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Let N(t) denote the number of times the integer ¢ < 1 occurs as a binomial
coefficient; that is, N () is the number of solutions of ¢ = (") in integers n and
r. In this note we obtain some additional information about the behavior of
N(t). In Theorem 1 we prove that the average and normal order of N (t) is 2;
in fact, we prove somewhat more than this, namely, the number of integers t,
1 <t <z, for which N(t) > 2 is 0(\/x). [see G. H. Hardy and E. M. Wright,
“Introduction to the theory of numbers” (1960; Zbl 086.25803), p. 263 and p.
356, for the definitions of averageand normal order.] In Theorem 2 we give an
upper bound for N(¢) in terms of the number N (t) of distinct prime factors
of t : N(t) < 2w(t)logt/(logt — w(t)loglogt). Our main result is Theorem
3, in which we show that N(¢) = 0(logt/loglogt). Finally, in Theorem 4, we
consider the related problem of determining the number of representations of
an integer as a product of consecutive integers.
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