Zbl 084.34102

Dowker, Yael Naim; Erdős, Paul

Some examples in ergodic theory. (In English)

Proc. Lond. Math. Soc., III. Ser. 9, 227-241 (1959). [0024-6115]

Die Verff. konstruieren durch geschickte Anwendung eines klassischen Verfahrens [vgl. etwa *P.R.Halmos*, Lectures on Ergodic Theory (Zbl 073.09302), S. 30] Beispiele, durch die einige Fragen der Ergodentheorie im negativen Sinne entschieden werden.

- 1. m sei das eindimensionale Lebesguemaß $\Omega = <0,1>$, b_n eine strikt monoton wachsend gegen 1 gehende Zahlenfolge und k_n eine wachsende Folge von natürlichen Zahlen. Es gibt eine ergodische m-treue Transformation T in Ω und fast allen $x \in <0,1>$ je eine N(x)>0, derart, daß $T^tx\leq b_n$ $(t< k_n,n\geq N(x))$ gilt. Grob: T'x kommt 1 beliebig langsam nahe.
- 2. Auf Ω gibt es zu jeder Zahlenfolge $c_1 \geq 0$ mit $\sum c_t = \infty$ und zu jeder bezüglich m nichtsingulären ergodischen konservativen Transformation eine beschränkt meßbare Funktion f(x) mit $\int f dm = 0$, derart, daß

$$\sum_{t=1}^{\infty} c_1 f(T'x)$$

auf keiner Menge positiven Maßes stochastisch konvergiert.

3. Sind T_1, T_2 m treue Abbildungen von $\Omega' = <0, \infty$) auf sich, so bilde man zu jeder meßbaren Funktion f(x) auf Ω' die Funktionenfolge

$$F_n(x) = \left(\sum_{t=0}^{n-1} f(T_1^t x)\right) \left(\sum_{t=0}^{n-1} f(T_2^t x)\right)^{-1}$$

(soweit sinnvoll). Mit f(x) = 1 für x < 1, f(x) = 0 für $x \ge 1$ kann man durch passende Wahl von konservativen ergodischen T_1 , $T_2 = T_1^{-1} \limsup_n F_n(x) = \infty$, $\liminf_n F_n(x) = 0$ (*m*-fast überall) erreichen. Grob: T_1^{-1} und T_1 verhalten sich ziemlich unabhängig voneinander.

- 4. Durch eine einfache Anwendung des Ergodensatzes von E.Hopf [Ergodentheorie (Zbl 017.28301), S. 49,] erhält man für $\int f dm \neq 0 \neq \int g dm$ die Relation $\lim_n \frac{E_n(x)}{G_n(x)} = 1$ (m-fast überall). Das in Nr. 3 durch Wahl von T_1 zunächst für ein spezielles f erzwungene Verhalten von $F_n(x)$ findet also für beliebige f mit $\int f dm \neq 0$ statt.
- 5. Ist $(\Omega'', \mathfrak{B}'', m'')$ ein normierter Maßraum und T eine bezüglich m'' nichtsinguläre ergodische Transformation in Ω'' , die kein m'' äquivalentes Maß invariant läßt, so gilt für zu m'' äquivalente normierte m_1, m_2 stets

$$\lim_{n} \left(\sum_{k=0}^{n-1} m_1(T^k M) - \sum_{k=0}^{n-1} m_2(T^k M) \right) = 0 \quad (M \in \mathfrak{B}'');$$

dagegen kann man $m_1, m_2, M \in \mathfrak{B}''$ stets so wählen, daß

$$\left(\sum_{k=0}^{n-1} m_1(T^k M)\right) \left(\sum_{k=0}^{n-1} m_2(T^k M)\right)^{-1} \to 1$$

Articles of (and about) Paul Erdős in Zentralblatt MATH

gilt, im Gegensatz zu einer Vermutung von Hurewicz.

K.Jacobs

Classification:

47A35 Ergodic theory of linear operators