q) = D_{1}(q) = 1$$

$$D_{n}(q) = D_{n-1}(q) + q^{n-1}D_{n-2} \text{ if } n \ge 2$$

$$D_{n}(q) = \sum_{j \ge 0} q^{j^{2}} {n-j \brack j}_{q} \qquad \text{(MacMahon)}$$

$$= \sum_{j \in \mathbb{Z}} (-1)^{j} q^{j(5j+1)/2} {n \brack \lfloor \frac{n+5j+1}{2} \rfloor}_{q} \qquad \text{(Schur)}$$

$$D_{0}(q) = D_{1}(q) = 1$$

$$D_{n}(q) = D_{n-1}(q) + q^{n-1}D_{n-2} \text{ if } n \ge 2$$

$$D_{n}(q) = \sum_{j \ge 0} q^{j^{2}} {n-j \brack j}_{q} \qquad \text{(MacMahon)}$$

$$= \sum_{j \in \mathbb{Z}} (-1)^{j} q^{j(5j+1)/2} {n \brack \lfloor \frac{n+5j+1}{2} \rfloor}_{q} \qquad \text{(Schur)}$$

$$= \sum_{k \in \mathbb{Z}} \left(q^{k(10k+1)} \tau_{0}(n, 5k; q) - q^{(5k+3)(2k+1)} \tau_{0}(n, 5k+3; q) \right)$$
(And rews)

We can prove these polynomial identities via recurrences, and then the original series—infinite product identity follows via asymptotics of *q*-bi/trinomial coëfficients, and the triple product identity.

$$\begin{bmatrix} A \\ B \end{bmatrix}_q := (q)_A (q)_B^{-1} (q)_{A-B}^{-1}$$
 if $0 \leq B \leq A$; 0 o/w

- - -

$$\begin{bmatrix} A \\ B \end{bmatrix}_q := (q)_A (q)_B^{-1} (q)_{A-B}^{-1}$$
 if $0 \leq B \leq A$; 0 o/w

$$T_{0}(L, A; q) := \sum_{r=0}^{L} (-1)^{r} {L \brack r}_{q^{2}} {2L-2r \brack L-A-r}_{q}$$

- -

$$\begin{bmatrix} A \\ B \end{bmatrix}_q := (q)_A (q)_B^{-1} (q)_{A-B}^{-1}$$
 if $0 \leq B \leq A$; 0 o/w

$$\mathrm{T}_{0}(L,A;q) := \sum_{r=0}^{L} (-1)^{r} \begin{bmatrix} L \\ r \end{bmatrix}_{q^{2}} \begin{bmatrix} 2L-2r \\ L-A-r \end{bmatrix}_{q}$$

$$\mathrm{T}_{1}(L,A;q) := \sum_{r=0}^{L} (-q)^{r} \begin{bmatrix} L \\ r \end{bmatrix}_{q^{2}} \begin{bmatrix} 2L-2r \\ L-A-r \end{bmatrix}_{q}$$

- -

$$\begin{bmatrix} A \\ B \end{bmatrix}_q := (q)_A (q)_B^{-1} (q)_{A-B}^{-1}$$
 if $0 \le B \le A$; 0 o/w

$$T_{0}(L, A; q) := \sum_{r=0}^{L} (-1)^{r} {L \brack r}_{q^{2}} {2L-2r \brack L-A-r}_{q}$$

$$\mathrm{T}_{1}(L,A;q) := \sum_{r=0}^{L} (-q)^{r} \begin{bmatrix} L \\ r \end{bmatrix}_{q^{2}} \begin{bmatrix} 2L-2r \\ L-A-r \end{bmatrix}_{q}$$

$$\tau_0(L,A;q) := \sum_{r=0}^{L} (-1)^r q^{Lr-\binom{r}{2}} \begin{bmatrix} L\\ r \end{bmatrix}_q \begin{bmatrix} 2L-2r\\ L-A-r \end{bmatrix}_q$$

- -

$$\begin{bmatrix} A \\ B \end{bmatrix}_q := (q)_A (q)_B^{-1} (q)_{A-B}^{-1}$$
 if $0 \le B \le A$; 0 o/w

$$T_{0}(L, A; q) := \sum_{r=0}^{L} (-1)^{r} {L \brack r}_{q^{2}} {2L-2r \brack L-A-r}_{q}$$

$$\mathrm{T}_{1}(L,A;q) := \sum_{r=0}^{L} (-q)^{r} \begin{bmatrix} L \\ r \end{bmatrix}_{q^{2}} \begin{bmatrix} 2L-2r \\ L-A-r \end{bmatrix}_{q}$$

$$\tau_0(L,A;q) := \sum_{r=0}^{L} (-1)^r q^{Lr-\binom{r}{2}} \begin{bmatrix} L\\ r \end{bmatrix}_q \begin{bmatrix} 2L-2r\\ L-A-r \end{bmatrix}_q$$

linear combinations of *q*-trinomial coëfficients

$U(L, A; q) := T_0(L, A; q) + T_0(L, A + 1; q)$

linear combinations of *q*-trinomial coëfficients

$$U(L, A; q) := T_0(L, A; q) + T_0(L, A + 1; q)$$

and

$$V(L, A; q) := T_1(L - 1, A; q) + q^{L - A}T_0(L - 1, A - 1; q).$$

$$G(q):=\sum_{j\geq 0}rac{q^{j^2}}{(q)_j}.$$

$$egin{aligned} G(q) &:= \sum_{j \geq 0} rac{q^{j^2}}{(q)_j}. \ \mathfrak{G}(t) &:= \mathfrak{G}(t,q) &:= \sum_{j \geq 0} rac{t^{2j} q^{j^2}}{(1-t)(tq;q)_j}. \end{aligned}$$

$$egin{aligned} G(q) &:= \sum_{j \geqq 0} rac{q^{j^2}}{(q)_j}. \ \mathfrak{G}(t) &:= \mathfrak{G}(t,q) &:= \sum_{j \geqq 0} rac{t^{2j}q^{j^2}}{(1-t)(tq;q)_j}. \end{aligned}$$

 $\lim_{t\to 1^-} (1-t)\mathfrak{G}(t) = G(q) \quad \text{(by Abel's lemma)}.$

$$egin{aligned} G(q) &:= \sum_{j \geq 0} rac{q^{j^2}}{(q)_j}. \ \mathfrak{G}(t) &:= \mathfrak{G}(t,q) := \sum_{j \geq 0} rac{t^{2j} q^{j^2}}{(1-t)(tq;q)_j}. \ \lim_{t o 1^-} (1-t)\mathfrak{G}(t) &= G(q) \quad ext{(by Abel's lemma)}. \ \mathfrak{G}(t) &= 1 + t\mathfrak{G}(t) + t^2 q \mathfrak{G}(tq) \end{aligned}$$

$$egin{aligned} G(q) &:= \sum_{j \geqq 0} rac{q^{j^2}}{(q)_j}. \ \mathfrak{G}(t) &:= \mathfrak{G}(t,q) := \sum_{j \geqq 0} rac{t^{2j}q^{j^2}}{(1-t)(tq;q)_j}. \ \lim_{t o 1^-} (1-t)\mathfrak{G}(t) &= G(q) \quad ext{(by Abel's lemma)}. \ \mathfrak{G}(t) &= 1 + t\mathfrak{G}(t) + t^2q\mathfrak{G}(tq) \ \mathfrak{G}(t) &= \sum_{n \geqq 0} D_n(q)t^n. \end{aligned}$$

$$egin{aligned} G(q) &:= \sum_{j \geq 0} rac{q^{j^2}}{(q)_j}. \ \mathfrak{G}(t) &:= \mathfrak{G}(t,q) := \sum_{j \geq 0} rac{t^{2j}q^{j^2}}{(1-t)(tq;q)_j}. \ \mathfrak{G}(t) &:= G(q) \quad ext{(by Abel's lemma)}. \ \mathfrak{G}(t) &= 1 + t\mathfrak{G}(t) + t^2q\mathfrak{G}(tq) \ \mathfrak{G}(t) &= \sum_{n \geq 0} D_n(q)t^n. \ \mathfrak{G}(t) &= \sum_{n \geq 0} D_n(q) = G(q) \end{aligned}$$

• I "algorithmitized" and generalized Andrews' heuristic, and implemented it in Maple.

- I "algorithmitized" and generalized Andrews' heuristic, and implemented it in Maple.
- "Finitized" all 130 identities in Slater's list of RR type identities.

Ramanujan's Lost Notebook, p. 35 of Narosa Edition

$$\sum_{j\geq 0} \frac{q^{j(j+1)/2}(-q^2;q^2)_j}{(q)_j(q;q^2)_{j+1}} = \frac{\psi(-q^2)}{\varphi(-q)}.$$

Ramanujan's Lost Notebook, p. 35 of Narosa Edition

$$\sum_{j\geq 0} \frac{q^{j(j+1)/2}(-q^2;q^2)_j}{(q)_j(q;q^2)_{j+1}} = \frac{\psi(-q^2)}{\varphi(-q)}.$$

For fixed *n*,

$$\sum_{i,j,k\geq 0} q^{j(j+1)/2+i^2+i+k} {j \brack i}_{q^2} {j+k \brack k}_{q^2} {n-2i-2k \brack j}_{q}$$
$$= \sum_{j\in\mathbb{Z}} (-1)^j q^{2j(2j+1)} \mathrm{V}(n+1,4j+1;\sqrt{q}).$$

Ramanujan's Lost Notebook, p. 35 of Narosa Edition

$$\sum_{j\geq 0} \frac{q^{j(j+1)/2}(-q^2;q^2)_j}{(q)_j(q;q^2)_{j+1}} = \frac{\psi(-q^2)}{\varphi(-q)}.$$

For fixed n,

$$\sum_{i,j,k\geq 0} q^{j(j+1)/2+i^2+i+k} {j \brack i}_{q^2} {j+k \brack k}_{q^2} {n-2i-2k \brack j}_{q}$$
$$= \sum_{j\in\mathbb{Z}} (-1)^j q^{2j(2j+1)} \mathbf{V}(n+1,4j+1;\sqrt{q}).$$

q-Pell numbers: $P_0 = 1$, $P_1 = q + 1$, $P_2 = q^3 + q^2 + 2q + 1$

$$P_n = (1 + q^n)P_{n-1} + qP_{n-2} + (q^n - q)P_{n-3}.$$

Bowman-McLaughlin-S.

$$\sum_{j \ge 0} \frac{q^{j(j+1)}(-q^3;q^3)_j}{(-q)_j(q)_{2j+1}} = \frac{f(-q^3,-q^6)f(-q^3,-q^{15})}{(q)_{\infty}(q^{18};q^{18})_{\infty}}$$

Bowman-McLaughlin-S.

$$\sum_{j\geq 0} \frac{q^{j(j+1)}(-q^3;q^3)_j}{(-q)_j(q)_{2j+1}} = \frac{f(-q^3,-q^6)f(-q^3,-q^{15})}{(q)_{\infty}(q^{18};q^{18})_{\infty}}$$

For fixed n,

$$\sum_{i,j,k,l,m \ge 0} (-1)^{k+m} q^{j^2+2j+3i(i+1)/2+k+l+m} \begin{bmatrix} j \\ i \end{bmatrix}_{q^3} \begin{bmatrix} j+k-1 \\ k \end{bmatrix}_q \\ \times \begin{bmatrix} j+l \\ l \end{bmatrix}_{q^2} \begin{bmatrix} j+m-1 \\ m \end{bmatrix}_q \begin{bmatrix} n-3i-j-k-2l-m \\ j \end{bmatrix}_q \\ = \sum_{k \in \mathbb{Z}} q^{9k(3k+1)/2} \begin{bmatrix} n+1 \\ \lfloor \frac{n+9k+3}{2} \rfloor \end{bmatrix}_q - q^3 \sum_{k \in \mathbb{Z}} q^{27k(k+1)/2} \begin{bmatrix} n+1 \\ \lfloor \frac{n+9k+6}{2} \rfloor \end{bmatrix}_q$$

Berkovich–Uncu

 $\sum_{j \ge 0} \frac{q^{3j^2}(-q;q^2)_{3j}}{(q^6;q^6)_{2j}} = \frac{f(q^4,q^8)}{\psi(-q^3)}$

Berkovich–Uncu

$$\sum_{j\geq 0} \frac{q^{3j^2}(-q;q^2)_{3j}}{(q^6;q^6)_{2j}} = \frac{f(q^4,q^8)}{\psi(-q^3)}$$

For fixed *n*,

$$\sum_{i,j,k\geq 0} (-1)^k q^{3j^2+i^2+3k} \begin{bmatrix} 3j\\i \end{bmatrix}_{q^2} \begin{bmatrix} 2j+k-1\\k \end{bmatrix}_{q^3} \begin{bmatrix} n+j-i-k\\2j \end{bmatrix}_{q^3}$$
$$= \sum_{j\in\mathbb{Z}} q^{6j^2+2j} \left(T_0(n,2j;q^3) + T_0(n-1,2j;q^3) \right).$$

Japanese translation in preparation!

Andrew Sills Rogers–Ramanujan type identities

THANK YOU!