Zbl 444.52008

Erdős, Paul; Pach, János

On a problem of L. Fejes Toth. (In English)

Discrete Math. 30, 103-109 (1980). [0012-365X]

Let $0 \le x_1 \le x_2 \le x_3 \le \ldots$ be a sequence of real numbers, $\lim x_i = +\infty$. The authors prove that if $\sum_i l/x_i^{n-k} = +\infty$ then there exists a point-system $P = \{z_1, z_2, \ldots\}$ in the *n*-dimensional space \mathbb{E}^n , for which $|z_i| = x_i$ holds $(i = 1, 2, \ldots)$, and any *k*- dimensional plane comes arbitrarily near to *P*. this result is best possible in the sense that if $P\{z_1, z_2, \ldots\}$ is a point-system satisfying $\sum_i l/|z_i|^{n-k} < +\infty$ then for every C > 0 there exists a *k*- dimensional plane in $BbbE^n$, whose distance from all members of *P* is at least *C*. A generalization is also proved. This settles a problem of *L*. Fejes Tóth [Mat. Lapok 25 (1974), 13-20 (1976; Zbl 359.52010)].

Classification:

52A37 Other problems of combinatorial convexity

52A40 Geometric inequalities, etc. (convex geometry)

Keywords:

countable point-system in E^2 ; plane comes arbitrarily near to P