The Bender-Wu Analysis and the Voros Theory II.

Takashi AOKI, Takahiro KAWAI and Yoshitsugu TAKEI

We constructed in [AKT] a formal transformation that brings a Schrödinger equation

(1)
$$\left(\frac{d^2}{d\tilde{x}^2} - \eta^2 Q(\tilde{x})\right)\tilde{\psi} = 0 \quad (\eta : \text{a large parameter})$$

with two simple turning points to the Weber equation

(2)
$$\left(\frac{d^2}{dx^2} - \eta^2 (E(\eta) - \frac{1}{4}x^2)\right)\psi = 0,$$

where

(3)
$$E(\eta) = \sum_{j \ge 0} E_j \eta^{-j}$$

There are three problems in making use of this result to obtain concrete information about the analytic structure of the WKB solutions ψ_{\pm} of (1), or their Borel transforms $\psi_{\pm,B}$.

Problem 1. Can we guarantee a sufficiently large domain of definition of the integral operator associated with the formal transformation?

Problem 2. Suppose first that $E(\eta)$ is a genuine constant E_0 . Then how much do we know about the analytic properties of the Borel transformed WKB solutions of (2)?

Problem 3. What is the analytic meaning of WKB solutions of (2) if $E(\eta)$ is an infinite series?

The purpose of this talk is to give satisfactory answers to these problems.

References

[BW] C. M. Bender and T. T. Wu: Anharmonic oscillator, Phys. Rev., 184 (1969), 1231-1260.

- [V] A. Voros: The return of the quartic oscillator. The complex WKB method, Ann. Inst. Henri Poincaré, **39** (1983), 211-338.
- H. J. Silverstone: JWKB connection-formula problem revisited via Borel summation, Phys. Rev. Lett., 55 (1985), 2523-2526.
- [AKT] T. Aoki, T. Kawai and Y. Takei: The Bender-Wu analysis and the Voros theory, Special Functions, Springer, 1991, pp.1-29.
- [KT] T. Kawai and Y. Takei: Algebraic Analysis of Singular Perturbation Theory, AMS, 2005.
- [SS] H. Shen and H. J. Silverstone: Observations on the JWKB treatment of the quadratic barrier, to appear.