Zbl 826.52009

Erdős, Paul; Purdy, G.

Articles of (and about)

Two combinatorial problems in the plane. (In English)

Discrete Comput. Geom. 13, No.3-4, 441-443 (1995). [0179-5376]

This paper contains the authors' solution to one problem about arrangements of lines and points in the plane, and a partial solution, due to Dean Hickerson, of another. (The connecting theme is that both problems were posed in a 1978 paper by the same authors.) Let t_n , $n = 2, 3, \ldots$, be the number of lines of the arrangement containing exactly n points; and let ε be the lesser of $\{t_3/t_2, 1\}$. It is shown that absolute positive constants C_1 , C_2 exist such that if the number of points is n, the total number of lines determined by the points is at least $C_1 \in n^2$; and t_3 is at least $C_2 \varepsilon^2 n^2$.

The second problem asks how small a set T can be, if there is an n-point noncollinear set S, disjoint from T, such that every line through two or more points of S contains a point of T. For $n \geq 6$, a construction, due to Hickerson, is given for a pair (S,T) such that |S|=n, |T|=n-2.

R.Dawson (Halifax)

Classification:

52A37 Other problems of combinatorial convexity

00A07 Problem books

Keywords:

arrangements; lines; points; plane