Zbl 018.34401

Erdős, Pál; Mahler, K.

On the number of integers which can be represented by a binary form. (In English)

J. London Math. Soc. 13, 134-139 (1938).

Sei F(x,y) ein homogenes Polynom mit nur einfachen Linearfaktoren, vom Grade $n \geq 3$, mit ganzrationalen Koeffizienten. A(u) bezeichne die Anzahl der verschiedenen natürlichen Zahlen $k \leq u$, für welche die Gleichung $F(x,y) = \pm k$ mindestens eine ganzrationale Lösung x,y besitzt. Verff. beweisen:

$$\lim_{u \to \infty} A(u)u^{-\frac{2}{n}} > 0.$$

Dies gilt auch, wenn x,y durch Nebenbedingungen der Form $x \geq 0$, $\alpha x \leq y \leq \beta x$ mit konstanten α,β eingeschränkt sind, also z.B. für den Fall eines nichtnegativdefiniten F(x,y) und die Anzahl A(u) der natürlichen $k \leq u$ mit F(x,y) = k. Der Beweis beruht auf der Mahlerschen Verallgemeinerung des Thue-Siegelsschen Satzes auf p-adische Bewertungen.

Hasse (Göttingen)

Classification:

11D41 Higher degree diophantine equations

11D25 Cubic and quartic diophantine equations