Zbl 346.10027

Cohen, S.D.; Erdős, Paul; Nathanson, M.B.

Prime polynomial sequences. (In English)

J. London Math. Soc., II. Ser. 14, 559-562 (1976).

Let F(x) be a polynomial of degree $d \ge 2$ with integral coefficients and such that $F(n) \ge 1$ for all $n \ge 1$, Let $\mathfrak{G}_F = \{F(n)\}_{n=1}^{\infty}$. Then F(n) is called composite in \mathfrak{G}_F if F(n) is the product of strictly smaller terms of \mathfrak{G}_F . Otherwise F(n) is prime in \mathfrak{G}_F . It is proved that, if F(x) is not of the form $a(bx + c)^d$, then almost all members of \mathfrak{G}_F are prime in \mathfrak{G}_F . More precisely, if C(x) denotes the number of composite F(n) in \mathfrak{G}_F , with $n \ge x$, then, for any $\epsilon > 0$, it is shown that $C(x) \ll x^{1-(1/d^2)+\epsilon}$. For monic quadratics an identity implies that $C(x) \gg x^{\frac{1}{2}}$ so that in this case $x^{\frac{1}{2}} \ll C(x) \ll x^{\frac{3}{4}+\epsilon}$. On the other hand, it is easy to construct polynomials for which C(x) = 0 for all x. In general, the exact order of C(x) is unknown.

Classification:

11N13 Primes in progressions

11B83 Special sequences of integers and polynomials