Eichler integrals of Eisenstein series AS q-BRACKETS OF VARIOUS TYPES OF MODULAR FORMS

Ken Ono (University of Virginia)

(joint work with Kathrin Bringmann and Ian Wagner)

Ramanujan's "Death bed letter"

Dear Hardy,
January 1920

"I am extremely sorry for not writing you a single letter up to now. I discovered very interesting functions recently which I call "Mock" ϑ-functions. ...they enter into mathematics as beautifully as the ordinary theta functions. I am sending you with this letter some"

Ramanujan's "Death bed letter"

Dear Hardy,
January 1920
"I am extremely sorry for not writing you a single letter up to now. I discovered very interesting functions recently which I call "Mock" ϑ-functions. ...they enter into mathematics as beautifully as the ordinary theta functions. I am sending you with this letter some"

Example

One of Ramanujan's examples:

$$
f(q):=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1+q)^{2}\left(1+q^{2}\right)^{2} \cdots\left(1+q^{n}\right)^{2}}
$$

What are mock theta functions?

Some History

In his PhD thesis ('02), Zwegers combined Lerch-type series and Mordell integrals to obtain non-holomorphic Jacobi forms.

What are mock theta functions?

Some History

In his PhD thesis ('02), Zwegers combined Lerch-type series and Mordell integrals to obtain non-holomorphic Jacobi forms.

"THEOREM" (ZWEGERS, 2002)

The mock theta functions are (up to powers of q) holomorphic parts of the specializations of weight 1/2 harmonic Maass forms.

HARMONIC MAASS FORMS (NOTE. $z=x+i y \in \mathbb{H}$)

"Definition"
A weight k harmonic Maass form on Γ is any smooth function f on \mathbb{H} satisfying:

Harmonic MaASS forms (NOTE. $z=x+i y \in \mathbb{H})$

"Definition"

A weight k harmonic Maass form on Γ is any smooth function f on \mathbb{H} satisfying:
(1) For all $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ we have

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

HARMONIC MAASS FORMS (NOTE. $z=x+i y \in \mathbb{H}$)

"Definition"

A weight k harmonic Maass form on Γ is any smooth function f on \mathbb{H} satisfying:
(1) For all $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ we have

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

(2) We have that $\Delta_{k} f=0$, where

$$
\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

Harmonic MaASS FORMS (NOTE. $z=x+i y \in \mathbb{H}$)

"Definition"

A weight k harmonic Maass form on Γ is any smooth function f on \mathbb{H} satisfying:
(1) For all $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ we have

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

(2) We have that $\Delta_{k} f=0$, where

$$
\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

Remark

Classical modular forms represent a density 0 subset of HMFs.

FOURIER EXPANSIONS OF HMFs $\left(q:=e^{2 \pi i z}\right)$

Fundamental Lemma

If $f \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ-function, then

$$
\begin{gathered}
f(z)=\sum_{n \gg-\infty} c_{f}^{+}(n) q^{n}+\sum_{n<0} c_{f}^{-}(n) \Gamma(k-1,4 \pi|n| y) q^{n} . \\
\downarrow
\end{gathered}
$$

Holomorphic part f^{+} q-series

Nonholomorphic part f^{-}
"Period integral of MF"

FOURIER EXPANSIONS OF HMFs $\left(q:=e^{2 \pi i z}\right)$

Fundamental Lemma

If $f \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ-function, then

$$
\begin{gathered}
f(z)=\sum_{n \gg-\infty} c_{f}^{+}(n) q^{n}+\sum_{n<0} c_{f}^{-}(n) \Gamma(k-1,4 \pi|n| y) q^{n} . \\
\mathfrak{\imath}
\end{gathered}
$$

Holomorphic part f^{+} q-series

Nonholomorphic part f^{-}
"Period integral of MF"

REMARK

Ramanujan's examples are the f^{+}with $k=1 / 2$.

Ramanujan's Strange Conjecture

Conjecture (Ramanujan)

Consider the mock theta $q^{-\frac{1}{24}} f(q)$ and modular form $q^{-\frac{1}{24}} b(q)$, where

$$
\begin{aligned}
& f(q):=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1+q)^{2}\left(1+q^{2}\right)^{2} \cdots\left(1+q^{n}\right)^{2}}, \\
& b(q):=(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right) \cdots \times\left(1-2 q+2 q^{4}-2 q^{9}+\cdots\right) .
\end{aligned}
$$

Ramanujan's Strange Conjecture

Conjecture (Ramanujan)
Consider the mock theta $q^{-\frac{1}{24}} f(q)$ and modular form $q^{-\frac{1}{24}} b(q)$, where

$$
\begin{aligned}
& f(q):=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1+q)^{2}\left(1+q^{2}\right)^{2} \cdots\left(1+q^{n}\right)^{2}}, \\
& b(q):=(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right) \cdots \times\left(1-2 q+2 q^{4}-2 q^{9}+\cdots\right) .
\end{aligned}
$$

If q approaches an even order $2 k$ root of unity (i.e. pole of f),

Ramanujan's Strange Conjecture

Conjecture (Ramanujan)

Consider the mock theta $q^{-\frac{1}{24}} f(q)$ and modular form $q^{-\frac{1}{24}} b(q)$, where

$$
\begin{aligned}
& f(q):=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1+q)^{2}\left(1+q^{2}\right)^{2} \cdots\left(1+q^{n}\right)^{2}}, \\
& b(q):=(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right) \cdots \times\left(1-2 q+2 q^{4}-2 q^{9}+\cdots\right) .
\end{aligned}
$$

If q approaches an even order $2 k$ root of unity (i.e. pole of f), then

$$
f(q)-(-1)^{k} b(q)=O(1)
$$

" q APPROACHES A ROOT OF UNITY"

Radial asymptotics, near roots of unity.

Eichler integrals of Eisenstein series
Introduction
Maass forms

Numerics

Numerics

As $q \rightarrow-1$, we have

$$
f(-0.994) \sim-1 \cdot 10^{31}, f(-0.996) \sim-1 \cdot 10^{46}, f(-0.998) \sim-6 \cdot 10^{90}
$$

Numerics

As $q \rightarrow-1$, we have

$$
f(-0.994) \sim-1 \cdot 10^{31}, f(-0.996) \sim-1 \cdot 10^{46}, f(-0.998) \sim-6 \cdot 10^{90}
$$

$$
f(-0.998185) \sim-G O O g O I
$$

POLES AT $q=-1$ AND $q=i$

Amazingly, Ramanujan's guess gives:

q	-0.990	-0.992	-0.994	-0.996	-0.998
$f(q)+b(q)$	$3.961 \ldots$	$3.969 \ldots$	$3.976 \ldots$	$3.984 \ldots$	$3.992 \ldots$

Introduction

Maass forms

POLES AT $q=-1$ AND $q=i$

Amazingly, Ramanujan's guess gives:

q	-0.990	-0.992	-0.994	-0.996	-0.998
$f(q)+b(q)$	$3.961 \ldots$	$3.969 \ldots$	$3.976 \ldots$	$3.984 \ldots$	$3.992 \ldots$

It is true that

$$
\begin{aligned}
& \lim _{q \rightarrow-1}(f(q)+b(q))=4 \\
& \lim _{q \rightarrow i}(f(q)-b(q))=4 i
\end{aligned}
$$

Introduction
Maass forms

Finite SUMS OF ROOTS OF UNITY.

Finite SUMS OF ROOTS OF UNITY.

Theorem (F-O-R (2013))
If ζ is an even $2 k$ order root of unity, then

$$
\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 \sum_{n=0}^{k-1}(1+\zeta)^{2}\left(1+\zeta^{2}\right)^{2} \cdots\left(1+\zeta^{n}\right)^{2} \zeta^{n+1}
$$

Finite sums of roots of unity.

Theorem (F-O-R (2013))
If ζ is an even $2 k$ order root of unity, then

$$
\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 \sum_{n=0}^{k-1}(1+\zeta)^{2}\left(1+\zeta^{2}\right)^{2} \cdots\left(1+\zeta^{n}\right)^{2} \zeta^{n+1}
$$

Remark

This behavior "near roots of unity" is a glimpse of quantum modularity.

What is going on?

Question

Ramanujan essentially discovered that
$\lim _{q \rightarrow \zeta}\left(\right.$ Mock $\left.\vartheta-\epsilon_{\zeta} \mathrm{MF}\right)=$ Quantum MF

$$
\stackrel{\uparrow}{O(1)} \stackrel{\text { numbers }}{ }
$$

QUANTUM MODULAR FORMS

Definition (Zagier)
A weight k quantum modular form is a complex-valued function f on $\mathbb{Q} \backslash S$ for some set S, such that

QUANTUM MODULAR FORMS

DEfinition (ZAGIER)
A weight k quantum modular form is a complex-valued function f on $\mathbb{Q} \backslash S$ for some set S, such that for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\mathrm{SL}_{2}(\mathbb{Z})$ the function

QuANTUM MODULAR FORMS

DEFINITION (ZAGIER)

A weight k quantum modular form is a complex-valued function f on $\mathbb{Q} \backslash S$ for some set S, such that for all $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in$ $\mathrm{SL}_{2}(\mathbb{Z})$ the function

$$
h_{\gamma}(x):=f(x)-\epsilon(\gamma)(c x+d)^{-k} f\left(\frac{a x+b}{c x+d}\right)
$$

satisfies a "suitable" property of continuity or analyticity.

Applications of HMFs And QMFs

- Integer partitions and q-series
- Eichler-Shimura theory
(e.g. modularity of elliptic curves via Eichler integrals)
- Arithmetic Geometry (i.e. BSD Conjecture)
- Moonshine
- Knot invariants.
-

Eichler Integrals of Modular forms

Definition (Eichler)

If $f(z)=\sum a(n) q^{n}$ is a weight k modular form, then its Eichler integral is

$$
\operatorname{Eichler}_{f}(z):=\sum a(n) n^{1-k} q^{n}
$$

Eichler Integrals of Modular forms

Definition (Eichler)

If $f(z)=\sum a(n) q^{n}$ is a weight k modular form, then its Eichler integral is

$$
\operatorname{Eichler}_{f}(z):=\sum a(n) n^{1-k} q^{n}
$$

Question

Eichler integrals of MFs are prominent in the theory of HMFs.

Eichler Integrals of Modular forms

Definition (Eichler)

If $f(z)=\sum a(n) q^{n}$ is a weight k modular form, then its Eichler integral is

$$
\operatorname{Eichler}_{f}(z):=\sum a(n) n^{1-k} q^{n}
$$

Question

Eichler integrals of MFs are prominent in the theory of HMFs.
What about for general "Eisenstein-type" series?

- q-series identities?
- Harmonic Maass forms?
- Quantum Modular forms?

"EISENSTEIN-TYPE SERIES"

Definition

For $a \in \mathbb{Z}$, we define the divisor function series

$$
\mathcal{E}_{2-a}(z):=\sum_{n=1}^{\infty} \sigma_{1-a}(n) q^{n}=\sum_{n=1}^{\infty} \sum_{d \mid n} d^{1-a} q^{n}
$$

"EISENSTEIN-TYPE SERIES"

Definition

For $a \in \mathbb{Z}$, we define the divisor function series

$$
\mathcal{E}_{2-a}(z):=\sum_{n=1}^{\infty} \sigma_{1-a}(n) q^{n}=\sum_{n=1}^{\infty} \sum_{d \mid n} d^{1-a} q^{n}
$$

REmarks

(1) For $k \geq 2$, the Eichler integral of the modular $E_{2 k}(z)$ satisfies

$$
\mathcal{E}_{2-2 k}(z)=-\frac{B_{2 k}}{4 k} \cdot \text { Eichler }_{E_{2 k}}(z)
$$

"EISENSTEIN-TYPE SERIES"

Definition

For $a \in \mathbb{Z}$, we define the divisor function series

$$
\mathcal{E}_{2-a}(z):=\sum_{n=1}^{\infty} \sigma_{1-a}(n) q^{n}=\sum_{n=1}^{\infty} \sum_{d \mid n} d^{1-a} q^{n}
$$

REmarks

(1) For $k \geq 2$, the Eichler integral of the modular $E_{2 k}(z)$ satisfies

$$
\mathcal{E}_{2-2 k}(z)=-\frac{B_{2 k}}{4 k} \cdot \text { Eichler }_{E_{2 k}}(z)
$$

These are known to have "modularity properties" via HMFs.

"EISENSTEIN-TYPE SERIES"

Definition

For $a \in \mathbb{Z}$, we define the divisor function series

$$
\mathcal{E}_{2-a}(z):=\sum_{n=1}^{\infty} \sigma_{1-a}(n) q^{n}=\sum_{n=1}^{\infty} \sum_{d \mid n} d^{1-a} q^{n}
$$

REmarks

(1) For $k \geq 2$, the Eichler integral of the modular $E_{2 k}(z)$ satisfies

$$
\mathcal{E}_{2-2 k}(z)=-\frac{B_{2 k}}{4 k} \cdot \text { Eichler }_{E_{2 k}}(z)
$$

These are known to have "modularity properties" via HMFs.
(2) Do the $\mathcal{E}_{2-a}(z)$ give modular objects for other a?

Executive Summary of New Results

- Bloch-Okounkov q-brackets for t-hooks in partitions give $\mathcal{E}_{2-a}(z)$.

Executive Summary of New Results

- Bloch-Okounkov q-brackets for t-hooks in partitions give $\mathcal{E}_{2-a}(z)$.
- Produces various types of Harmonic Maass forms

Executive Summary of New Results

- Bloch-Okounkov q-brackets for t-hooks in partitions give $\mathcal{E}_{2-a}(z)$.
- Produces various types of Harmonic Maass forms
- Produces Holomorphic Quantum Modular Forms

Executive Summary of New Results

- Bloch-Okounkov q-brackets for t-hooks in partitions give $\mathcal{E}_{2-a}(z)$.
- Produces various types of Harmonic Maass forms
- Produces Holomorphic Quantum Modular Forms
- Chowla-Selberg formulas

Executive Summary of New Results

- Bloch-Okounkov q-brackets for t-hooks in partitions give $\mathcal{E}_{2-a}(z)$.
- Produces various types of Harmonic Maass forms
- Produces Holomorphic Quantum Modular Forms
- Chowla-Selberg formulas
- Relations involving zeta-values and Bernoulli numbers

q-BRACKETS OF FUNCTIONS ON PARTITIONS

Definition (Bloch-Okounkov)

For functions $f: \mathcal{P} \mapsto \mathbb{C}$ on the integer partitions,

q-BRACKETS OF FUNCTIONS ON PARTITIONS

Definition (Bloch-Okounkov)

For functions $f: \mathcal{P} \mapsto \mathbb{C}$ on the integer partitions, the q-bracket of f is

$$
\langle f\rangle_{q}:=\frac{\sum_{\lambda \in \mathcal{P}} f(\lambda) q^{|\lambda|}}{\sum_{\lambda \in \mathcal{P}} q^{|\lambda|}} \in \mathbb{C}[[q]] .
$$

q-BRACKETS OF FUNCTIONS ON PARTITIONS

Definition (Bloch-Okounkov)

For functions $f: \mathcal{P} \mapsto \mathbb{C}$ on the integer partitions, the q-bracket of f is

$$
\langle f\rangle_{q}:=\frac{\sum_{\lambda \in \mathcal{P}} f(\lambda) q^{|\lambda|}}{\sum_{\lambda \in \mathcal{P}} q^{|\lambda|}} \in \mathbb{C}[[q]] .
$$

REMARKS

- (Bloch and Okounkov) $\mathrm{SL}_{2}(\mathbb{Z})$ quasimodular forms are generated by q-brackets of shifted symmetric polynomials.

q-BRACKETS OF FUNCTIONS ON PARTITIONS

Definition (Bloch-Okounkov)

For functions $f: \mathcal{P} \mapsto \mathbb{C}$ on the integer partitions, the q-bracket of f is

$$
\langle f\rangle_{q}:=\frac{\sum_{\lambda \in \mathcal{P}} f(\lambda) q^{|\lambda|}}{\sum_{\lambda \in \mathcal{P}} q^{|\lambda|}} \in \mathbb{C}[[q]] .
$$

Remarks

- (Bloch and Okounkov) $\mathrm{SL}_{2}(\mathbb{Z})$ quasimodular forms are generated by q-brackets of shifted symmetric polynomials.
- Do q-brackets give other types of modular forms?

FUNCTIONS ON t-HOOKS OF PARTITIONS

Notation

$\mathcal{H}(\lambda):=\{$ hook numbers of $\lambda\}$
$\mathcal{H}_{t}(\lambda):=\{$ hook numbers of λ that are multiples of $t\}$.

FUNCTIONS ON t-HOOKS OF PARTITIONS

Notation

$$
\begin{aligned}
\mathcal{H}(\lambda) & :=\{\text { hook numbers of } \lambda\} \\
\mathcal{H}_{t}(\lambda) & :=\{\text { hook numbers of } \lambda \text { that are multiples of } t\} .
\end{aligned}
$$

Definition

If $t \in \mathbb{Z}^{+}$and $a \in \mathbb{C}$, then define $f_{a, t}: \mathcal{P} \rightarrow \mathbb{C}$ by

$$
f_{a, t}(\lambda):=t^{a-1} \sum_{h \in \mathcal{H}_{t}(\lambda)} \frac{1}{h^{a}}
$$

Eichler integrals of Eisenstein series

Results

t-hooks in Partitions

EXAMPLES

Consider the partition $\lambda=4+3+1$:

Eichler integrals of Eisenstein series
Results
t-hooks in Partitions

EXAMPLES

Consider the partition $\lambda=4+3+1$:
$\begin{array}{llll}\bullet_{6} & \bullet_{4} & \bullet_{3} & \bullet_{1} \\ \bullet_{4} & \bullet_{2} & \bullet_{1} & \\ \bullet_{1} & & \\ \end{array}$

Results

t-hooks in Partitions

ExAmples

Consider the partition $\lambda=4+3+1$:
$\begin{array}{lllll}\bullet_{6} & \bullet_{4} & \bullet_{3} & \bullet_{1} \\ \bullet_{4} & \bullet_{2} & \bullet_{1} & & \longleftarrow \quad \text { Subscripts }=\text { Hook numbers }\end{array}$

We find that $\mathcal{H}(\lambda)=\{1,1,1,2,3,4,4,6\}$ and

$$
\mathcal{H}_{2}(\lambda)=\{2,4,4,6\} \quad \text { and } \quad \mathcal{H}_{3}(\lambda)=\{3,6\} .
$$

Results

t-hooks in Partitions

ExAmples

Consider the partition $\lambda=4+3+1$:

Subscripts $=$ Hook numbers

We find that $\mathcal{H}(\lambda)=\{1,1,1,2,3,4,4,6\}$ and

$$
\mathcal{H}_{2}(\lambda)=\{2,4,4,6\} \quad \text { and } \quad \mathcal{H}_{3}(\lambda)=\{3,6\} .
$$

Therefore, we have

$$
\begin{aligned}
& f_{3,1}(\lambda)=1+1+1+\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+\frac{1}{64}+\frac{1}{216}=\frac{307}{96} \\
& f_{3,2}(\lambda)=2^{2}\left(\frac{1}{8}+\frac{1}{64}+\frac{1}{64}+\frac{1}{216}\right)=\frac{139}{216} \\
& f_{3,3}(\lambda)=3^{2}\left(\frac{1}{27}+\frac{1}{216}\right)=\frac{3}{8}
\end{aligned}
$$

Results

t-hooks in Partitions

q-IDENTITIES

Theorem (B-O-W)

If t is a positive integer and $a \in \mathbb{C}$, then we have

$$
\left\langle f_{a, t}\right\rangle_{q}=\mathcal{E}_{2-a}(t z)
$$

Results

t-hooks in Partitions

q-IDENTITIES

Theorem (B-O-W)

If t is a positive integer and $a \in \mathbb{C}$, then we have

$$
\left\langle f_{a, t}\right\rangle_{q}=\mathcal{E}_{2-a}(t z)
$$

Remarks

(1) Proof follows easily from recent work of Han and Ji.

q-IDENTITIES

Theorem (B-O-W)

If t is a positive integer and $a \in \mathbb{C}$, then we have

$$
\left\langle f_{a, t}\right\rangle_{q}=\mathcal{E}_{2-a}(t z) .
$$

REmaRks

(1) Proof follows easily from recent work of Han and Ji.
(2) Think "log-derivative" of the Nekrasov-Okounkov \mathcal{B} Westbury formula

$$
\sum_{\lambda \in \mathcal{P}} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{z-1}
$$

Eichler integrals of Eisenstein series
Results
Types of Harmonic Maass forms

SESQUIHARMONIC MAASS FORMS $(a=2)$

SESQUIHARMONIC MAASS FORMS $(a=2)$

Definition

A weight k sesquiharmonic Maass form is a real analytic modular form that is annihilated by $\Delta_{k, 2}:=-\xi_{k} \circ \xi_{2-k} \circ \xi_{k}$, where $\xi_{k}:=2 i y^{k} \frac{\bar{\partial}}{\partial \bar{z}}$.

Results

Types of Harmonic Maass forms

SESQUiHARMONIC MAASS FORMS $(a=2)$

Definition

A weight k sesquiharmonic Maass form is a real analytic modular form that is annihilated by $\Delta_{k, 2}:=-\xi_{k} \circ \xi_{2-k} \circ \xi_{k}$, where $\xi_{k}:=2 i y^{k} \overline{\frac{\partial}{\partial \bar{z}}}$.

Theorem (B-O-W)

$\mathbb{E}_{0}(t z)$ is a wgt zero sesquiharmonic Maass form on $\Gamma_{0}(t)$, where

$$
\mathbb{E}_{0}(t z):=t y+\frac{6}{\pi}\left(\gamma-\log (2)-\frac{\log (t y)}{2}-\frac{6 \zeta^{\prime}(2)}{\pi^{2}}+\left\langle f_{2, t}\right\rangle_{q}+\sum_{n=1}^{\infty} \sigma_{-1}(n) \bar{q}^{t n}\right)
$$

Eichler integrals of Eisenstein series
Results
Types of Harmonic Maass forms

HARMONIC MAASS FORMS ($a \geq 4$ EVEN)

Results

Types of Harmonic Maass forms

HARMONIC MAASS FORMS ($a \geq 4$ EVEN $)$

Theorem (B-O-W)

If $k \geq 2$, then $\mathbb{E}_{2-2 k}(t z)$ is a weight $2-2 k$ harmonic Maass form on $\Gamma_{0}(t)$, where $\mathbb{E}_{2-2 k}(t z)$
$:=(t y)^{2 k-1}+\frac{2 \cdot(2 k)!}{B_{2 k}(4 \pi)^{2 k-1}}\left(\zeta(2 k-1)+\left\langle f_{2 k, t}\right\rangle_{q}+\sum_{n=1}^{\infty} \sigma_{1-2 k}(n) \Gamma^{*}(2 k-1,4 \pi t n y) q^{-t n}\right)$.

Results

Types of Harmonic Maass forms

HARMONIC MAASS FORMS ($a \geq 4$ EVEN)

Theorem (B-O-W)

If $k \geq 2$, then $\mathbb{E}_{2-2 k}(t z)$ is a weight $2-2 k$ harmonic Maass form on $\Gamma_{0}(t)$, where $\mathbb{E}_{2-2 k}(t z)$ $:=(t y)^{2 k-1}+\frac{2 \cdot(2 k)!}{B_{2 k}(4 \pi)^{2 k-1}}\left(\zeta(2 k-1)+\left\langle f_{2 k, t}\right\rangle_{q}+\sum_{n=1}^{\infty} \sigma_{1-2 k}(n) \Gamma^{*}(2 k-1,4 \pi t n y) q^{-t n}\right)$.

Proof.

- Eichler integrals of holomorphic modular forms are "mock modular".

Results

Types of Harmonic Maass forms

HARMONIC MAASS FORMS ($a \geq 4$ EVEN)

Theorem (B-O-W)

If $k \geq 2$, then $\mathbb{E}_{2-2 k}(t z)$ is a weight $2-2 k$ harmonic Maass form on $\Gamma_{0}(t)$, where $\mathbb{E}_{2-2 k}(t z)$
$:=(t y)^{2 k-1}+\frac{2 \cdot(2 k)!}{B_{2 k}(4 \pi)^{2 k-1}}\left(\zeta(2 k-1)+\left\langle f_{2 k, t}\right\rangle_{q}+\sum_{n=1}^{\infty} \sigma_{1-2 k}(n) \Gamma^{*}(2 k-1,4 \pi t n y) q^{-t n}\right)$.

Proof.

- Eichler integrals of holomorphic modular forms are "mock modular".
- The nonholomorphic part is the "period integral" of $E_{2 k}(z)$.

Eichler integrals of Eisenstein series
Results
Types of Harmonic Maass forms

Modularity of $\left\langle f_{2 k, t}\right\rangle_{q}$ (CASE $k \geq 1$)

Results

Types of Harmonic Maass forms

Modularity of $\left\langle f_{2 k, t}\right\rangle_{q}$ (CASE $k \geq 1$)

Notation

For $k \in \mathbb{N}$, we define the Bernoulli number polynomial

$$
P_{-2 k}(z):=-\frac{1}{2}(2 \pi i)^{2 k+1} \sum_{m=0}^{k+1} \frac{B_{2 m}}{(2 m)!} \frac{B_{2 k+2-2 m}}{(2 k+2-2 m)!} \cdot z^{2 m-1} .
$$

Results

Types of Harmonic Maass forms

Modularity of $\left\langle f_{2 k, t}\right\rangle_{q}$ (CASE $\left.k \geq 1\right)$

Notation

For $k \in \mathbb{N}$, we define the Bernoulli number polynomial

$$
P_{-2 k}(z):=-\frac{1}{2}(2 \pi i)^{2 k+1} \sum_{m=0}^{k+1} \frac{B_{2 m}}{(2 m)!} \frac{B_{2 k+2-2 m}}{(2 k+2-2 m)!} \cdot z^{2 m-1}
$$

Corollary (B-O-W)
If k and t are positive integers and

$$
M_{-2 k, t}(z):=\left\langle f_{2 k+2, t}\right\rangle_{q}-\frac{1}{2} P_{-2 k}(t z)+\frac{1}{2} \zeta(2 k+1),
$$

Results

Types of Harmonic Maass forms

Modularity of $\left\langle f_{2 k, t}\right\rangle_{q}$ (CASE $\left.k \geq 1\right)$

Notation

For $k \in \mathbb{N}$, we define the Bernoulli number polynomial

$$
P_{-2 k}(z):=-\frac{1}{2}(2 \pi i)^{2 k+1} \sum_{m=0}^{k+1} \frac{B_{2 m}}{(2 m)!} \frac{B_{2 k+2-2 m}}{(2 k+2-2 m)!} \cdot z^{2 m-1}
$$

Corollary (B-O-W)
If k and t are positive integers and

$$
M_{-2 k, t}(z):=\left\langle f_{2 k+2, t}\right\rangle_{q}-\frac{1}{2} P_{-2 k}(t z)+\frac{1}{2} \zeta(2 k+1),
$$

then for $z \in \mathbb{H}$ we have

$$
M_{-2 k, t}(z)=(t z)^{2 k} M_{-2 k, t}\left(-\frac{1}{t^{2} z}\right) .
$$

Eichler integrals of Eisenstein series
Results
Types of Harmonic Maass forms

Modularity of $\left\langle f_{2 k, t}\right\rangle_{q}$ (CASE $\left.k=1\right)$

Results

Types of Harmonic Maass forms

Modularity of $\left\langle f_{2 k, t}\right\rangle_{q}$ (CASE $\left.k=1\right)$

Notation

We require functions

$$
P_{t}(z):=-t\left(t+\frac{\pi i}{12}\right) z+\frac{1}{z} \quad \text { and } \quad L_{t}(z):=-\frac{1}{4} \cdot \log (t z)
$$

Results

Types of Harmonic Maass forms

Modularity of $\left\langle f_{2 k, t}\right\rangle_{q}$ (CASE $\left.k=1\right)$

Notation

We require functions

$$
P_{t}(z):=-t\left(t+\frac{\pi i}{12}\right) z+\frac{1}{z} \quad \text { and } \quad L_{t}(z):=-\frac{1}{4} \cdot \log (t z)
$$

Corollary (B-O-W)

If t is a positive integer and

$$
M_{t}(z):=\left\langle f_{t}\right\rangle_{q}+P_{t}(z)+L_{t}(z)
$$

then for all $z \in \mathbb{H}$ we have

$$
M_{t}(z)=M_{t}\left(-\frac{1}{t^{2} z}\right)
$$

Eichler integrals of Eisenstein series
Results
Chowla-Selberg Formulas

Algebraic Parts of Dedekind's eta values

Algebraic Parts of Dedekind's eta values

Definition (Dedekind)

The Dedekind eta-function is defined by

$$
\eta(z):=q^{\frac{1}{24}} \cdot \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Algebraic Parts of Dedekind's eta values

Definition (Dedekind)

The Dedekind eta-function is defined by

$$
\eta(z):=q^{\frac{1}{24}} \cdot \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Theorem (Chowla and Selberg (1967))
Suppose that $D<0$ is a fundamental discriminant and let

$$
\Omega_{D}:=\frac{1}{\sqrt{2 \pi|D|}}\left(\prod_{j=1}^{|D|} \Gamma\left(\frac{j}{|D|}\right)^{\chi_{D}(j)}\right)^{\frac{1}{2 h^{\prime}(D)}} .
$$

Algebraic Parts of Dedekind's eta values

Definition (Dedekind)

The Dedekind eta-function is defined by

$$
\eta(z):=q^{\frac{1}{24}} \cdot \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Theorem (Chowla and Selberg (1967))
Suppose that $D<0$ is a fundamental discriminant and let

$$
\Omega_{D}:=\frac{1}{\sqrt{2 \pi|D|}}\left(\prod_{j=1}^{|D|} \Gamma\left(\frac{j}{|D|}\right)^{\chi_{D}(j)}\right)^{\frac{1}{2 h^{1}(D)}} .
$$

If $\tau \in \mathbb{Q}(\sqrt{D}) \cap \mathbb{H}$, then we have

$$
\eta\left(-\frac{1}{\tau}\right) \in \overline{\mathbb{Q}} \cdot \sqrt{\Omega_{D}} .
$$

Eichler integrals of Eisenstein series

Results

Chowla-Selberg Formulas

Ramanujan's Examples

Results

Chowla-Selberg Formulas

Ramanujan's Examples

Ramanujan discovered that

$$
\eta(i / 2)=2^{\frac{1}{8}} \cdot \Omega_{-4}^{\frac{1}{2}}, \quad \eta(i)=\Omega_{-4}^{\frac{1}{2}}, \quad \eta(2 i)=\frac{1}{2^{\frac{3}{8}}} \cdot \Omega_{-4}^{\frac{1}{2}}, \quad \eta(4 i)=\frac{(\sqrt{2}-1)^{\frac{1}{4}}}{2^{\frac{18}{16}}} \cdot \Omega_{-4}^{\frac{1}{2}} .
$$

Ramanujan's Examples

Ramanujan discovered that

$$
\eta(i / 2)=2^{\frac{1}{8}} \cdot \Omega_{-4}^{\frac{1}{2}}, \quad \eta(i)=\Omega_{-4}^{\frac{1}{2}}, \quad \eta(2 i)=\frac{1}{2^{\frac{3}{8}}} \cdot \Omega_{-4}^{\frac{1}{2}}, \quad \eta(4 i)=\frac{(\sqrt{2}-1)^{\frac{1}{4}}}{2^{\frac{13}{16}}} \cdot \Omega_{-4}^{\frac{1}{2}},
$$

where

$$
\Omega_{-4}=\frac{1}{2 \sqrt{2 \pi}} \cdot \frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}
$$

Eichler integrals of Eisenstein series
Results
Chowla-Selberg Formulas
Modularity for Gen Fcn of $f_{a, 1}$

Modularity for Gen Fcn of $f_{a, 1}$

Notation

For $a \in \mathbb{C}$ and $k \in \mathbb{N}$ define

$$
H_{a}(z):=q^{-\frac{1}{24}} \sum_{\lambda \in \mathcal{P}} f_{a, 1}(\lambda) q^{|\lambda|}
$$

Modularity for Gen Fcn of $f_{a, 1}$

Notation

For $a \in \mathbb{C}$ and $k \in \mathbb{N}$ define

$$
\begin{gathered}
H_{a}(z):=q^{-\frac{1}{24}} \sum_{\lambda \in \mathcal{P}} f_{a, 1}(\lambda) q^{|\lambda|} \\
\Psi_{-2 k}(z):=-P_{-2 k}\left(-\frac{1}{z}\right)-\frac{1}{2}\left(1-z^{-2 k}\right) \zeta(2 k+1) .
\end{gathered}
$$

Modularity for Gen FCN of $f_{a, 1}$

Notation

For $a \in \mathbb{C}$ and $k \in \mathbb{N}$ define

$$
\begin{gathered}
H_{a}(z):=q^{-\frac{1}{24}} \sum_{\lambda \in \mathcal{P}} f_{a, 1}(\lambda) q^{|\lambda|} . \\
\Psi_{-2 k}(z):=-P_{-2 k}\left(-\frac{1}{z}\right)-\frac{1}{2}\left(1-z^{-2 k}\right) \zeta(2 k+1) .
\end{gathered}
$$

Corollary (B-O-W)
If $z \in \mathbb{H}$ and $k \in \mathbb{N}$, then

$$
H_{2 k+2}\left(-\frac{1}{z}\right)-\frac{1}{z^{2 k} \sqrt{-i z}} H_{2 k+2}(z)=\frac{\Psi_{-2 k}(z)}{\eta\left(-\frac{1}{z}\right)} .
$$

Eichler integrals of Eisenstein series
Results
Chowla-Selberg Formulas

Chowla-SELBERG FOR $H_{a}(z)$

Chowla-Selberg For $H_{a}(z)$

Corollary (B-O-W)

If $k \in \mathbb{N}$ and $\tau \in \mathbb{Q}(\sqrt{D}) \cap \mathbb{H}$, where $D<0$ is a fundamental discriminant, then

$$
H_{2 k+2}\left(-\frac{1}{\tau}\right)-\frac{1}{\tau^{2 k} \sqrt{-i \tau}} H_{2 k+2}(\tau) \in \overline{\mathbb{Q}} \cdot \frac{\Psi_{-2 k}(\tau)}{\sqrt{\Omega_{D}}} .
$$

Results
 Chowla-Selberg Formulas

Numerical Examples

Numerical calculation gives

$$
\begin{array}{ll}
H_{4}(2 i) \approx 5.887 \cdot 10^{-6}, & H_{4}\left(\frac{i}{2}\right) \approx 0.05420 \\
H_{6}(2 i) \approx 5.887 \cdot 10^{-6}, & H_{6}\left(\frac{i}{2}\right) \approx 0.05398
\end{array}
$$

Numerical Examples

Numerical calculation gives

$$
\begin{array}{ll}
H_{4}(2 i) \approx 5.887 \cdot 10^{-6}, & H_{4}\left(\frac{i}{2}\right) \approx 0.05420 \\
H_{6}(2 i) \approx 5.887 \cdot 10^{-6}, & H_{6}\left(\frac{i}{2}\right) \approx 0.05398
\end{array}
$$

We have proven that

$$
H_{4}\left(\frac{i}{2}\right)+\frac{1}{2^{\frac{5}{2}}} H_{4}(2 i)=\frac{1}{2^{\frac{1}{8}}} \cdot \frac{\Psi_{-2}(2 i)}{\sqrt{\Omega_{-4}}}
$$

and

$$
H_{6}\left(\frac{i}{2}\right)-\frac{1}{2^{\frac{9}{2}}} H_{6}(2 i)=\frac{1}{2^{\frac{1}{8}}} \cdot \frac{\Psi_{-4}(2 i)}{\sqrt{\Omega_{-4}}}
$$

Eichler integrals of Eisenstein series
Results
Holomorphic Quantum Modular Forms

What About The Other $\mathcal{E}_{2-a}(t z)=\left\langle f_{a, t}\right\rangle_{q}$?

Results

Holomorphic Quantum Modular Forms

What About The other $\mathcal{E}_{2-a}(t z)=\left\langle f_{a, t}\right\rangle_{q}$?

Question

So far all the results are about

$$
\mathcal{E}_{2-a}(t z)=\left\langle f_{a, t}\right\rangle_{q}
$$

for even $a \geq 2$.

Results

Holomorphic Quantum Modular Forms

What About The other $\mathcal{E}_{2-a}(t z)=\left\langle f_{a, t}\right\rangle_{q}$?

Question

So far all the results are about

$$
\mathcal{E}_{2-a}(t z)=\left\langle f_{a, t}\right\rangle_{q}
$$

for even $a \geq 2$.
What can be said if $a \leq-1$ is odd?

What About The other $\mathcal{E}_{2-a}(t z)=\left\langle f_{a, t}\right\rangle_{q}$?

QUESTION

So far all the results are about

$$
\mathcal{E}_{2-a}(t z)=\left\langle f_{a, t}\right\rangle_{q}
$$

for even $a \geq 2$.
What can be said if $a \leq-1$ is odd?

Example

For instance, if $a=-1$ then we have

$$
\left\langle f_{-1,1}\right\rangle_{q}=\sum_{n=1}^{\infty} \sigma_{2}(n) q^{n}
$$

Holomorphic Quantum modular forms

Definition (ZAGier)

A weight k holomorphic quantum modular form is a function $f: \mathbb{H} \mapsto \mathbb{C}$, s.t.

Holomorphic Quantum modular forms

Definition (ZAGier)

A weight k holomorphic quantum modular form is a function $f: \mathbb{H} \mapsto \mathbb{C}$, s.t. for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ the function

Holomorphic Quantum modular forms

Definition (ZAGier)

A weight k holomorphic quantum modular form is a function $f: \mathbb{H} \mapsto \mathbb{C}$, s.t. for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ the function

$$
h_{\gamma}(x):=f(x)-\epsilon(\gamma)(c x+d)^{-k} f\left(\frac{a x+b}{c x+d}\right)
$$

is holomorphic on a "larger domain" than \mathbb{H}.

Eichler integrals of Eisenstein series
Results
Holomorphic Quantum Modular Forms

NEW HOLOMORPHIC QUANTUM MODULAR FORMS

Results

Holomorphic Quantum Modular Forms

NEW HOLOMORPHIC QUANTUM MODULAR FORMS

Theorem (B-O-W)

Suppose that $a \leq-1$ is odd. Then the following are true:

Results

Holomorphic Quantum Modular Forms

NEW HOLOMORPHIC QUANTUM MODULAR FORMS

Theorem (B-O-W)

Suppose that $a \leq-1$ is odd. Then the following are true:
(1) We have that $\left\langle f_{a, t}\right\rangle_{q}$ is a holomorphic weight $2-a$ quantum modular form. In particular, we have the modular transformations

$$
\mathcal{E}_{2-a}(z)-z^{a-2} \mathcal{E}_{2-a}\left(-\frac{1}{z}\right)=\frac{1}{2 \pi} \int_{\operatorname{Re}(s)=1-\frac{a}{2}} \frac{\Gamma(s) \zeta(s) \zeta(s+a-1)}{(2 \pi)^{s} \sin \left(\frac{\pi s}{2}\right)} z^{-s} d s
$$

NEW HOLOMORPHIC QUANTUM MODULAR FORMS

Theorem (B-O-W)

Suppose that $a \leq-1$ is odd. Then the following are true:
(1) We have that $\left\langle f_{a, t}\right\rangle_{q}$ is a holomorphic weight $2-a$ quantum modular form. In particular, we have the modular transformations

$$
\mathcal{E}_{2-a}(z)-z^{a-2} \mathcal{E}_{2-a}\left(-\frac{1}{z}\right)=\frac{1}{2 \pi} \int_{\operatorname{Re}(s)=1-\frac{a}{2}} \frac{\Gamma(s) \zeta(s) \zeta(s+a-1)}{(2 \pi)^{s} \sin \left(\frac{\pi s}{2}\right)} z^{-s} d s
$$

(2) As $\bar{t} \rightarrow 0^{+}$, we have the asymptotic expansion

$$
\mathcal{E}_{2-a}\left(\frac{i t}{2 \pi}\right) \sim \frac{\Gamma(2-a) \zeta(2-a)}{t^{2-a}}+\frac{\zeta(a)}{t}+\sum_{n=0}^{\infty} \frac{B_{n+1}}{n+1} \frac{B_{n+2-a}}{n+2-a} \frac{(-t)^{n}}{n!} .
$$

NEW HOLOMORPHIC QUANTUM MODULAR FORMS

Theorem (B-O-W)

Suppose that $a \leq-1$ is odd. Then the following are true:
(1) We have that $\left\langle f_{a, t}\right\rangle_{q}$ is a holomorphic weight $2-a$ quantum modular form. In particular, we have the modular transformations

$$
\mathcal{E}_{2-a}(z)-z^{a-2} \mathcal{E}_{2-a}\left(-\frac{1}{z}\right)=\frac{1}{2 \pi} \int_{\operatorname{Re}(s)=1-\frac{a}{2}} \frac{\Gamma(s) \zeta(s) \zeta(s+a-1)}{(2 \pi)^{s} \sin \left(\frac{\pi s}{2}\right)} z^{-s} d s
$$

(2) As $\bar{t} \rightarrow 0^{+}$, we have the asymptotic expansion

$$
\mathcal{E}_{2-a}\left(\frac{i t}{2 \pi}\right) \sim \frac{\Gamma(2-a) \zeta(2-a)}{t^{2-a}}+\frac{\zeta(a)}{t}+\sum_{n=0}^{\infty} \frac{B_{n+1}}{n+1} \frac{B_{n+2-a}}{n+2-a} \frac{(-t)^{n}}{n!} .
$$

REmark ("Larger Domain")

For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, the $h_{\mathcal{E}_{k}, \gamma}(z)$ extends to a holomorphic function on

$$
\mathbb{C}_{\gamma}:= \begin{cases}\mathbb{C} \backslash\left(-\infty,-\frac{d}{c}\right) & c>0 \\ \mathbb{C} \backslash\left(-\frac{d}{c}, \infty\right) & c<0\end{cases}
$$

Results

Holomorphic Quantum Modular Forms

Asymptotic Expansions

Notation

If $a \leq-1$ is odd, then we have

$$
\widehat{G}_{2-a}(t):=\sum_{n=1}^{\infty} \sigma_{1-a}(n) e^{-n t}=\mathcal{E}_{2-a}\left(\frac{i t}{2 \pi}\right) .
$$

Asymptotic Expansions

Notation

If $a \leq-1$ is odd, then we have

$$
\widehat{G}_{2-a}(t):=\sum_{n=1}^{\infty} \sigma_{1-a}(n) e^{-n t}=\mathcal{E}_{2-a}\left(\frac{i t}{2 \pi}\right)
$$

With $k=2-a$, the series above agrees, as $t \rightarrow 0^{+}$, with

$$
\widetilde{G}_{k}(t):=\frac{\Gamma(k) \zeta(k)}{t^{k}}+\frac{\zeta(2-k)}{t}+\sum_{n=0}^{\infty} \frac{B_{n+1}}{n+1} \frac{B_{n+k}}{n+k} \frac{(-t)^{n}}{n!} .
$$

CASE WHERE $a=-1$

t	$\widehat{G}_{3}(t)$	$\widetilde{G}_{3}(t)$	$\widehat{G}_{3}(t) / \widetilde{G}_{3}(t)$
2	≈ 0.2602861623	≈ 0.2602864321	≈ 0.9999989634
1.5	≈ 0.6578359053	≈ 0.6578359052	≈ 0.9999999998
1	≈ 2.3214805734	≈ 2.3214805734	≈ 1.0000000000
0.5	≈ 19.0665916994	≈ 19.0665916994	≈ 1.0000000000
0.1	≈ 2403.2805424358	≈ 2403.2805424358	≈ 1.0000000000
\vdots	\vdots	\vdots	\vdots
0	∞	∞	1

t-HOOK FUNCTIONS ON PARTITIONS

Definition
If $t \in \mathbb{Z}^{+}$and $a \in \mathbb{C}$, then define $f_{a, t}: \mathcal{P} \rightarrow \mathbb{C}$ by

$$
f_{a, t}(\lambda):=t^{a-1} \sum_{h \in \mathcal{H}_{t}(\lambda)} \frac{1}{h^{a}} .
$$

t-HOOK FUNCTIONS ON PARTITIONS

Definition

If $t \in \mathbb{Z}^{+}$and $a \in \mathbb{C}$, then define $f_{a, t}: \mathcal{P} \rightarrow \mathbb{C}$ by

$$
f_{a, t}(\lambda):=t^{a-1} \sum_{h \in \mathcal{H}_{t}(\lambda)} \frac{1}{h^{a}} .
$$

Theorem (B-O-W)
If t is a positive integer and $a \in \mathbb{C}$, then we have

$$
\left\langle f_{a, t}\right\rangle_{q}=\mathcal{E}_{2-a}(t z)=\sum_{n=1}^{\infty} \sigma_{1-a}(n) q^{n}
$$

Positive Even a

Theorem (B-O-W)

$\mathbb{E}_{0}(t z)$ is a wgt zero sesquiharmonic Maass form on $\Gamma_{0}(t)$, where

$$
\mathbb{E}_{0}(t z):=t y+\frac{6}{\pi}\left(\gamma-\log (2)-\frac{\log (t y)}{2}-\frac{6 \zeta^{\prime}(2)}{\pi^{2}}+\left\langle f_{2, t}\right\rangle_{q}+\sum_{n=1}^{\infty} \sigma_{-1}(n) \bar{q}^{t n}\right)
$$

Positive EVEN a

Theorem (B-O-W)

$\mathbb{E}_{0}(t z)$ is a wgt zero sesquiharmonic Maass form on $\Gamma_{0}(t)$, where

$$
\mathbb{E}_{0}(t z):=t y+\frac{6}{\pi}\left(\gamma-\log (2)-\frac{\log (t y)}{2}-\frac{6 \zeta^{\prime}(2)}{\pi^{2}}+\left\langle f_{2, t}\right\rangle_{q}+\sum_{n=1}^{\infty} \sigma_{-1}(n) \bar{q}^{t n}\right)
$$

Theorem (B-O-W)

If $k \geq 2$, then $\mathbb{E}_{2-2 k}(t z)$ is a weight $2-2 k$ harmonic Maass form on $\Gamma_{0}(t)$, where

$$
\mathbb{E}_{2-2 k}(t z)
$$

$$
:=(t y)^{2 k-1}+\frac{2 \cdot(2 k)!}{B_{2 k}(4 \pi)^{2 k-1}}\left(\zeta(2 k-1)+\left\langle f_{2 k, t}\right\rangle_{q}+\sum_{n=1}^{\infty} \sigma_{1-2 k}(n) \Gamma^{*}(2 k-1,4 \pi t n y) q^{-t n}\right)
$$

ODD $a \leq-1$

Theorem (B-O-W)
Suppose that $a \leq-1$ is odd. Then the following are true:

ODD $a \leq-1$

Theorem (B-O-W)

Suppose that $a \leq-1$ is odd. Then the following are true:
(1) We have that $\left\langle f_{a, t}\right\rangle_{q}$ is a holomorphic weight $2-a$ quantum modular form. In particular, we have the modular transformations

$$
\mathcal{E}_{2-a}(z)-z^{a-2} \mathcal{E}_{2-a}\left(-\frac{1}{z}\right)=\frac{1}{2 \pi} \int_{\mathrm{Re}(s)=1-\frac{a}{2}} \frac{\Gamma(s) \zeta(s) \zeta(s+a-1)}{(2 \pi)^{s} \sin \left(\frac{\pi s}{2}\right)} z^{-s} d s
$$

ODD $a \leq-1$

Theorem (B-O-W)

Suppose that $a \leq-1$ is odd. Then the following are true:
(1) We have that $\left\langle f_{a, t}\right\rangle_{q}$ is a holomorphic weight $2-a$ quantum modular form. In particular, we have the modular transformations

$$
\mathcal{E}_{2-a}(z)-z^{a-2} \mathcal{E}_{2-a}\left(-\frac{1}{z}\right)=\frac{1}{2 \pi} \int_{\mathrm{Re}(s)=1-\frac{a}{2}} \frac{\Gamma(s) \zeta(s) \zeta(s+a-1)}{(2 \pi)^{s} \sin \left(\frac{\pi s}{2}\right)} z^{-s} d s
$$

(2) As $\bar{t} \rightarrow 0^{+}$, we have the asymptotic expansion

$$
\mathcal{E}_{2-a}\left(\frac{i t}{2 \pi}\right) \sim \frac{\Gamma(2-a) \zeta(2-a)}{t^{2-a}}+\frac{\zeta(a)}{t}+\sum_{n=0}^{\infty} \frac{B_{n+1}}{n+1} \frac{B_{n+2-a}}{n+2-a} \frac{(-t)^{n}}{n!} .
$$

ODD $a \leq-1$

Theorem (B-O-W)

Suppose that $a \leq-1$ is odd. Then the following are true:
(1) We have that $\left\langle f_{a, t}\right\rangle_{q}$ is a holomorphic weight $2-a$ quantum modular form. In particular, we have the modular transformations

$$
\mathcal{E}_{2-a}(z)-z^{a-2} \mathcal{E}_{2-a}\left(-\frac{1}{z}\right)=\frac{1}{2 \pi} \int_{\operatorname{Re}(s)=1-\frac{a}{2}} \frac{\Gamma(s) \zeta(s) \zeta(s+a-1)}{(2 \pi)^{s} \sin \left(\frac{\pi s}{2}\right)} z^{-s} d s
$$

(2) As $\bar{t} \rightarrow 0^{+}$, we have the asymptotic expansion

$$
\mathcal{E}_{2-a}\left(\frac{i t}{2 \pi}\right) \sim \frac{\Gamma(2-a) \zeta(2-a)}{t^{2-a}}+\frac{\zeta(a)}{t}+\sum_{n=0}^{\infty} \frac{B_{n+1}}{n+1} \frac{B_{n+2-a}}{n+2-a} \frac{(-t)^{n}}{n!} .
$$

REmark

These asymptotics are analogous to Ramanujan's $O(1)$ numbers that arise with "classical" quantum modular forms.

