Zbl 164.24803

Erdős, Pál; Hajnal, András

Articles of (and about)

On chromatic number of infinite graphs (In English)

Theory of Graphs, Proc. Colloq. Tihany, Hungary 1966, 83-98 (1968).

[For the entire collection see Zbl 155.00201.]

Aus einem Hauptresultat der Arbeit folgt mit Hilfe der allgemeinen Kontinuumhypothese: Zu je 2 Ordinalzahlen $\xi, k \ (k \geq 1 \text{ endlich})$ existiert ein Graph G mit $\alpha(G) = \aleph_{\xi+k}$ Ecken und mit der chromatischen Zahl $Chr(G) = \aleph_{\xi+1}$, so daß Chr(G') < Chr(G) für jeden Teilgraph $G' \subseteq G$ mit $\alpha(G') < \alpha(G)$. Zu vorgegebenen Kardinalzahlen α, γ (α regulär) werden Graphen $G_{\alpha,\gamma}$ konstruiert, die im folgenden Sinne universal sind: (1) $\alpha(G_{\alpha}, \gamma) = \alpha$; (2) $G' \subseteq G_{\alpha, \gamma}$ $\alpha(G') = \alpha \Rightarrow \operatorname{Chr}(G') \leq \gamma$; (3) Jeder Graph G, der (1) und (2) (mit G statt $G_{\alpha,\gamma}$) erfüllt, ist einem Teilgraph von $G_{\alpha,\gamma}$ isomorph.

Die Verff. zeigen weiter in Verschärfung eines Satzes von E. Milner, daß zu je 2 Ordinalzahlen $\alpha, k \ (k \geq 1 \text{ endlich})$ ein Mengensystem (h, H) existiert mit: (a) $h = \{\xi : 0 \le \xi < \omega_{\alpha+1}\}$ (b) $X \in H \Rightarrow X \subseteq h$ und |X| = k, (c) $h' \subseteq h, |h'| = \aleph_{\alpha+1} \Rightarrow \text{ es existiert ein } X \in H \text{ mit } X \subseteq h'; \text{ (d) } X, Y \in H,$ $\operatorname{Max} X = \operatorname{Max} Y \Rightarrow X = Y \text{ oder } |X \cap Y| = 1; \text{ (e) } X, Y \in H, |X \cap Y| \geq 2,$ $a \in X \cap Y \Rightarrow a$ hat in X und Y bzgl. < die gleiche Höhe.

Die Verff. formulieren explizit 8 Probleme; dabei wird (s. Problem 4) auf einen Zusammenhang mit einem Problem von Kurepa hingewiesen.

H.A.Junq

Classification:

05C15 Chromatic theory of graphs and maps