Zbl 656.05002

Erdős, Paul; Linial, N.; Moran, S.

Extremal problems on permutations under cyclic equivalence. (In English) Discrete Math. 64, 1-11 (1987). [0012-365X]

Let $\sigma \in S_n$ be a permutation and let $[\sigma]$ be the class of all cyclic permutations of σ . For $\pi \in S_n$, $\pi = (b_1, b_2, ..., b_n)$, denote by π^R the permutation $(b_n, ..., b_1) \in S_n$. Also denote by $\langle \sigma \rangle$ the set $[\sigma] \cup \{\tau^R; \tau \in [\sigma]\}$. In this paper the authors study the function $F(n) = \max \min I(\sigma)$, where $I(\sigma)$ is the number of inversions in σ , the max is over $\pi \in S_n$ and the min over $\sigma \in [\pi]$. The main result is the following theorem:

$$0.304^{-}n^{2} + 0(n) = \frac{8 - \pi}{16} \cdot n^{2} - \frac{3n}{2} \le F(n) \le \frac{n^{2}}{3} - \frac{3n - 1}{6} = 0.333^{+}n^{2} + 0(n).$$

The measures of complexity considered are the number of inversions and the diameter of the permutation.

E.Fuchs

Classification: 05A05 Combinatorial choice problems Keywords: permutations; inversions