Zbl 209.28003

Erdős, Paul

On a lemma of Hajnal-Folkman (In English)

Combinat. Theory Appl., Colloquia Math. Soc. János Bolyai 4, 311-316 (1970).

[For the entire collection see Zbl 205.00201.]

The symbol $(m, n, i, r) \to p$ means that if $|\mathcal{S}| = m \ge n$, $A_j \subset \mathcal{S}$, $|A_j| \ge n$ is any family of subsets of \mathcal{S} which cannot be represented by any *i* elements of \mathcal{S} , then there is a subset \mathcal{S}_1 of \mathcal{S} , $|\mathcal{S}_1| = p$, $p \ge r$, every *r*-tuple of which occurs in some A_j . $(m, n, i, r) \nrightarrow p$ means that $(m, n, i, r) \to p$ does not hold. $(2n - 1, n, 1, 2) \to n + 1$ is an old result of Hajnal and Folkman. The author proves $(2n + i - 2, n, i, 2) \to n + i$ and that this result is best possible. Several problems are posed, some of which have been settled since. Also a connection with Ramsey's theorem is established.

Classification:

05C55 Generalized Ramsey theory