Zbl 466.05031

Erdős, Paul; Simonovits, M.

Articles of (and about)

On the chromatic number of geometric graphs. (In English)

Ars Comb. 9, 229-246 (1980). [0381-7032]

In this paper, serveral kinds of geometric graphs which can be associated to a metric space U with metric ρ are studied for the case $U \subseteq \mathbb{E}^h$, where \mathbb{E}^h is the h-dimensional euclidean space. Let G(U) be the graph with vertex set U and which has as edge set the set of all pairs $x, y \in S$ with $\rho(x, y) = 1$, then the essential chromatic number of \mathbb{E}^h is defined as $\chi_e(\mathbb{E}^h) = \{t | G(U) \text{ can be}\}$ made t- chromatic by deleting $o(|S|^2)$ edges, and U is finite. The following bounds for $\chi_e(\mathbb{E}^h)$ are given: 1. $\chi_e(\mathbb{E}^h) \leq 2$, 2. $\chi_e(\mathbb{E}^h) \geq h-2$ for $h \geq 2$, 3. $\chi(S^{h-1}) \leq \chi_e(\mathbb{E}^{2h}) \leq \chi_e(\mathbb{E}^{2h+1}) \leq \chi(S^h)$, where $\chi(S^{h-1})$ is the ordinary chromatic number of the sphere S^{h-1} of radius $1/\sqrt{2}$ in \mathbb{E}^h . Furthermore, it is shown that for $h \geq 2$ the essential chromatic number of \mathbb{E}^h coincides with the orthogonal chromatic number of \mathbb{E}^h which is defined by: Given a set \mathcal{P} of 2dimensional subspaces of \mathbb{E}^h , let $\hat{G}(\mathcal{P})$ be the graph with vertex set \mathcal{P} and which has as edge set the set of all pairs $P, Q \in \mathcal{P}$ with $P \perp Q$, then the orthogonal number is $\chi_{\perp}(\mathbb{E}^h) = \max\{\chi(G(\mathcal{P}))|\mathcal{P} \text{ is finite}\}$. Further results in this paper deal with embeddings of finite graphs in \mathbb{E}^h . The dimension of a finite graph G is defined as $\dim(G) = \min\{h|G \text{ is contained in } G(U) \text{ as a subgraph, } U \subseteq \mathbb{E}^h$ is finite}; the faithful dimension of G is $Dim(G) = min\{h|G \text{ is isomorphic to } \}$ $G(U), U \subseteq \mathbb{E}^h$ is finite. These parameters are related to the maximum valence $\Delta(G)$ of G by: 4. $\dim(G) \leq \Delta(G) + 2$, 5. $\dim(G) \leq 2\Delta(G) + 1$.

M. Walter

Classification:

05C15 Chromatic theory of graphs and maps

05C10 Topological graph theory

Keywords:

geometric graphs; essential chromatic number; dimension of a graph