Articles of (and about) Paul Erdős in Zentralblatt MATH

Zbl 114.14102

Erdős, Pál; Hajnal, András

On the topological product of discrete λ -compact spaces (In English) General Topology and its Relations to modern Analysis and Algebra, Proc. Sympos. Prague 1961, 148-151 (1962).

[For the entire collection see Zbl 111.35001.]

A topological space \mathfrak{X} is said to be κ -compact if every class \mathcal{M} of closed subsets of \mathfrak{X} with void intersection contains a subclass $\mathcal{M}' \subseteq \mathcal{M}$ having a void intersection and a power $\overline{\overline{\mathcal{M}'}}$ with $\overline{\overline{\mathcal{M}'}} < \aleph_{\kappa}$.

For each cardinal number m and each pair of ordinal numbers λ, κ , one uses the abbreviation $\top(m, \lambda) \to \kappa$ of the statment "if \mathcal{F} is a class of discrete λ -compact topological spaces with the power $\overline{\mathcal{F}} = m$ then the topological product of the elements of \mathcal{F} is κ -compact". The authors give an outline of the proof of the theorem "if α, γ are ordinals such that $\aleph_{\alpha+\gamma}$ is singular and $cf(\gamma) < \omega$ then the statement $\top(\aleph_{\alpha+\gamma}, \alpha+1) \to \alpha + \gamma$ is false" (using the generalized continuum-hypothesis); they discuss some related problems, too. By the theorem the question " $\top(\aleph_{\omega}, 1) \to \omega$?", stated in another paper of the authors [see Acta Math. Acad. Sci. Hung. 12, 87-123 (1961; Zbl 201.32801)], is answered negative.

G. Grimeisen

Classification: 54D45 Local compactness, etc. 54A25 Cardinality properties of topological spaces