Zbl 212.32502

Erdős, Paul; Tarski, A.

On some problems involving inaccessible cardinals (In English)

Essays Found. Math., dedicat. to A.A. Fraenkel on his 70th Anniv. 50-82 (1962).

[For the entire collection see Zbl 128.24103.]

In this paper, several properties of infinite cardinals are investigated. Let P_1, \ldots, P_4, Q, R be the following properties: $P_1(\lambda)$: There is a set with power λ which is simply ordered by a relation \leq in such a way that no subset of it with power λ is well ordered by the same relation \leq or by the converse relation \geq . $P_2(\lambda)$: There is a complete graph on a set of power λ that can be divided in two subgraphs neither of which includes a complete subgraph on a set of power λ . $P_3(\lambda)$: Every λ -complete prime ideal in the set algebra formed by all subsets of λ is principal. $P_4(\lambda)$: There is a λ - complete set algebra. $Q(\lambda)$: There is a ramification system $\langle A, \leq \rangle$ of order λ such that (1) the set of all elements $x \in A$ of order ξ has power $\langle \lambda$ for every λ , (2) every subset of A well-ordered by a set of power λ and which is not isomorphic to any λ -complete set algebra.

By $S_1^{\ D} \to S_2$ we mean that for every infinite cardinal in D property S_1 implies S_2 . And let C, AC, SL, IC be the class of all infinite, accessible, singular strong limit and inaccessible cardinals, respectively. We write $S_1 \to S_2$ instead of $S_1^{\ C} \to S_2$.

The main result of this paper is a diagram of implications. It is also obtained that the property R applies a very comprehensive class of inaccessible cardinals. Most of implications in the opposite direction, and the existence of an inaccessible cardinal which does not have the property R still remain open.

K.Namba

Classification: 03E55 Large cardinals