Zbl 236.05120

Erdős, Paul; Hajnal, András

Articles of (and about)

Problems and results in finite and infinite combinatorial analysis. (In English) Ann. New York Acad. Sci. 175, 115-124 (1970).

In der Arbeit werden Kantenzerlegungen $h = \bigcup_{\xi < \gamma} h_{\xi}$ von Graphen h betrachtet, wobei die h_{ξ} paarwise kantendisjunkte Graphen sind. $(g_1, \alpha) \to (g_2, \gamma)$ bedeutet, daß jeder Graph h mit α Ecken, der keinen zu g_1 isomorphen Teilgraphen enthält, eine Kantenzerlegung $h = \bigcup_{\xi < \gamma} h_{\xi}$ zuläßt, wobei kein h_{ξ} einen zu g_2 isomorphen Teilgraphen besitzt. Weiter bedeutet $g \to (g_{\xi})_{\xi}^2$, daß für jede Kantenzerlegung $g = \bigcup_{\xi < \gamma} h_{\xi}$ mindestens ein h_{ξ} einen zu g_{ξ} isomorphen Teilgraphen besitzt. In dieser Notation wird über einige Ergebnisse und Probleme vom Ramsey-Typ berichtet: $(K_{\omega}, \omega_2) \to (K_n, \omega)$ ist für $n \geq 3$ ungeklärt; für natürliche Zahlen k, l wird die Existenz von n mit $(C_{2k-1},n) \nrightarrow (C_{2k+1},l)$ bewiesen, wobei C_m Kreis mit m Ecken; die Existenz von n mit $(K_k, n) \nrightarrow (K_{k-1}, r)$ ist für r > 3 nicht bekannt. Eine Klasse \mathcal{K} von Graphen hat die (uneingeschränkte) G - R-Eigenschaft, wenn zu jedem $g \in \mathcal{K}$ (und jedem γ) ein $h \in \mathcal{K}$ existiert, so daß $h \to (g,g)(h \to (g_{\xi})^2_{\gamma})$ mit $g_{\xi} = g$ für alle ξ). Es werden mehrere Klassen in Bezug auf die (uneingeschränkte) G-R-Eigenschaft diskutiert und in diesem Zusammenhang weitere Probleme formuliert.

H.A.Jung

Classification: 05C99 Graph theory 05A99 Classical combinatorial problems 00A07 Problem books