Articles of (and about) Paul Erdős in Zentralblatt MATH

Zbl 774.05050

Erdős, Paul; Hajnal, András; Simonovits, M.; Sós, V.T.; Szemerédi, E.

Turán-Ramsey theorems and simple asymptotically extremal structures. (In English)

Combinatorica 13, No.1, 31-56 (1993). [0209-9683]

Let L_1, L_2, \ldots, L_r be given graphs ("forbidden" graphs), and let n be a positive integer and f a given function; $\alpha(G)$ denotes the maximum number of independent vertices in a graph G; $\operatorname{RT}(n, L_1, L_2, \ldots, L_r, f(n))$ denotes the maximum number of edges in a graph G_n on n vertices, having $\alpha(G_n) \leq f(n)$, whose edges may be coloured in r colours so that the subgraph of the *i*th colour contains no L_i (i = 1, 2, ..., r); the results of this paper generally apply to the case f(n) = o(n), and the maximum is usually denoted by $\operatorname{RT}(n, L_1, L_2, \ldots, L_r, o(n))$. A sequence (S_n) of graphs for which $\alpha(S_n) \leq f(n)$ and S_n has $\operatorname{RT}(n, L_1, L_2, \ldots, L_r, f(n)) + o(n^2)$ edges, is asymptotically extremal for $\operatorname{RT}(n, L_1, L_2, \dots, L_r, f(n))$ if the edges of S_n may be r- coloured so that the subgraph of the *i*th colour contains no L_i $(i = 1, \ldots, r)$. In Theorem 2 a construction of B. Bollobás and P. Erdős [On a Ramsey-Turán type problem, J. Comb. Theory, Series B 21, 166-168 (1976; Zbl 337.05134)] used to prove that $\operatorname{RT}(n, K_4, o(n)) \geq \frac{1}{8}n^2 - o(n^2)$ is generalized to prove the existence of a sequence of graphs that is asymptotically extremal for $\operatorname{RT}(n, K_{k_1}, K_{k_2}, \ldots, K_{k_r}, o(n^2))$, where k_1, k_2, \ldots, k_r are integers each exceeding 2. Let $\vartheta(L_1, L_2, \ldots, L_r)$ denote the minimum real number such that $RT(n, L_1, L_2, ..., L_r, f(n)) \leq \vartheta(L_1, L_2, ..., L_r)n^2 + o(n^2);$ in Theorem 3 the values of $\vartheta(K_3, K_3)$, $\vartheta(K_3, K_4)$, $\vartheta(K_3, K_5)$, $\vartheta(K_4, K_4)$ are determined, as well as an asymptotically extremal sequence for each case; it is shown that the distance between two such sequences - - i.e. the minimum number of edge additions/deletions needed to transform one such sequence into another – is $o(n^2)$ in each case. Theorem 4: If p and q are odd integers, then $\operatorname{RT}(n, C_p, C_q, o(n)) = \frac{1}{4}n^2 + o(n^2).$

The paper concludes with a list of open problems.

W.G.Brown (Montreal)

Classification:

05C35 Extremal problems (graph theory) 05C55 Generalized Ramsey theory 05C38 Paths and cycles

Keywords:

Turán-Ramsey theorems; asymptotically extremal structures; colour; asymptotically extremal sequence