Zbl 078.04203

Erdős, Pál; Fodor, G.

Articles of (and about)

Some remarks on set theory. IV. (In English)

Acta Sci. Math. 18, 243-260 (1957). [0001-6969]

[Part V see Zbl 072.04103]

The paper is dealing with relations in a given set E of cardinality $m > \aleph_0$. For every $x \in E$ let R(x) be a subset of E. Two distinct elements x, y of E are independent, if both $x \in R(y)$ und $y \in R(x)$. Every monopunctual subset of E as well as every subset of pairwise independent points is called a free subset of R. The following 3 conditions are considered:

- (A) There exists a cardinality n < m satisfying kR(x) < n for every $x \in E$ (kX means the cardinality of X).
- (B) E is a metric space and dist(x, R(x)) > 0 for every $x \in E$.
- (C) There exists a real number r > 0 such that, putting $q(x) = \operatorname{dist}(x, R(x))$, the set $\{x \mid g(x) \geq r\}$ contains in B a subset of positive measure; B denotes the system of all Borel sets of E; E is a metric space containing an everywhere dense set of a cardinality $\langle i | (i \text{ denotes the first inaccessible cardinal number)} \rangle$ $> \aleph_0$). For a system S of sets a subsystem I of S is called a p-additive ideal provided (I) the union of every subsystem of I of cardinality $\langle p \rangle$ belongs to I and (II) for every $X \in I$ the relations $Y \subseteq X$, $Y \in S$ imply $Y \in I$.

Theorem 1. If $m = \aleph_{\gamma} > i$ and if I denotes a proper $\aleph_{\lambda+1}$ -ideal of subsets of E such that $\{x\} \in I$ for every $x \in E$; if $B \subseteq E$, $B \notin I$, then there exists a disjointed $\omega_{\lambda+1}$ -sequence B_{ξ} of subsets of E such that $B_{\xi} \notin I$ $(\xi < \omega_{\lambda+1})$ and $B = \bigcup B_{\varepsilon}$.

This theorem is used in providing the following one (theorem 3): Under the conditions of Th. 1. if R(x) is finite for every $x \in E$, then for every ω -sequence of subsets E_{ξ} of E such that $E_{\xi} \notin I$, there exists a free subset E' of E satisfying $E' \cap E_{\xi} \notin I$ for every $\xi < \omega$. Now suppose that the condition (B) holds. Let E denote the set of all real numbers and $kR(x) < \aleph_0$ $(x \in E)$. Then there exists a freesubset E' of E such that E' be everywhere of the second category and that the Lebesgue outer measure $\mu(E')$ of E' be b-a in every interval (a,b)(Th. 6). Let not E be an interval of real numbers and B be a σ -algebra of subsets of E containing all subintervals of E; let μ be a non-trivial measure on B. Then the condition (C) implies the existence in B of a free subset of positive μ -measure.

In the particular case when R(x) is the complement of an interval of E whose center is at x, the converse holds too: the existence in B of a free subset of E of positive μ -measure implies the condition (C) (Th. 7). Theorem 11: Let K be a disjointed class of cardinality g of subsets of E of cardinality m = kEeach; then the condition (A) implies the existence of a free subset E' of E such that the cardinality of $X \cap E'$ be m for every $X \in K$ (here $m > \aleph_0$).

G.Kurepa

Classification: