Zbl 299.02083

Erdős, Paul; Hajnal, András; Shelah, Saharon

On some general properties of chromatic numbers. (In English) Topics in Topol., Colloqu. Keszthely 1972, Colloquia Math. Soc.

Janos Bolyai 8, 243-255 (1974).

[For the entire collection see Zbl 278.00018.]

The starting point is the following Taylor problem [W. Taylor, Fundamenta Math. 71, 103-112 (1971; Zbl 238.02044); p. 106, problem 1.14]: What is the minimal cardinal number λ such that for every graph G with chromatic number $\chi G \geq \lambda$ and every cardinal $\sigma \geq \lambda$ there exists a graph G' such that $\chi(G') \geq \sigma$ and that G, G' have the same finite graphs? According to Taylor, $\lambda \geq \omega_1$, conjecturing $\lambda = \omega_1$. The authors formulate 7 other problems, prove 3 theorems and several lemmas. E.g., if $\chi(G) > \omega$, then for some $n < \omega$ the graph G contains odd circuits of length 2j + 1 for every $n < j < \omega$ (theorem 3). For any ordered set (R, \prec) and any $i < \omega$ the authors define two sorts of graphs $G^0(R, i)$ for i > 1 and $G^1(R, i, t)$ for $i > 2, 1 \leq t < i - 1$ as \prec -increasing *i*-sequences of points of R such that

$$G^{0}(R,i) = \{(\varphi,\varphi') \mid \varphi(j+1) = \varphi'(j) \text{ for } j < i-1\}$$

for $i \geq 2$ and

$$G^{1}(R,i,t) = \{\varphi,\varphi') \mid \varphi(j+t) < \varphi'(t) < \varphi(j+t+1) < \varphi'(j+1) \text{ for } j < i-1-t\}$$

for $t \geq 3$; they put

$$S^{0}(i) = \psi(G^{0}(\omega, i), \omega) = \psi(G^{0}(R, i), \omega)$$

for $|R| \geq \omega$ and

$$S^1(i,t) = \psi(G^1(\omega,i,t),\omega) = \psi(G^1(R,i,t),\omega)$$

for $|R| \ge \omega$; the graphs S^0, S^1 are called "edge graphs" and Specker graphs respectively. Notations: For any cardinality $\tau \ge \omega$ let $B(\tau)$ be the system of all subgraphs of cardinality $< \tau$ of some complete graph with τ vertices; put $A(\tau) = P(B(\tau))$. If G is a given graph let

$$\psi(G,\tau) := \{G' \mid G' \in B(\tau), \quad G' \text{ being isomorphic to a subgraph of } G\}.$$

For $S \in A(\tau)$ let $G(S, \tau)$ be the class of graphs G satisfying $\psi(G, \tau) \subset S \in A(\tau)$; S is said τ -unbounded if for every cardinal λ there is some $G \in G(S, \tau)$ satisfying $\chi(G) > \lambda$. For a given operation F on cardinals satisfying $Fx \ge x^+$, the authors say that $S \in A(\omega)$ is ω - unbounded with the restriction F, if for every σ there is some $\lambda \ge \sigma$ and a graph G such that $\psi(G, \omega) \subset S$, $\chi(G) > \lambda$ and $|G| \le F(\lambda)$. In particular, S is ω - unbounded with restriction ξ if S is so with the restriction F_{ξ} where

$$F_{\xi}(\lambda) = \kappa \Leftrightarrow \lambda = \omega_{\alpha}, \quad \kappa = \omega_{\alpha+1+\xi}.$$

Theorem 1: (α) $S^1(i,t)$ is ω -unbounded with restriction 0 for $2 \leq i < \omega$; (β) $S^0(i)$ is ω -unbounded with restriction $\exp_{i-1}(\lambda)^+$ for $2 \leq i < \omega$; (γ) $S^0(i)$ is not ω -unbounded with the restriction $\exp_{i-1}(\lambda)$ for $2 \leq i < \omega$.

D.Kurepa

Classification: 03E55 Large cardinals 03C68 Other classical first-order model theory 05C15 Chromatic theory of graphs and maps 05-02 Research monographs (combinatorics)

©European Mathematical Society & FIZ Karlruhe & Springer-Verlag