Zbl 657.05048

Articles of (and about)

Erdős, Paul; Faudree, Ralph J.; Gyárfás, A.; Schelp, R.H.

Cycles in graphs without proper subgraphs of minimum degree 3. (In English) Ars Comb. 25B, 195-201 (1988). [0381-7032]

Let G(n,m) denote the set of graphs with n vertices and m edges. It is well-kown that each $G \in G(n,2n-2)$ contains a subgraph of minimum degree 3 but there is a $G \in G(n,2n-3)$ with no subgraph of minimum degree 3. Furthermore, each $G \in G(n,2n-1)$ contains a proper subgraph of minimum degree3 but there is a $G \in G(n,2n-2)$ without this property. Here the authors primarily study cycle lengths of graphs in $G^*(n,2n-2)$, where $G^*(n,2n-2)$ is the set of graphs with n vertices, 2n-2 edges, and no proper subgraph with minimum degree 3. it is shown, for example, that if $G \in G^*(n,2n-2)$ and $n \geq 6$, then G contains a C_m for m=3,4,5. Such graphs also contain "long" cycles. It is shown that if $G \in G^*(n,2n-2)$ then G contains a cycle of length at least $|\log n|$.

L.Lesniak

Classification:

05C38 Paths and cycles

Keywords:

subgraph of minimum degree; cycle lengths; proper subgraph