Zbl 188.34504

Erdős, Pál; Sárközi, A.; Szemeredi, E.

On some extremal properties of sequences of integers (In English)

Ann. Univ. Sci. Budapest. Rolando Eötvös, Sect. Math. 131-135 (1969).

Es sei $a_1 < ... < a_k \le n, k = \lfloor n/2 \rfloor + 1$ eine Folge ganzer Zahlen. Die Autoren beweisen, daß immer ein a_1 existiert, so, daß die Anzahl der a_j mit $(a_i a_j) = 1$ mindesten

$$(1+o(1))e^{-c}n/\log\log n$$

ist (C die Eulersche Konstante). (1) ist nicht zu verschärfen. Verschiedene verwandte Sätze werden auch bewiesen. Folgendes Problem ist ungelöst: $f_k(n)$ sei die kleinste Zahl so, daß, wenn $a_1 < ... < a_r \le n, r = f_k(n)$ ist, dann immer k a's existieren, die paarweise relativ prim sind. $\psi_{k-1}(n)$ ist die Anzahl der Zahlen $m \leq n$, die Vielfache von mindestens einer der k-1 ersten Primzahlen sind. Wahrscheinlich gilt $f_k(n) = 1 + \psi_{k-1}(n)$.

Classification:

11B83 Special sequences of integers and polynomials