Rogers-Ramanujan type identities

Andrew Sills

Georgia Southern University

Seminar for Kyoto University October 6, 2020

L. Euler (1707-1783)
C. G. J. Jacobi (1804-1851)
L. J. Rogers (1862-1933)

Precursors to the RR identities

Throughout: Assume $|q|<1$.

Precursors to the RR identities

Throughout: Assume $|q|<1$.

$$
\sum_{n \geq 0} \frac{q^{n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{m=1}^{\infty} \frac{1}{1-q^{m}}
$$

(Euler)

Precursors to the RR identities

Throughout: Assume $|q|<1$.

$$
\begin{gather*}
\sum_{n \geq 0} \frac{q^{n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{m=1}^{\infty} \frac{1}{1-q^{m}} \tag{Euler}\\
\sum_{n \geq 0} \frac{q^{n^{2}}}{(1-q)^{2}\left(1-q^{2}\right)^{2} \cdots\left(1-q^{n}\right)^{2}}=\prod_{m \geq 1} \frac{1}{1-q^{m}}
\end{gather*}
$$

(Jacobi)

Precursors to the RR identities

Throughout: Assume $|q|<1$.

$$
\begin{align*}
& \sum_{n \geq 0} \frac{q^{n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{m=1}^{\infty} \frac{1}{1-q^{m}} \tag{Euler}\\
& \sum_{n \geq 0} \frac{\mathrm{E}^{n^{2}}}{(1-q)^{2}\left(1-q^{2}\right)^{2} \cdots\left(1-q^{n}\right)^{2}}=\prod_{m \geq 1} \frac{1}{1-q^{m}} \\
& \sum_{n \geq 0} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{\substack{m \geq 1 \\
m \equiv \pm 1(\bmod 5)}} \frac{1}{1-q^{m}}
\end{align*}
$$

(Rogers)

Rising q-factorial notation

$$
(a)_{n}=(a ; q)_{n}:=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{n-1}\right),
$$

$$
\begin{gathered}
(a)_{n}=(a ; q)_{n}:=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{n-1}\right), \\
(a)_{\infty}=(a ; q)_{\infty}:=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots,
\end{gathered}
$$

$$
\begin{gathered}
(a)_{n}=(a ; q)_{n}:=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{n-1}\right), \\
(a)_{\infty}=(a ; q)_{\infty}:=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots, \\
\left(a_{1}, a_{2}, \ldots a_{r} ; q\right)_{\infty}:=\left(a_{1}\right)_{\infty}\left(a_{2}\right)_{\infty}\left(a_{3}\right)_{\infty} \cdots\left(a_{r}\right)_{\infty}
\end{gathered}
$$

S. Ramanujan (1887-1920)

Ramanujan's "theta" function

For $|a b|<1$,

$$
f(a, b):=\sum_{n \in \mathbb{Z}} a^{n(n+1) / 2} b^{n(n-1) / 2}
$$

For $|a b|<1$,

$$
f(a, b):=\sum_{n \in \mathbb{Z}} a^{n(n+1) / 2} b^{n(n-1) / 2}
$$

Jacobi's triple product identity

$$
f(a, b)=(a, b, a b ; a b)_{\infty}
$$

Ramanujan's notation

$$
\begin{aligned}
& f(-q):=f\left(-q,-q^{2}\right)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n(3 n-1) / 2}=(q)_{\infty} \\
& \text { (Euler's pentagonal numbers thm) }
\end{aligned}
$$

Ramanujan's notation

$$
\begin{aligned}
& f(-q):=f\left(-q,-q^{2}\right)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n(3 n-1) / 2}=(q)_{\infty} \\
& \text { (Euler's pentagonal numbers thm) }
\end{aligned}
$$

$$
\varphi(-q):=f(-q,-q)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n^{2}}=\frac{(q)_{\infty}}{(-q)_{\infty}}
$$

(Gauss's square numbers thm)

Ramanujan's notation

$$
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n(3 n-1) / 2}=(q)_{\infty}
$$

(Euler's pentagonal numbers thm)

$$
\varphi(-q):=f(-q,-q)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n^{2}}=\frac{(q)_{\infty}}{(-q)_{\infty}}
$$

(Gauss's square numbers thm)

$$
\psi(-q):=f\left(-q,-q^{3}\right)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n(2 n-1)}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}}
$$

(Gauss's hexagonal numbers thm)

Rogers-Ramanujan identities

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=\frac{f\left(-q^{2},-q^{3}\right)}{(q)_{\infty}} \\
& \sum_{n \geq 0} \frac{q^{n(n+1)}}{(q)_{n}}=\frac{f\left(-q,-q^{4}\right)}{(q)_{\infty}}
\end{aligned}
$$

Rogers-Ramanujan identities

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=\frac{f\left(-q^{2},-q^{3}\right)}{(q)_{\infty}} . \\
& \sum_{n \geq 0} \frac{q^{n(n+1)}}{(q)_{n}}=\frac{f\left(-q,-q^{4}\right) .}{(q)_{\infty}} .
\end{aligned}
$$

Ramanujan really enjoyed identities of this type.

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=\frac{f\left(-q^{2},-q^{3}\right)}{(q)_{\infty}} . \\
& \sum_{n \geq 0} \frac{q^{n(n+1)}}{(q)_{n}}=\frac{f\left(-q,-q^{4}\right) .}{(q)_{\infty}} .
\end{aligned}
$$

Ramanujan really enjoyed identities of this type.
Over 50 are recorded in the lost notebook.

Bailey pairs, Bailey's lemma

If $\left(\alpha_{n}(a, q), \beta_{n}(a, q)\right)$ satisfies

$$
\beta_{n}=\sum_{r=0}^{n} \frac{\alpha_{r}}{(q)_{n-r}(a q)_{n+r}},
$$

then $\left(\alpha_{n}, \beta_{n}\right)$ is called a Bailey pair with respect to a,

Bailey pairs, Bailey's lemma

If $\left(\alpha_{n}(a, q), \beta_{n}(a, q)\right)$ satisfies

$$
\beta_{n}=\sum_{r=0}^{n} \frac{\alpha_{r}}{(q)_{n-r}(a q)_{n+r}}
$$

then $\left(\alpha_{n}, \beta_{n}\right)$ is called a Bailey pair with respect to a, and $\left(\alpha_{n}^{\prime}(a, q), \beta_{n}^{\prime}(a, q)\right)$ is also a Bailey pair, where

$$
\alpha_{r}^{\prime}(a, q)=\frac{\left(\rho_{1}\right)_{r}\left(\rho_{2}\right)_{r}}{\left(a q / \rho_{1}\right)_{r}\left(a q / \rho_{2}\right)_{r}}\left(\frac{a q}{\rho_{1} \rho_{2}}\right)^{r} \alpha_{r}
$$

and

$$
\beta_{n}^{\prime}(a, q)=\sum_{j=0}^{n} \frac{\left(\rho_{1}\right)_{j}\left(\rho_{2}\right)_{j}\left(a q / \rho_{1} \rho_{2}\right)_{n-j}}{\left(a q / \rho_{1}\right)_{n}\left(a q / \rho_{2}\right)_{n}(q)_{n-j}}\left(\frac{a q}{\rho_{1} \rho_{2}}\right)^{j} \beta_{j}(a, q)
$$

Limiting cases of Bailey's lemma

$$
\begin{align*}
\sum_{n \geq 0} q^{n^{2}} \beta_{n}(1, q) & =\frac{1}{(q)_{\infty}} \sum_{r \geq 0} q^{r^{2}} \alpha_{r}(1, q) \\
\sum_{n \geq 0} q^{n^{2}}\left(-q ; q^{2}\right)_{n} \beta_{n}\left(1, q^{2}\right) & =\frac{1}{\psi(-q)} \sum_{r \geq 0} q^{r^{2}} \alpha_{r}\left(1, q^{2}\right) \quad \text { (HBL) } \tag{HBL}\\
\sum_{n \geq 0} q^{n(n+1) / 2}(-1)_{n} \beta_{n}(1, q) & =\frac{2}{\varphi(-q)} \sum_{r \geq 0} \frac{q^{r(r+1) / 2}}{1+q^{r}} \alpha_{r}(1, q)
\end{align*}
$$

Bailey, Dyson, and Slater

- In the 1940's, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities.

Bailey, Dyson, and Slater

- In the 1940's, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities.

Freeman Dyson contributed a number of RR type identities to Bailey's papers.

Bailey, Dyson, and Slater

- In the 1940's, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities.

Freeman Dyson contributed a number of RR type identities to Bailey's papers.

- Lucy Slater found many Bailey pairs, and used them to generate a list of 130 RR type identities.

General Bailey pairs

For $d \mid n$, define

$$
\begin{gathered}
\alpha_{n}^{(d, e, k)}(a, q):=\frac{(-1)^{n / d} a^{(k / d-1) n / e} q^{(k / d-1+1 / 2 d) n^{2} / e-n / 2 e}}{\left(1-a^{1 / e}\right)\left(q^{d / e} ; q^{d / e}\right)_{n / d}}, \\
\times\left(1-a^{1 / e} q^{2 n / e}\right)\left(a^{1 / e} ; q^{d / e}\right)_{n / d}
\end{gathered}
$$

General Bailey pairs

For $d \mid n$, define

$$
\begin{gathered}
\alpha_{n}^{(d, e, k)}(a, q):=\frac{(-1)^{n / d} a^{(k / d-1) n / e} q^{(k / d-1+1 / 2 d) n^{2} / e-n / 2 e}}{\left(1-a^{1 / e}\right)\left(q^{d / e} ; q^{d / e}\right)_{n / d}}, \\
\times\left(1-a^{1 / e} q^{2 n / e}\right)\left(a^{1 / e} ; q^{d / e}\right)_{n / d}, \\
\tilde{\alpha}_{n}^{(d, e, k)}(a, q):=q^{n(d-n) / 2 d e} a^{-n / d e} \frac{\left(-a^{1 / e} ; q^{d / e}\right)_{n / d}}{\left(-q^{d / e} ; q^{d / e}\right)_{n / d}} \alpha_{n}^{(d, e, k)}(a, q),
\end{gathered}
$$

General Bailey pairs

For $d \mid n$, define

$$
\begin{gathered}
\alpha_{n}^{(d, e, k)}(a, q):=\frac{(-1)^{n / d} a^{(k / d-1) n / e} q^{(k / d-1+1 / 2 d) n^{2} / e-n / 2 e}}{\left(1-a^{1 / e}\right)\left(q^{d / e} ; q^{d / e}\right)_{n / d}} \\
\times\left(1-a^{1 / e} q^{2 n / e}\right)\left(a^{1 / e} ; q^{d / e}\right)_{n / d} \\
\tilde{\alpha}_{n}^{(d, e, k)}(a, q):=q^{n(d-n) / 2 d e} a^{-n / d e} \frac{\left(-a^{1 / e} ; q^{d / e}\right)_{n / d}}{\left(-q^{d / e} ; q^{d / e}\right)_{n / d}} \alpha_{n}^{(d, e, k)}(a, q), \\
\bar{\alpha}_{n}^{(d, e, k)}(a, q):=(-1)^{n / d} q^{n^{2} / 2 d e} \frac{\left(q^{d / 2 e} ; q^{d / e}\right)_{n / d}}{\left(a^{1 / e} q^{d / 2 e} ; q^{d / e}\right)_{n / d}} \alpha_{n}^{(d, e, k)}(a, q) .
\end{gathered}
$$

General Bailey pairs

For $d \mid n$, define

$$
\begin{gathered}
\alpha_{n}^{(d, e, k)}(a, q):=\frac{(-1)^{n / d} a^{(k / d-1) n / e} q^{(k / d-1+1 / 2 d) n^{2} / e-n / 2 e}}{\left(1-a^{1 / e}\right)\left(q^{d / e} ; q^{d / e}\right)_{n / d}} \\
\times\left(1-a^{1 / e} q^{2 n / e}\right)\left(a^{1 / e} ; q^{d / e}\right)_{n / d} \\
\tilde{\alpha}_{n}^{(d, e, k)}(a, q):=q^{n(d-n) / 2 d e} a^{-n / d e} \frac{\left(-a^{1 / e} ; q^{d / e}\right)_{n / d}}{\left(-q^{d / e} ; q^{d / e}\right)_{n / d}} \alpha_{n}^{(d, e, k)}(a, q), \\
\bar{\alpha}_{n}^{(d, e, k)}(a, q):=(-1)^{n / d} q^{n^{2} / 2 d e} \frac{\left(q^{d / 2 e} ; q^{d / e}\right)_{n / d}}{\left(a^{1 / e} q^{d / 2 e} ; q^{d / e}\right)_{n / d}} \alpha_{n}^{(d, e, k)}(a, q) .
\end{gathered}
$$

Let the corresponding $\beta_{n}^{(d, e, k)}(a, q), \tilde{\beta}_{n}^{(d, e, k)}(a, q)$, and $\bar{\beta}_{n}^{(d, e, k)}(a, q)$ be determined by the Bailey pair relation.

- For any positive integer triples (d, e, k), upon inserting any of these α 's into any of the limiting cases of Bailey's lemma with $a=1$, the resulting series is summable via Jacobi's triple product identity.
- For any positive integer triples (d, e, k), upon inserting any of these α 's into any of the limiting cases of Bailey's lemma with $a=1$, the resulting series is summable via Jacobi's triple product identity.
- For certain (d, e, k), the resulting expression for β is a very well-poised ${ }_{6} \phi_{5}$, summable by a theorem of F. H. Jackson.
- For any positive integer triples (d, e, k), upon inserting any of these α 's into any of the limiting cases of Bailey's lemma with $a=1$, the resulting series is summable via Jacobi's triple product identity.
- For certain (d, e, k), the resulting expression for β is a very well-poised ${ }_{6} \phi_{5}$, summable by a theorem of F. H. Jackson.
- Using only this, and an associated families of q-difference equations, one can recover the majority of Slater's list, as well as other identities.

The Bailey pair that arises from

$$
\begin{aligned}
\left(\alpha_{n}^{(1,1,2)}(a, q),\right. & \left.\beta_{n}^{(1,1,2)}(a, q)\right) \\
& =\left(\frac{(-1)^{n} a^{n} q^{n(3 n-1) / 2}\left(1-a q^{2 n}\right)(a)_{n}}{(1-a)(q)_{n}}, \frac{1}{(q)_{n}}\right)
\end{aligned}
$$

yields

The Bailey pair that arises from

$$
\begin{aligned}
&\left(\alpha_{n}^{(1,1,2)}(a, q), \beta_{n}^{(1,1,2)}(a, q)\right) \\
&=\left(\frac{(-1)^{n} a^{n} q^{n(3 n-1) / 2}\left(1-a q^{2 n}\right)(a)_{n}}{(1-a)(q)_{n}}, \frac{1}{(q)_{n}}\right)
\end{aligned}
$$

yields

- $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=\frac{f\left(-q^{2},-q^{3}\right)}{(q)_{\infty}}$ upon insertion into (PBL),

The Bailey pair that arises from

$$
\begin{aligned}
\left(\alpha_{n}^{(1,1,2)}(a, q),\right. & \left.\beta_{n}^{(1,1,2)}(a, q)\right) \\
& =\left(\frac{(-1)^{n} a^{n} q^{n(3 n-1) / 2}\left(1-a q^{2 n}\right)(a)_{n}}{(1-a)(q)_{n}}, \frac{1}{(q)_{n}}\right)
\end{aligned}
$$

yields

- $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=\frac{f\left(-q^{2},-q^{3}\right)}{(q)_{\infty}}$ upon insertion into (PBL),
- $\sum_{n \geq 0} \frac{q^{n(n+1)}(-1)_{n}}{(q)_{n}}=\frac{\varphi\left(-q^{2}\right)}{\varphi(-q)}$ upon insertion into (SBL), and

The Bailey pair that arises from

$$
\begin{aligned}
\left(\alpha_{n}^{(1,1,2)}(a, q),\right. & \left.\beta_{n}^{(1,1,2)}(a, q)\right) \\
& =\left(\frac{(-1)^{n} a^{n} q^{n(3 n-1) / 2}\left(1-a q^{2 n}\right)(a)_{n}}{(1-a)(q)_{n}}, \frac{1}{(q)_{n}}\right)
\end{aligned}
$$

yields

- $\sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=\frac{f\left(-q^{2},-q^{3}\right)}{(q)_{\infty}}$ upon insertion into (PBL),
- $\sum_{n \geq 0} \frac{q^{n(n+1)}(-1)_{n}}{(q)_{n}}=\frac{\varphi\left(-q^{2}\right)}{\varphi(-q)}$ upon insertion into (SBL), and
- $\sum_{n \geq 0} \frac{q^{n^{2}}\left(-q ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}}=\frac{f\left(-q^{3},-q^{5}\right)}{\psi(-q)}$ upon insertion into (HBL).

New identities arising from this framework (S.)

$$
\sum_{n, r \geq 0} \frac{q^{n^{2}+2 n r+2 r^{2}}\left(-q ; q^{2}\right)_{r}}{(q)_{2 r}(q)_{n}}=\frac{f\left(-q^{10},-q^{10}\right)}{(q)_{\infty}}
$$

by insertion of $\left(\tilde{\alpha}_{n}^{(2,1,5)}(1, q), \tilde{\beta}_{n}^{(2,1,5)}(1, q)\right)$ into (PBL).

New identities arising from this framework (S.)

$$
\sum_{n, r \geq 0} \frac{q^{n^{2}+2 n r+2 r^{2}}\left(-q ; q^{2}\right)_{r}}{(q)_{2 r}(q)_{n}}=\frac{f\left(-q^{10},-q^{10}\right)}{(q)_{\infty}}
$$

by insertion of $\left(\tilde{\alpha}_{n}^{(2,1,5)}(1, q), \tilde{\beta}_{n}^{(2,1,5)}(1, q)\right)$ into (PBL).

$$
\sum_{n, r \geq 0} \frac{q^{4 n^{2}+8 n r+8 r^{2}}\left(-q ; q^{2}\right)_{2 r}}{\left(q^{4} ; q^{4}\right)_{2 r}\left(q^{4} ; q^{4}\right)_{n}}=\frac{f\left(q^{9}, q^{11}\right)}{\left(q^{4} ; q^{4}\right)_{\infty}}
$$

by insertion of $\left(\bar{\alpha}_{n}^{(1,2,4)}(1, q), \bar{\beta}_{n}^{(1,2,4)}(1, q)\right)$ into (PBL).

New identities arising from this framework (S.)

$$
\sum_{n, r \geq 0} \frac{q^{n^{2}+2 n r+2 r^{2}}\left(-q ; q^{2}\right)_{r}}{(q)_{2 r}(q)_{n}}=\frac{f\left(-q^{10},-q^{10}\right)}{(q)_{\infty}}
$$

by insertion of $\left(\tilde{\alpha}_{n}^{(2,1,5)}(1, q), \tilde{\beta}_{n}^{(2,1,5)}(1, q)\right)$ into (PBL).

$$
\sum_{n, r \geq 0} \frac{q^{4 n^{2}+8 n r+8 r^{2}}\left(-q ; q^{2}\right)_{2 r}}{\left(q^{4} ; q^{4}\right)_{2 r}\left(q^{4} ; q^{4}\right)_{n}}=\frac{f\left(q^{9}, q^{11}\right)}{\left(q^{4} ; q^{4}\right)_{\infty}}
$$

by insertion of $\left(\bar{\alpha}_{n}^{(1,2,4)}(1, q), \bar{\beta}_{n}^{(1,2,4)}(1, q)\right)$ into (PBL).

A family of mod 24 identities

$$
\begin{align*}
& \sum_{n \geq 0} \frac{q^{n(n+2)}\left(-q ; q^{2}\right)_{n}\left(-1 ; q^{6}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{2 n}\left(-1 ; q^{2}\right)_{n}}=\frac{f\left(-q,-q^{11}\right) f\left(-q^{10},-q^{14}\right)}{\psi(-q)\left(q^{24} ; q^{24}\right)_{\infty}} \\
& \sum_{n=0}^{\infty} \frac{q^{n^{2}}\left(-q^{3} ; q^{6}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{2 n}}=\frac{f\left(-q^{2},-q^{10}\right) f\left(-q^{8},-q^{16}\right)}{\psi(-q)\left(q^{24} ; q^{24}\right)_{\infty}} \quad \text { (Ramanujan) } \\
& \sum_{n \geq 0} \frac{q^{n^{2}}\left(-q ; q^{2}\right)_{n}\left(-1 ; q^{6}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{2 n}\left(-1 ; q^{2}\right)_{n}}=\frac{f\left(-q^{3},-q^{9}\right) f\left(-q^{6},-q^{18}\right)}{\psi(-q)\left(q^{24} ; q^{24}\right)_{\infty}} \text { (M.-S.) } \\
& \sum_{n \geq 0} \frac{q^{n(n+2)}\left(-q^{3} ; q^{6}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{2 n}\left(1-q^{2 n+1}\right)}=\frac{f\left(-q^{4},-q^{8}\right) f\left(-q^{4},-q^{20}\right)}{\psi(-q)\left(q^{24} ; q^{24}\right)_{\infty}} \quad \text { (M.-S.) } \tag{M.-S.}\\
& \sum_{n \geq 0} \frac{q^{n(n+2)}\left(-q ; q^{2}\right)_{n+1}\left(-q^{6} ; q^{6}\right)_{n}}{\left(q^{4} ; q^{4}\right)_{n}\left(q^{2 n+4} ; q^{2}\right)_{n+1}}=\frac{f\left(-q^{5},-q^{7}\right) f\left(-q^{2},-q^{22}\right)}{\psi(-q)\left(q^{24} ; q^{24}\right)_{\infty}} \tag{M.-S.}
\end{align*}
$$

Combinatorial considerations

Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

Combinatorial considerations

Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

A partition λ of n is a tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{I}\right)$ of weakly decreasing positive integers (called the parts of λ) that sum to n.

Combinatorial considerations

Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

A partition λ of n is a tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ of weakly decreasing positive integers (called the parts of λ) that sum to n. The seven partitions of 5 are
(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

Euler's partition theorem

The number of partitions of n into odd parts equals the number of partitions of n into distinct parts.

Euler's partition theorem

The number of partitions of n into odd parts equals the number of partitions of n into distinct parts.

Example:

$$
9,711,531,51111,333,33111,3111111,111111111
$$

Euler's partition theorem

The number of partitions of n into odd parts equals the number of partitions of n into distinct parts.

Example:

$$
\begin{gathered}
9,711,531,51111,333,33111,3111111,111111111 \\
9,81,72,63,621,54,531,432
\end{gathered}
$$

Combinatorial Rogers-Ramanujan (due to MacMahon and Schur)

The number of partitions of n into parts that mutually differ by at least 2 equals the number of partitions of n into parts congruent to $\pm 1(\bmod 5)$.

Combinatorial Rogers-Ramanujan (due to MacMahon and Schur)

The number of partitions of n into parts that mutually differ by at least 2 equals the number of partitions of n into parts congruent to $\pm 1(\bmod 5)$.

The number of partitions of n into parts greater than 1 that mutually differ by at least 2 equals the number of partitions of n into parts congruent to $\pm 2(\bmod 5)$.

B. Gordon's combinatorial generalization of RR (1961)

Let k be a positive integer and $1 \leq i \leq k$.

B. Gordon's combinatorial generalization of RR (1961)

Let k be a positive integer and $1 \leq i \leq k$. Let $A_{k, i}(n)$ denote the number of partitions of n into parts $\not \equiv 0, \pm i(\bmod 2 k+1)$.

B. Gordon's combinatorial generalization of RR (1961)

Let k be a positive integer and $1 \leq i \leq k$.
Let $A_{k, i}(n)$ denote the number of partitions of n into parts $\not \equiv 0, \pm i(\bmod 2 k+1)$.
Let $B_{k, i}(n)$ denote the number of partitions λ of n where

- at most $i-1$ of the parts of λ equal 1 ,
- $\lambda_{j}-\lambda_{j+k-1} \geq 2$ for $j=1,2, \ldots, I(\lambda)+1-k$.

B. Gordon's combinatorial generalization of RR (1961)

Let k be a positive integer and $1 \leq i \leq k$.
Let $A_{k, i}(n)$ denote the number of partitions of n into parts $\not \equiv 0, \pm i(\bmod 2 k+1)$.
Let $B_{k, i}(n)$ denote the number of partitions λ of n where

- at most $i-1$ of the parts of λ equal 1 ,
- $\lambda_{j}-\lambda_{j+k-1} \geq 2$ for $j=1,2, \ldots, l(\lambda)+1-k$.

Then $A_{k, i}(n)=B_{k, i}(n)$ for all n.

B. Gordon's combinatorial generalization of RR (1961)

Let k be a positive integer and $1 \leq i \leq k$.
Let $A_{k, i}(n)$ denote the number of partitions of n into parts $\not \equiv 0, \pm i(\bmod 2 k+1)$.
Let $B_{k, i}(n)$ denote the number of partitions λ of n where

- at most $i-1$ of the parts of λ equal 1 ,
- $\lambda_{j}-\lambda_{j+k-1} \geq 2$ for $j=1,2, \ldots, l(\lambda)+1-k$.

Then $A_{k, i}(n)=B_{k, i}(n)$ for all n.
Note: The case $k=2$ gives the standard combinatorial interpretation of the two RR identities.

G. Andrews' analytic counterpart to Gordon's theorem

$$
\begin{array}{r}
\sum_{n_{k-1} \geq n_{k-2} \geq \cdots \geq n_{1} \geq 0} \frac{q^{n_{1}^{2}+n_{2}^{2}+\cdots+n_{k-1}^{2}+n_{i}+n_{i+1}+\cdots+n_{k-1}}}{(q) n_{1}(q) n_{2}-n_{1}(q)_{n_{3}-n_{2}} \cdots(q)_{n_{k-1}-n_{k-2}}} \\
=\frac{f\left(-q^{i},-q^{2 k+1-i}\right)}{(q)_{\infty}}
\end{array}
$$

Combinatorial interpretations of these " (d, e, k) " identities (S.)

Let $d \in \mathbb{N}$ and let $1 \leq i \leq k$.
Let $G_{d, k, i}(n)$ denote the number of partitions π of n such that

$$
m_{d}(\pi) \leq i-1 \text { and } m_{d j}(\pi)+m_{d j+d}(\pi) \leq k-1
$$

for any $j \in \mathbb{N}$.

Combinatorial interpretations of these " (d, e, k) " identities (S.)

Let $d \in \mathbb{N}$ and let $1 \leq i \leq k$.
Let $G_{d, k, i}(n)$ denote the number of partitions π of n such that

$$
m_{d}(\pi) \leq i-1 \text { and } m_{d j}(\pi)+m_{d j+d}(\pi) \leq k-1
$$

for any $j \in \mathbb{N}$.
Let $H_{d, k, i}(n)$ denote the number of partitions of n into parts
$\not \equiv 0, \pm d i(\bmod 2 d(k+1))$.

Combinatorial interpretations of these " (d, e, k) " identities (S.)

Let $d \in \mathbb{N}$ and let $1 \leq i \leq k$.
Let $G_{d, k, i}(n)$ denote the number of partitions π of n such that

$$
m_{d}(\pi) \leq i-1 \text { and } m_{d j}(\pi)+m_{d j+d}(\pi) \leq k-1
$$

for any $j \in \mathbb{N}$.
Let $H_{d, k, i}(n)$ denote the number of partitions of n into parts
$\not \equiv 0, \pm d i(\bmod 2 d(k+1))$.
Then $G_{d, k, i}(n)=H_{d, k, i}(n)$ for all integers n.

Combinatorial interpretations of these " (d, e, k) " identities (S.)

Let $d \in \mathbb{N}$ and let $1 \leq i \leq k$.
Let $G_{d, k, i}(n)$ denote the number of partitions π of n such that

$$
m_{d}(\pi) \leq i-1 \text { and } m_{d j}(\pi)+m_{d j+d}(\pi) \leq k-1
$$

for any $j \in \mathbb{N}$.
Let $H_{d, k, i}(n)$ denote the number of partitions of n into parts
$\not \equiv 0, \pm d i(\bmod 2 d(k+1))$.
Then $G_{d, k, i}(n)=H_{d, k, i}(n)$ for all integers n.
This is a combinatorial interpretation of of the identity obtained by inserting the Bailey pair $\left(\alpha_{n}^{(d, 1, k)}(1, q), \beta_{n}^{(d, 1, k)}(1, q)\right)$ into
(PBL) (along with associated systems of q-difference equations).

WHO

(outside the partitions and q-series community) CARES?

Connections to Lie algebras

- In the 1980's J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of $A_{1}^{(1)}$ are given by the The Andrews-Gordon identity.

Connections to Lie algebras

- In the 1980's J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of $A_{1}^{(1)}$ are given by the The Andrews-Gordon identity.
- The two Rogers-Ramanujan identities occur at level 3.

Connections to Lie algebras

- In the 1980's J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of $A_{1}^{(1)}$ are given by the The Andrews-Gordon identity.
- The two Rogers-Ramanujan identities occur at level 3.
- The even levels of $A_{1}^{(1)}$ correspond to D. Bressoud's even modulus analog of Andrews-Gordon.

Capparelli's identities (1988)

The Rogers-Ramanujan identities also occur at level 2 of $A_{2}^{(2)}$.

Capparelli's identities (1988)

The Rogers-Ramanujan identities also occur at level 2 of $A_{2}^{(2)}$.

Performing an analogous analysis of the level 3 modules of $A_{2}^{(2)}$, S. Capparelli discovered:

Capparelli's identities (1988)

The Rogers-Ramanujan identities also occur at level 2 of $A_{2}^{(2)}$.

Performing an analogous analysis of the level 3 modules of $A_{2}^{(2)}$, S. Capparelli discovered:

The number of partitions of n into parts $\equiv \pm 2, \pm 3(\bmod 12)$ equals the number of partitions $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ of n where

- $\lambda_{i}-\lambda_{i+1} \geq 2$,
- $\lambda_{i}-\lambda_{i+1}=2 \Longrightarrow \lambda_{i} \equiv 1(\bmod 3)$,
- $\lambda_{i}-\lambda_{i+1}=3 \Longrightarrow \lambda_{i} \equiv 0(\bmod 3)$

Analytic versions of Capparelli's identity (S.)

$$
\begin{array}{r}
1+\sum_{\substack{n, j, r \geq 0 \\
(n, j, r) \neq(0,0,0)}} \frac{q^{3 n^{2}+\frac{9}{2} r^{2}+3 j^{2}+6 n j+6 n r+6 r j-\frac{5}{2} r-j}\left(1+q^{2 r+2 j}\right)\left(1-q^{6 r+6 j}\right)}{\left(q^{3} ; q^{3}\right)_{n}\left(q^{3} ; q^{3}\right)_{r}\left(q^{3} ; q^{3}\right)_{j}\left(-1 ; q^{3}\right)_{j+1}\left(q^{3} ; q^{3}\right)_{n+2 r+2 j}} \\
=\frac{1}{\left(q^{2}, q^{3}, q^{9}, q^{10} ; q^{12}\right)_{\infty}}
\end{array}
$$

Analytic versions of Capparelli's identity (S.)

$$
\begin{array}{r}
1+\sum_{\substack{n, j, r \geq 0 \\
(n, j, r) \neq(0,0,0)}} \frac{q^{3 n^{2}+\frac{9}{2} r^{2}+3 j^{2}+6 n j+6 n r+6 r j-\frac{5}{2} r-j}\left(1+q^{2 r+2 j}\right)\left(1-q^{6 r+6 j}\right)}{\left(q^{3} ; q^{3}\right)_{n}\left(q^{3} ; q^{3}\right)_{r}\left(q^{3} ; q^{3}\right)_{j}\left(-1 ; q^{3}\right)_{j+1}\left(q^{3} ; q^{3}\right)_{n+2 r+2 j}} \\
=\frac{1}{\left(q^{2}, q^{3}, q^{9}, q^{10} ; q^{12}\right)_{\infty}}
\end{array}
$$

$$
\sum_{n, j \geq 0} \frac{q^{n^{2}}\left(\frac{n-j+1}{3}\right)}{(q)_{2 n-j}(q)_{j}}=\frac{1}{\left(q^{2}, q^{3}, q^{9}, q^{10} ; q^{12}\right)_{\infty}} .
$$

$A_{2}^{(2)}$ level 4 identities

In an analogous study of the level 4 modules of $A_{2}^{(2)}$, D. Nandi (2014) conjectured three partition identities.

$A_{2}^{(2)}$ level 4 identities

In an analogous study of the level 4 modules of $A_{2}^{(2)}$, D. Nandi (2014) conjectured three partition identities. Proved by Motoki Takigiku and Shunsuke Tsuchioka (2019).

$A_{2}^{(2)}$ level 4 identities

In an analogous study of the level 4 modules of $A_{2}^{(2)}$, D. Nandi (2014) conjectured three partition identities. Proved by Motoki Takigiku and Shunsuke Tsuchioka (2019).
One of these identities is:

$A_{2}^{(2)}$ level 4 identities

In an analogous study of the level 4 modules of $A_{2}^{(2)}$, D. Nandi (2014) conjectured three partition identities. Proved by Motoki Takigiku and Shunsuke Tsuchioka (2019).
One of these identities is:

The number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4(\bmod 14)$ equals the number of partitions ($\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}$) of n where

- $\lambda_{i}-\lambda_{i+1} \geq 2$
- $\lambda_{i}-\lambda_{i+2} \geq 3$
- $\lambda_{i}-\lambda_{i+2}=3 \Longrightarrow \lambda_{i} \neq \lambda_{i+1}$,
- $\lambda_{i}-\lambda_{i+2}=3$ and $2 \nmid \lambda_{i} \Longrightarrow \lambda_{i+1} \neq \lambda_{i+2}$.
- $\lambda_{i}-\lambda_{i+2}=4$ and $2 \nmid \lambda_{i} \Longrightarrow \lambda_{i} \neq \lambda_{i+1}$,
- Consider the first differences
$\Delta \lambda:=\left(\lambda_{1}-\lambda_{2}, \lambda_{2}-\lambda_{3}, \ldots, \lambda_{l-1}-\lambda_{l}\right)$. None of the
following subwords are permitted in $\Delta \lambda$:
$(3,3,0),(3,2,3,0),(3,2,2,3,0), \ldots,(3,2,2,2,2, \ldots, 2,3,0)$.

Shashank Kanade and Matthew Russell (2014)

Related to level 3 standard modules of $D_{4}^{(3)}$, Kandade and Russell conjectured several partition identities, including:

Shashank Kanade and Matthew Russell (2014)

Related to level 3 standard modules of $D_{4}^{(3)}$, Kandade and Russell conjectured several partition identities, including:

The number of partitions of n into parts $\equiv \pm 1, \pm 3(\bmod 9)$ equals the number of partitions λ of n such that

- $\lambda_{j}-\lambda_{j+2} \geq 3$,
- $\lambda_{j}-\lambda_{j+1} \leq 1 \Longrightarrow 3 \mid\left(\lambda_{j}+\lambda_{j+1}\right)$.

Kanade-Russell conjectures

Kanade and Russell have released a steady stream of q-series and partition identity conjectures over the past six years.

Kanade-Russell conjectures

Kanade and Russell have released a steady stream of q-series and partition identity conjectures over the past six years. Many have been proved by

- Katherin Bringmann, Chris Jennings-Shaffer, and Karl Mahlburg;
- Kagan Kurşungöz;
- Hjalmar Rosengren;
- Kanade and Russell themselves.

WHO ELSE CARES?

Polynomial RR identities

$$
\begin{gathered}
D_{0}(q)=D_{1}(q)=1 \\
D_{n}(q)=D_{n-1}(q)+q^{n-1} D_{n-2} \text { if } n \geqq 2
\end{gathered}
$$

$$
\begin{gathered}
D_{0}(q)=D_{1}(q)=1 \\
D_{n}(q)=D_{n-1}(q)+q^{n-1} D_{n-2} \text { if } n \geqq 2 \\
D_{n}(q)=\sum_{j \geqq 0} q^{j^{2}}\left[\begin{array}{c}
n-j \\
j
\end{array}\right]_{q}
\end{gathered}
$$

(MacMahon)

$$
\begin{gathered}
D_{0}(q)=D_{1}(q)=1 \\
D_{n}(q)=D_{n-1}(q)+q^{n-1} D_{n-2} \text { if } n \geqq 2 \\
D_{n}(q)=\sum_{j \geqq 0} q^{j^{2}}\left[\begin{array}{c}
n-j \\
j
\end{array}\right]_{q} \\
=\sum_{j \in \mathbb{Z}}(-1)^{j} q^{j(5 j+1) / 2}\left[\begin{array}{c}
n \\
\left\lfloor\frac{n+5 j+1}{2}\right\rfloor
\end{array}\right]_{q}
\end{gathered}
$$

(MacMahon)
(Schur)

$$
\begin{gathered}
D_{0}(q)=D_{1}(q)=1 \\
D_{n}(q)=D_{n-1}(q)+q^{n-1} D_{n-2} \text { if } n \geqq 2 \\
D_{n}(q)=\sum_{j \geqq 0} q^{j^{2}}\left[\begin{array}{c}
n-j \\
j
\end{array}\right]_{q} \quad \text { (MacMahon) } \\
=\sum_{j \in \mathbb{Z}}(-1)^{j} q^{j(5 j+1) / 2}\left[\begin{array}{c}
n \\
\left\lfloor\frac{n+5 j+1}{2}\right\rfloor
\end{array}\right]_{q} \quad \text { (Schur) } \\
=\sum_{k \in \mathbb{Z}}\left(q^{k(10 k+1)} \tau_{0}(n, 5 k ; q)-q^{(5 k+3)(2 k+1)} \tau_{0}(n, 5 k+3 ; q)\right) \\
\text { (Andrews) }
\end{gathered}
$$

Polynomial RR identities

We can prove these polynomial identities via recurrences, and then the original series-infinite product identity follows via asymptotics of q-bi/trinomial coëfficients, and the triple product identity.

q-binomial and q-trinomial coëfficients

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]_{q}:=(q)_{A}(q)_{B}^{-1}(q)_{A-B}^{-1} \text { if } 0 \leqq B \leqq A ; 0 \text { o/w }
$$

q-binomial and q-trinomial coëfficients

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]_{q}:=(q)_{A}(q)_{B}^{-1}(q)_{A-B}^{-1} \text { if } 0 \leqq B \leqq A ; 00 / \mathrm{w}
$$

$$
\mathrm{T}_{0}(L, A ; q):=\sum_{r=0}^{L}(-1)^{r}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q}
$$

q-binomial and q-trinomial coëfficients

$$
\begin{aligned}
& {\left[\begin{array}{l}
A \\
B
\end{array}\right]_{q}:=(q)_{A}(q)_{B}^{-1}(q)_{A-B}^{-1} \text { if } 0 \leqq B \leqq A ; 00 / \mathrm{w}} \\
& \mathrm{~T}_{0}(L, A ; q):=\sum_{r=0}^{L}(-1)^{r}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q} \\
& \mathrm{~T}_{1}(L, A ; q):=\sum_{r=0}^{L}(-q)^{r}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q}
\end{aligned}
$$

q-binomial and q-trinomial coëfficients

$$
\begin{gathered}
{\left[\begin{array}{l}
A \\
B
\end{array}\right]_{q}:=(q)_{A}(q)_{B}^{-1}(q)_{A-B}^{-1} \text { if } 0 \leqq B \leqq A ; 00 / \mathrm{w}} \\
\mathrm{~T}_{0}(L, A ; q):=\sum_{r=0}^{L}(-1)^{r}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q} \\
\mathrm{~T}_{1}(L, A ; q):=\sum_{r=0}^{L}(-q)^{r}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q} \\
\tau_{0}(L, A ; q):=\sum_{r=0}^{L}(-1)^{r} q^{L r-\left(\begin{array}{l}
r
\end{array}\right)}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q}
\end{gathered}
$$

q-binomial and q-trinomial coëfficients

$$
\begin{gathered}
{\left[\begin{array}{l}
A \\
B
\end{array}\right]_{q}:=(q)_{A}(q)_{B}^{-1}(q)_{A-B}^{-1} \text { if } 0 \leqq B \leqq A ; 00 / \mathrm{w}} \\
\mathrm{~T}_{0}(L, A ; q):=\sum_{r=0}^{L}(-1)^{r}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q} \\
\mathrm{~T}_{1}(L, A ; q):=\sum_{r=0}^{L}(-q)^{r}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q} \\
\tau_{0}(L, A ; q):=\sum_{r=0}^{L}(-1)^{r} q^{L r-\left(\begin{array}{l}
r
\end{array}\right)}\left[\begin{array}{l}
L \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
2 L-2 r \\
L-A-r
\end{array}\right]_{q}
\end{gathered}
$$

linear combinations of q-trinomial coëfficients

$$
\mathrm{U}(L, A ; q):=\mathrm{T}_{0}(L, A ; q)+\mathrm{T}_{0}(L, A+1 ; q)
$$

linear combinations of q-trinomial coëfficients

$$
\mathrm{U}(L, A ; q):=\mathrm{T}_{0}(L, A ; q)+\mathrm{T}_{0}(L, A+1 ; q)
$$

and

$$
\mathrm{V}(L, A ; q):=\mathrm{T}_{1}(L-1, A ; q)+q^{L-A} \mathrm{~T}_{0}(L-1, A-1 ; q)
$$

The Andrews Method of Finitization

$$
G(q):=\sum_{j \geqq 0} \frac{q^{j^{2}}}{(q)_{j}}
$$

The Andrews Method of Finitization

$$
\begin{gathered}
\mathcal{G}(q):=\sum_{j \geq 0} \frac{q^{j^{2}}}{(q) j} . \\
\mathfrak{G}(t):=\mathfrak{G}(t, q):=\sum_{j \equiv 0} \frac{t^{2} \mid q^{2}}{(1-t)(t q ; q)} .
\end{gathered}
$$

The Andrews Method of Finitization

$$
\begin{gathered}
G(q):=\sum_{j \geqq 0} \frac{q^{j^{2}}}{(q)_{j}} . \\
\mathfrak{G}(t):=\mathfrak{G}(t, q):=\sum_{j \geqq 0} \frac{t^{2 j} q^{j^{2}}}{(1-t)(t q ; q)_{j}} . \\
\lim _{t \rightarrow 1^{-}}(1-t) \mathfrak{G}(t)=G(q) \quad \text { (by Abel's lemma). }
\end{gathered}
$$

The Andrews Method of Finitization

$$
\begin{gathered}
G(q):=\sum_{j \geqq 0} \frac{q^{j^{2}}}{(q)_{j}} . \\
\mathfrak{G}(t):=\mathfrak{G}(t, q):=\sum_{j \geqq 0} \frac{t^{2 j} q^{j^{2}}}{(1-t)(t q ; q)_{j}} . \\
\lim _{t \rightarrow 1^{-}}(1-t) \mathfrak{G}(t)=G(q) \quad \text { (by Abel's lemma). } \\
\mathfrak{G}(t)=1+t \mathfrak{G}(t)+t^{2} q \mathfrak{G}(t q)
\end{gathered}
$$

The Andrews Method of Finitization

$$
\begin{gathered}
G(q):=\sum_{j \geqq 0} \frac{q^{j^{2}}}{(q)_{j}} . \\
\mathfrak{G}(t):=\mathfrak{G}(t, q):=\sum_{j \geqq 0} \frac{t^{2 j} q^{j^{2}}}{(1-t)(t q ; q)_{j}} . \\
\lim _{t \rightarrow 1^{-}}(1-t) \mathfrak{G}(t)=G(q) \quad(\text { by Abel's lemma). } \\
\mathfrak{G}(t)=1+t \mathfrak{G}(t)+t^{2} q \mathfrak{G}(t q) \\
\mathfrak{G}(t)=\sum_{n \geqq 0} D_{n}(q) t^{n} .
\end{gathered}
$$

$$
\begin{gathered}
G(q):=\sum_{j \geqq 0} \frac{q^{j^{2}}}{(q)_{j}} . \\
\mathfrak{G}(t):=\mathfrak{G}(t, q):=\sum_{j \geq 0} \frac{t^{2 j} q^{j^{2}}}{(1-t)(t q ; q) j} . \\
\lim _{t \rightarrow 1^{-}}(1-t) \mathfrak{G}(t)=G(q) \quad(\text { by Abel's lemma }) . \\
\mathfrak{G}(t)=1+t \mathfrak{G}(t)+t^{2} q \mathfrak{G}(t q) \\
\mathfrak{G}(t)=\sum_{n \geqq 0} D_{n}(q) t^{n} . \\
\lim _{n \rightarrow \infty} D_{n}(q)=G(q)
\end{gathered}
$$

- I "algorithmitized" and generalized Andrews' heuristic, and implemented it in Maple.
- I "algorithmitized" and generalized Andrews' heuristic, and implemented it in Maple.
- "Finitized" all 130 identities in Slater's list of RR type identities.

$$
\sum_{j \geq 0} \frac{q^{(j+1) / 2)}\left(-q^{2} ; q^{2}\right)_{j}}{(q)_{j}\left(q ; q^{2}\right)_{j+1}}=\frac{\psi\left(-q^{2}\right)}{\varphi(-q)} .
$$

$$
\sum_{j \geqq 0} \frac{q^{j(j+1) / 2}\left(-q^{2} ; q^{2}\right)_{j}}{(q)_{j}\left(q ; q^{2}\right)_{j+1}}=\frac{\psi\left(-q^{2}\right)}{\varphi(-q)}
$$

For fixed n,

$$
\begin{aligned}
\sum_{i, j, k \geqq 0} q^{j(j+1) / 2+i^{2}+i+k}\left[\begin{array}{c}
j \\
i
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
j+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
n-2 i-2 k \\
j
\end{array}\right]_{q} \\
=\sum_{j \in \mathbb{Z}}(-1)^{j} q^{2 j(2 j+1)} \mathrm{V}(n+1,4 j+1 ; \sqrt{q})
\end{aligned}
$$

$$
\sum_{j \geqq 0} \frac{q^{j(j+1) / 2}\left(-q^{2} ; q^{2}\right)_{j}}{(q)_{j}\left(q ; q^{2}\right)_{j+1}}=\frac{\psi\left(-q^{2}\right)}{\varphi(-q)}
$$

For fixed n,

$$
\begin{aligned}
& \sum_{i, j, k \geqq 0} q^{j(j+1) / 2+i^{2}+i+k}\left[\begin{array}{c}
j \\
i
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
j+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
n-2 i-2 k \\
j
\end{array}\right]_{q} \\
&=\sum_{j \in \mathbb{Z}}(-1)^{j} q^{2 j(2 j+1)} \mathrm{V}(n+1,4 j+1 ; \sqrt{q})
\end{aligned}
$$

q-Pell numbers: $P_{0}=1, \quad P_{1}=q+1, \quad P_{2}=q^{3}+q^{2}+2 q+1$

$$
P_{n}=\left(1+q^{n}\right) P_{n-1}+q P_{n-2}+\left(q^{n}-q\right) P_{n-3}
$$

Bowman-McLaughlin-S.

$$
\sum_{j \geqq 0} \frac{q^{j(j+1)}\left(-q^{3} ; q^{3}\right)_{j}}{(-q)_{j}(q)_{2 j+1}}=\frac{f\left(-q^{3},-q^{6}\right) f\left(-q^{3},-q^{15}\right)}{(q)_{\infty}\left(q^{18} ; q^{18}\right)_{\infty}}
$$

Bowman-McLaughlin-S.

$$
\sum_{j \geqq 0} \frac{q^{j(j+1)}\left(-q^{3} ; q^{3}\right)_{j}}{(-q)_{j}(q)_{2 j+1}}=\frac{f\left(-q^{3},-q^{6}\right) f\left(-q^{3},-q^{15}\right)}{(q)_{\infty}\left(q^{18} ; q^{18}\right)_{\infty}}
$$

For fixed n,

$$
\begin{gathered}
\sum_{i, j, k, l, m \geq 0}(-1)^{k+m} q^{j^{2}+2 j+3 i(i+1) / 2+k+l+m}\left[\begin{array}{l}
j \\
i]_{q^{3}}
\end{array}\left[^{[j+k-1} \begin{array}{c}
j
\end{array}\right]_{q}\right. \\
\times\left[\begin{array}{c}
j+I \\
I
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
j+m-1 \\
m
\end{array}\right]_{q}\left[\begin{array}{c}
n-3 i-j-k-2 l-m \\
j
\end{array}\right]_{q} \\
=\sum_{k \in \mathbb{Z}} q^{9 k(3 k+1) / 2}\left[\begin{array}{c}
n+1 \\
\left\lfloor\frac{n+9 k+3}{2}\right\rfloor
\end{array}\right]_{q}-q^{3} \sum_{k \in \mathbb{Z}} q^{27 k(k+1) / 2}\left[\begin{array}{c}
n+1 \\
\left\lfloor\frac{n+9 k+6}{2}\right\rfloor
\end{array}\right]_{q}
\end{gathered}
$$

Berkovich-Uncu

$$
\sum_{j \geqq 0} \frac{q^{3 j^{2}}\left(-q ; q^{2}\right)_{3 j}}{\left(q^{6} ; q^{6}\right)_{2 j}}=\frac{f\left(q^{4}, q^{8}\right)}{\psi\left(-q^{3}\right)}
$$

Berkovich-Uncu

$$
\sum_{j \geqq 0} \frac{q^{3 j^{2}}\left(-q ; q^{2}\right)_{3 j}}{\left(q^{6} ; q^{6}\right)_{2 j}}=\frac{f\left(q^{4}, q^{8}\right)}{\psi\left(-q^{3}\right)}
$$

For fixed n,

$$
\begin{array}{r}
\sum_{i, j, k \geqq 0}(-1)^{k} q^{3 j^{2}+i^{2}+3 k}\left[\begin{array}{c}
3 j \\
i
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 j+k-1 \\
k
\end{array}\right]_{q^{3}}\left[\begin{array}{c}
n+j-i-k \\
2 j
\end{array}\right]_{q^{3}} \\
=\sum_{j \in \mathbb{Z}} q^{6 j^{2}+2 j}\left(\mathrm{~T}_{0}\left(n, 2 j ; q^{3}\right)+\mathrm{T}_{0}\left(n-1,2 j ; q^{3}\right)\right) .
\end{array}
$$

Japanese translation in preparation!

Andrew V. Sills
(GBC) CRC Press
A CHAPMAN \& HALL BOOK

THANK YOU!

