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1 Introduction

The Wulff construction is well‐known as a geometric model of an equilibrium crystal defined as follows.

Let n be a positive integer. Given a continuous function  $\gamma$ :  S^{n} \rightarrow \mathbb{R}+ where S^{n} \subset \mathbb{R}^{n+1} is the unit

sphere and \mathbb{R}_{+} is the set consisting of positive real numbers, the Wulff shape associated with  $\gamma$ , denoted

by \mathcal{W}_{ $\gamma$} , is the following intersection (see Figure 1)

\displaystyle \mathcal{W}_{ $\gamma$}=\bigcap_{ $\theta$\in S^{n}}$\Gamma$_{ $\gamma,\ \theta$}.
Here, $\Gamma$_{ $\gamma,\ \theta$} is the following half‐space:

$\Gamma$_{ $\gamma,\ \theta$}=\{x\in \mathbb{R}^{n+1} |x\cdot $\theta$\leq $\gamma$( $\theta$)\}.

By Wulff construction, we know that Wulff shape is a compact, convex and contains the the origin of

Figure 1: A Wulff shape \mathcal{W}_{ $\gamma$}.

\mathbb{R}^{n+1} as an interior point. Conversely, it is well‐known that any convex body W contains the origin as
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an interior point is a Wulff shape given by appropriate support function, namely, there is a continuous

function  $\gamma$ :  S^{n}\rightarrow \mathbb{R}_{+} such that \mathcal{W}_{ $\gamma$}=W . For details on Wulff shapes, see for instance [1, 6, 13, 14].
For a continuous function  $\gamma$ :  S^{n}\rightarrow \mathbb{R}+ , set

graph ( $\gamma$)=\{( $\theta$,  $\gamma$( $\theta$))\in \mathbb{R}^{n+1}-\{0\}| $\theta$\in S^{n}\},

where ( $\theta$,  $\gamma$( $\theta$)) is the polar plot expression for a point of \mathbb{R}^{n+1}-\{0\} . The mapping inv: \mathbb{R}^{n+1}-\{0\}\rightarrow
\mathbb{R}^{n+1}-\{0\} , defined as follows, is called the inversion with respect to the origin of \mathbb{R}^{n+1}.

\displaystyle \mathrm{i}\mathrm{n}\mathrm{v}( $\theta$, r)= (- $\theta$, \frac{1}{r}) .

Let \mathrm{P}_{ $\gamma$} be the boundary of the convex hull of \mathrm{i}\mathrm{n}\mathrm{v}(\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}( $\gamma$)) .

Definition 1 ([12, 10])
Let  $\gamma$ :  S^{n} \rightarrow \mathbb{R}+ be a continuous function. If the equality $\Gamma$_{ $\gamma$} = \mathrm{i}\mathrm{n}\mathrm{v}(\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}( $\gamma$)) is satisfied, then  $\gamma$ is

called a convex integrand.

The notion of convex integrand was firstly introduced by J. Taylor in [12] and it plays a key role for

studying Wulff shapes (for details on convex integrands, see for instance [4, 7, 12

Definition 2 ([10])
Let  $\gamma$ :  S^{n}\rightarrow \mathbb{R}_{+} be a continuous function. The convex hull of \mathrm{i}\mathrm{n}\mathrm{v}(\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}( $\gamma$)) is called dual Wulff of \mathcal{W}_{ $\gamma$},
denoted by D\mathcal{W}_{ $\gamma$}.

The main topic of this paper is the relations between WuIff shapes and its duals.

2 Properties and some known results

Before proceeding further, we first introduce an equivalent definition of Wulff shape, given in [10].
(1) Id: \mathbb{R}^{n+1}\rightarrow \mathbb{R}^{n+1} \times\{1\}.
Let Id: \mathbb{R}^{n+1}\rightarrow \mathbb{R}^{n+1} \times\{1\} be the map defined by Id(x)=(x, 1) .

(2) \mathrm{a}_{N}:S_{N,+}^{n+1}\rightarrow \mathbb{R}^{n+1} \times\{1\}.
Denote the point (0, \ldots, 0,1) \in \mathbb{R}^{n+2} by N . The set S^{n+1} -H(-N) is denoted by S_{N,+}^{n+1} . Let

$\alpha$_{N} : S_{N,+}^{n+1} \rightarrow \mathbb{R}^{n+1} \times \{1\} be the central projection relative to N , namely, $\alpha$_{N} is defined as follows for

any P=(P_{1}, \ldots, P_{n+1}, P_{n+2})\in S_{N,+}^{n+1} :

$\alpha$_{N} ( P\mathrm{l} , \cdots ,  P_{n+1} , P_{n+2} ) = (\displaystyle \frac{P_{1}}{P_{n+2}}, \ldots , \frac{P_{n+1}}{P_{n+2}}, 1) .

(3) $\Psi$_{N}:S^{n+1}-\{\pm N\}\rightarrow S_{N,+}^{n+1}.
Next, we consider the mapping $\Psi$_{N} : S^{n+1}-\{\pm N\}\rightarrow S_{N,+}^{n+1} , defined by

$\Psi$_{N}(\displaystyle \overline{P})=\frac{1}{\sqrt{1-(N\overline{P})^{2}}}(N-(N\cdot\tilde{P})\tilde{P}) .

The mapping $\Psi$_{N} was introduced in [9], has the following intriguing properties:

1. For any \overline{P}\in S^{n+1}-\{\pm N\} , the equality \overline{P}\cdot$\Psi$_{N}(\overline{P})=0 holds,

2. for any \overline{P}\in S^{n+1}-\{\pm N\} , the property $\Psi$_{N}(\overline{P})\in \mathbb{R}N+\mathbb{R}\overline{P} holds,

3. for any \tilde{P}\in S^{n+1}-\{\pm N\} , the property N\cdot$\Psi$_{N}(\overline{P})>0 holds,

4. the restriction $\Psi$_{N}|_{\mathcal{S}_{N,+}^{n+1}-\{N\}} : S_{N,+}^{n+1}-\{N\}\rightarrow S_{N,+}^{n+1}-\{N\} is a C^{\infty} diffeomorphism.
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(4) Spherical polar transform.

For any point \overline{P}\in S^{n+1} , let H(\overline{P}) be the closed hemisphere centered at \overline{P}
, namely,

H(\overline{P})=\{\overline{Q}\in S^{n+1}|\overline{P}\cdot\overline{Q}\geq 0\},

where the dot in the center stands for the scalar product of two vectors \overline{P}, \overline{Q}\in \mathbb{R}^{n+2} . For any non‐empty
subset \overline{W}\subset S^{n+1} , the spherical polar set of \tilde{W} , denoted by \tilde{W}^{\mathrm{o}} ,

is defined as follows:

\displaystyle \tilde{W}^{\mathrm{o}}=\bigcap_{\overline{P}\in\overline{W}}H(\overline{P}) .

for details on spherical polar set, see for instance [3, 10]

Proposition 1 ([10])
Let  $\gamma$ :  S^{n} \rightarrow \mathbb{R}+ be a continuous function. Let graph (  $\gamma$ ) = \{( $\theta$,  $\gamma$( $\theta$)) \in \mathbb{R}^{n+1} -\{0\} |  $\theta$ \in S^{n}\} ,

where

( $\theta$,  $\gamma$( $\theta$)) is the polar plot expression for a point of \mathbb{R}^{n+1}-\{0\} . Then, \mathcal{W}_{ $\gamma$} is characterized as follows:

\mathcal{W}_{ $\gamma$}=Id^{-1}\circ$\alpha$_{N} ( ($\Psi$_{N}\circ$\alpha$_{N}^{-1}\circ Id (graph ( $\gamma$)))^{\mathrm{o}} )
For any Wulff shape \mathcal{W}_{ $\gamma$} , by Proposition 1, the dual Wulff shape \mathcal{D}\mathcal{W}_{ $\gamma$} can characterized as follows:

Proposition 2 ([10])
For any Wulff shape \mathcal{W}_{ $\gamma$} , the following is holds:

\mathcal{D}\mathcal{W}_{ $\gamma$}=Id^{-1}\circ$\alpha$_{N}(($\alpha$_{N}^{-1}\circ Id(\mathcal{W}_{ $\gamma$}))^{\mathrm{o}})
In general case, for given Wulff shape W , there exist uncountable many support function  $\gamma$ construct

 W (see Figure 2). Then, it is natural arise that �When does given Wulff shape has only one support
fuction?). In [4], it is shown that Wulff shape W is strictly convex if and only if its convex integrand  $\gamma$

is of class  C^{1} . By this result, \mathrm{e} the following theorem is not difficult to prove.

Figure 2: A Wulff shape \mathcal{W}_{ $\gamma$}.

Theorem 1 ([6])
Let  $\gamma$ :  S^{n} \rightarrow \mathbb{R}+ be a continuous function and let \mathcal{W}_{ $\gamma$} be the Wulff shape associated with  $\gamma$ . Suppose
that the boundary of \mathcal{W}_{ $\gamma$} is a C^{1} submanifold. Then,  $\gamma$ must be the convex integrand of \mathcal{W}_{ $\gamma$}.
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For Wulff shapes and their dual Wulff shapes, we have the following relations.

Proposition 3 ([4])
A Wulff shape in \mathbb{R}^{n+1} is strictly convex if and only if the boundary of its dual Wulff shape is C^{1}

diffeomorphic to S^{n}.

Proposition 4 ([4])
A Wulfr shape in \mathbb{R}^{n+1} is strictly convex and its boundary is C^{1} diffeomorphic to S^{n} if and only if jts

dual Wulff shape is strictly convex and the boundary of it is C^{1} diffeomorphic to S^{n}.

Proposition 5 ([10])
A Wulff shape in \mathbb{R}^{n+1} is a polytope if and only if its dual Wulff shape is a polytope.

Deflnition 3 ([2])
Let $\gamma$_{1}, $\gamma$_{2} be convex integrands. Define $\gamma$_{7rax} and $\gamma$_{ $\tau$ n\mathfrak{i}, $\iota$} as natural way.

$\gamma$_{\max} :S^{ $\tau \iota$}\displaystyle \rightarrow \mathbb{R}+, $\gamma$_{rnax}( $\theta$)=\max\{$\gamma$_{1}( $\theta$), $\gamma$_{2}( $\theta$)\}.

$\gamma$_{rn} ỉ  $\iota$:S^{n}\rightarrow \mathbb{R}+, $\gamma$_{ $\gamma$ nin}( $\theta$)=\displaystyle \min\{$\gamma$_{1}( $\theta$), $\gamma$_{2}( $\theta$)\}.

Proposition 6 ([2])
Let \mathcal{W}_{$\gamma$_{1}}, \mathcal{W}_{$\gamma$_{2}} be dual Wulff shapes. Then \mathcal{W}_{$\gamma$_{\ovalbox{\tt\small REJECT} rax}} is the dual Wulff shape of \mathcal{W}_{$\gamma$_{\min}}.

3 Self‐dual Wulff shapes
Definition 4 ([5])
Let W be a Wulff shape. If Wulff shape W and its dual Wulff shape are same convex body, then W is

said to be self‐dual Wulff shape.

By Proposition 1, we have the following.

Corollary 1

Let  $\gamma$:S^{n}\rightarrow \mathbb{R}+ be a continuous function. Then the following are equivalent.

1. \mathcal{W}_{ $\gamma$}=\mathcal{D}\mathcal{W}_{ $\gamma$}.

2. \mathcal{W}_{ $\gamma$}=Id^{-1}\mathrm{o}$\alpha$_{N}(($\alpha$_{N}^{-1}\mathrm{o} Id (\mathcal{W}_{ $\gamma$}))^{\mathrm{o}})
3. \mathcal{W}_{ $\gamma$} is exactly the convex hull of i\mathrm{n}\mathrm{v}(g\mathrm{r}\mathrm{a}ph( $\gamma$)) .

Moreover, self‐dual Wulff shape can characterized as follows.

Definition 5
\hat{} Ỉ[3])

1. A subset W of S^{n+1} is said to be hemispherical if there exists a point \tilde{P}\in S^{n+1} such that \tilde{W}\cap H(\tilde{P})=
\emptyset.

2. A hemispherical subset \tilde{W} \subset  S^{n+1} is said to be spherical convex if for any \tilde{P}, \tilde{Q}\in \tilde{W} the following
arc \tilde{P}\tilde{Q} is contained in \tilde{W} :

\displaystyle \overline{P}\overline{Q}=\{\frac{(1-t)\overline{P}+t\overline{Q}}{||(1-t)\tilde{P}+t\tilde{Q}||} | t\in[0, 1]\}
3. A hemispherical subset \tilde{W} is called a spherical convex body if it is closed, spherical convex and has an

interior point. A hemisphere H(\tilde{P}) is said to support a spherical convex body \tilde{W} if both \tilde{W}\subset H(\tilde{P})
and \partial\tilde{W}\cap\partial H(\overline{P})\neq\emptyset hold.
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Definition 6 ([8\lrcorner)_{-}
1. For any two P, Q\in S^{n+1} (\tilde{P}\neq\pm Q the intersection H(\tilde{P})\cap H(\tilde{Q}) is called a lune of S^{n+1}.

2. The thickness of the lune H(\tilde{P})\cap H(\tilde{Q}) , denoted by \triangle(H(\overline{P})\cap H(\tilde{Q})) , is the real number  $\pi$-|\tilde{P}\tilde{Q}|,
where |\tilde{P}\tilde{Q}| stands for the length of the arc \tilde{P}\tilde{Q}.

3. For a spherical convex body \tilde{W} and a hemisphere H(P) supporting \tilde{W} , the width of \tilde{W} determined

by H(P denoted by \mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}_{H(\tilde{P})}\tilde{W} , is the minimum of the following set:

{  $\Delta$(H(\tilde{P})\cap H(\tilde{Q})) |\tilde{W}\subset H(\tilde{P})\cap H(\tilde{Q}) , H(\tilde{Q}) supports \tilde{W} }.
4. For any  $\rho$\in \mathbb{R}_{+} less than  $\pi$ , a spherical convex body \tilde{W}\subset S^{n+1} is said to be of constant width p if

\mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}_{H(\tilde{P})}\tilde{W}= $\rho$ for any  H(P) supporting \tilde{W}.

Theorem 2 ([5])
Let  $\gamma$ :  S^{n} \rightarrow \mathbb{R}+ be a continuous function. Then, the Wulff shape W_{ $\gamma$} is self‐dual if and only if the

spherical convex body \tilde{W}_{ $\gamma$}=$\alpha$_{N}^{-1}\mathrm{o}Id(W_{ $\gamma$}) is of constant width  $\pi$/2.

Definition 7 ([8])
Let \tilde{W} be a spherical convex body of S^{n+1}

1. Thickness  $\Delta$(\tilde{W}) of \tilde{W}\subset S^{n+1} defined as follows:

 $\Delta$(\displaystyle \tilde{W})=\inf\{width_{K}(\tilde{W});K is a supporting hemisphere of W

2. \tilde{W}\subset S^{n+1} is said to be reduced if  $\Delta$(\ovalbox{\tt\small REJECT})< $\Delta$(\tilde{W}) for every convex body Ỹ \subset W
\tilde{}

different from \tilde{W}.

Theorem 3 ([8])
Every smooth reduced body on S^{n} is of constant Width.

In the case of Wulff shapes, the following seems to be open.

Definition 8 ([8])
Let \tilde{W}\subset S^{n+1} be a spherical convex body. Then, the following number is called the diameter of \tilde{W} and

is denoted by diam (\tilde{W}) :

\displaystyle \max\{|\tilde{P}\tilde{Q}| |\tilde{P}, \tilde{Q}\in\tilde{W}\}.
Question: Let W be a Wulff shape. Are the following equivalent?

1. Wulff shape W is self‐dual.

2. Spherical convex body \tilde{W}_{ $\gamma$}=$\alpha$_{N}^{-1}\mathrm{o}Id(W_{ $\gamma$}) is reduced and diam (\tilde{W})= $\pi$/2.
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