Zbl 094.03204

Erdős, Pál; Fodor, G.; Hajnal, András

On the structure of inner set mappings. (In English) Acta Sci. Math. 20, 81-90 (1959). [0001-6969]

Let I_1, I_2 be an ordered pair of sets and $G: I_1 \to I_2$ a mapping of I_1 into I_2 ; G is called an inner set mapping provided $GX \subset X$ for every $X \in I_1$. The inverse of any $X_0 \in I_2$ is defined in two ways: as $X_0^{-1} = \bigcup X$ ($GX = X_0$) and as $X_0^{*-1} = \{X; G(X) = X_0\}$. For any set S and any cardinal n let $[S]^n$ and $[S]^{< n}$ denote the family of all subsets of S, each of the cardinality n and < nrespectively. The mappings on (resp. into) $[S]^n, [S]^{< n}$ are called of type (resp. of range) n and < n respectively. For any cardinal n let n^* be the smallest cardinal such that n be the sum of n^* cardinals < n. In connection with set mappings of type q, and of range p of subsets of S, S being of cardinality m, let $((m, p, q)) \to r$ and $((m, p, q))^* \to r$ respectively mean that for every set mapping of $[S]^q$ into $[S]^p$ there exists an $X_0 \in [S]^p$ satisfying card $X_0^{-1} = r$ and card $X_0^{*-1} = r$ respectively. Analogously the authors define $((m, < p, q))^* \to r$. Twelve theorems and several problems concerning the foregoing notions are proved and formulated respectively; here are some ones.

Theorem 3: $q \ge \aleph_0 \Rightarrow ((m, q, q)) \nrightarrow q^+$.

Theorem 5: $q \geq \aleph_0 \Rightarrow ((m,q,q))^* \not\rightarrow 2$. Theorem 6: $p < q, q^p < m^q, q \geq \aleph_0, q^p < m^* \Rightarrow ((m,p,q)) \rightarrow m$. If moreover the general continuum hypothesis is assumed and $q^p \neq m^*$ or $q \geq m^*$, then $((m,p,q))^* \rightarrow m^q$ and $((m,p,q)) \rightarrow m$ (Theorem 9). Let α be an ordinal; if $0 < k < l < \aleph_0$, then $((\aleph_{\alpha+k},k,l)) \rightarrow \aleph_{\alpha}$ (Theorem 10) but $((\aleph_{\alpha+k},k,l)) \rightarrow \aleph_{\alpha+1}$ (Theorem 11). If q is infinite and regular and $r^n < m$ for every r < q and n < q then $((m, < q, q)) \rightarrow m$ (Theorem 12). Problems: Does subsist $((\aleph_{\omega_{\omega+1}},\aleph_0,\aleph_{\omega})) \rightarrow \aleph_{\omega_{\omega+1}}$? If $n > \aleph_{\omega}$, does $((m, < \aleph_{\omega}, \aleph_{\omega})) \rightarrow n$ hold for some m?

G.Kurepa

Classification: 05D10 Ramsey theory 04A20 Combinatorial set theory 03E05 Combinatorial set theory (logic)