Articles of (and about) Paul Erdős in Zentralblatt MATH

Zbl 316.05111

Erdős, Paul; Simonovits, M.; Sos, V.T.

Anti-Ramsey theorems. (In English)

Infinite finite Sets, Colloq. Honour Paul Erdős, Keszthely 1973, Colloq. Math. Soc. Janos Bolyai 10, 633-643 (1975).

[For the entire collection see Zbl 293.00009.]

Let H be a fixed graph: f(n; H) denotes the maximum number so that any edge coloring of K^n , the complete graph on n vertices, which uses f(n; H) or more distinct colors yields a subgraph isomorphic with H each edge of which has a different color (a totally multicolored subgraph). The paper contains a reformulation of some earlier results, some new results, and some conjectures, all concerning the function f(n, H). For example: Theorem 4 (a new result): Let $p \ge 4$. There exists an n_p such that if $n > n_p$, then $f(n, K^p) = \text{ext}(n, K^{p-1}) + 1$, (where $ext(n, K^{p-1})$) is the maximum number of edges a graph on n vertices can contain without containing K^{p-1} as a subgraph). Further if K^n is colored by $f(n, K^p)$ colors and contains no totally multicolored K^p , then its coloring is uniquely determined: one can divide the vertices of K^n into d classes A_1, \ldots, A_d so that each edge joining vertices from different A_i 's has its own color (that is, a color used only once) and each edge (x, y) where x and y belong to the same A_i has the same color independent from x, y and i. Conjecture 1. Let C^k denote the k-circuit. Then $f(n, C^k) - n((k-2)/2 + 1/(k-1)) + 0(1)$. J.E.Graver

Classification:

05C15 Chromatic theory of graphs and maps 05C35 Extremal problems (graph theory)