Zbl 238.10002

Erdős, Paul; Ryavec, C.

A characterization of finitely monotonic additive functions. (In English) J. Lond. Math. Soc., II. Ser. 5, 362-367 (1972). [0024-6107]

Let f(n) be a real valued function. f(n) is additive if $f(a \cdot b) = f(a) + f(b)$ for (a, b) = 1. f(n) is said to be finitely monotonic if there exists an infinite sequence $x_k \to \infty$ and a positive constant λ so that for each k there are integers $1 \leq a_1 < \ldots < a_n \leq x_k, n > \lambda x_k$ and $f(a_1) \leq f(a_2) \leq \ldots \leq f(a_n)$. The authors prove: An additive function f(n) is finitely monotonic if and only if $f(n) = c \log n + g(n)$ where $\sum_{g(p) \neq 0} \frac{1}{p} < \infty$.

Classification:

11A25 Arithmetic functions, etc.