Zbl 831.52009

Erdős, Paul; Fishburn, Peter

Articles of (and about)

Intervertex distances in convex polygons. (In English)

Discrete Appl. Math. 60, No.1-3, 149-158 (1995). [0166-218X]

Let V be the set of vertices of a convex n-gon in the plane. Denote by d_1, \ldots, d_m the different positive distances between the points of V, and by r_k the multiplicity of d_k . Choose the numbering such that $r_1 \geq r_2 \geq \cdots \geq r_m$. For fixed n, the maximum of r_i over all convex n-gons is denoted by $r_i(n)$. The values of $r_1(n)$ and $r_2(n)$ are known for $n \leq 8$. In particular we have $r_2(n) \leq n$ in this case. Here a construction is presented which shows $r_2(25) \geq 26$ and $\sup_n r_2(n)/n \geq 7/6$.

A monotone sequence in V from v_0 is a sequence of vertices v_0, v_1, \ldots, v_k in which the v_i are encountered in succession going (counter-)clockwise from v_0 , such that the distance from v_0 to v_i is strictly increasing. Let g(n) denote the minimum (over all convex n-gons) of the maximum length of monotone sequences. In a previous paper, the authors have shown $\lfloor n/3 \rfloor + 1 \leq g(n)$. Here, $g(n) \leq \lceil n/3 \rceil + 2$ is proved.

J.Linhart (Salzburg)

Classification:

52C10 Erdoes problems and related topics of discrete geometry

Keywords:

minimum number of different distances; multiplicity vector