Zbl 021.01702

Articles of (and about)

Erdős, Paul

An extremum-problem concerning trigonometric polynomials. (In English) Acta Litt. Sci. Szeged 9, 113-115 (1939).

Der Verf. beweist den folgenden Satz: Es sei S(x) ein trigonometrisches Polynom nter Ordnung derart, daß $|S(x)| \leq 1$ ist für alle reellen Werte von x. Dann haben unter den graphischen Darstellungen aller dieser Polynome diejenigen, deren Gleichungen $y = \cos(nx + \alpha)$ mit reellem α sind, die maximale Bogenlänge zwischen 0 und 2π . Auch wird ein von P. Csillag herrührender zweiter Beweis desselben Satzes gegeben. Bei diesen Beweisen wird das folgende Lemma von J.G.van der Corput und G.Schaake angewendet [Satz 3 in Compositio Math. 2, 321-361 (1936; Zbl 013.10802)]: Sei S(x) ein trigonometrisches Polynom nter Ordnung derart, daß |S(x)| < 1 ist und $T(x) = \cos nx$. Wenn x_1 und x_2 zwei reelle Zahlen sind derart, daß $-1 < S(x_1) \le T(x_2) < 1$ ist, so gilt $|S'(x_1)| \leq |T'(x_2)|$. Wenn das Gleichheitszeichen in einem einzigen Falle gilt, so gilt es stets, also ist dann $S(x) = T(x + \alpha)$. Der Verf. vermutet die Gültigkeit des folgenden Satzes: Wenn f(x) ein Polynom n^{ter} Ordnung ist derart, daß $|f(x)| \leq 1$ in (-1,1), so hat unter den graphischen Darstellungen aller dieser Polynome die jenige des Tschebycheffschen Polynoms die maximale Bogenlänge zwischen -1 und +1.

G.Schaake (Groningen)

Classification:

42A05 Trigonometric polynomials 33C25 Orthogonal polynomials and functions