Zbl 841.11048

Erdős, Paul; Sárközy, A.; Stewart, C.L.

On prime factors of subset sums. (In English)

J. Lond. Math. Soc., II. Ser. 49, No.2, 209-218 (1994). [0024-6107] As usual, $\omega(n)$ denotes the number of distinct prime factors of n and P(n)denotes the largest prime factor of n. Further, for any finite non-empty set A of positive integers $S(A) = \sum_{a \in A} \varepsilon_a a$, where $\varepsilon_a \in \{0, 1\}$ and $s(A) = \prod_{n \in S(A)} n$. This paper is about the behaviour of P(s(A))/|A| and $\omega(s(A))/\pi(|A|)$ as the cardinality |A| of A increases without bound. The authors conjecture that

 $P(s(A)) > C_1 |A|^2 \text{ and } \omega(s(A)) > C_2 \pi(|A|^2),$

for constants C_1 and C_2 , and they obtain several results in which they prove these conjectures under certain explicit density restrictions imposed on A.

R.J.Stroeker (Rotterdam)

Classification:

11N35 Sieves

11N25 Distribution of integers with specified multiplicative constraints 11B83 Special sequences of integers and polynomials

Keywords:

prime factors of subset sums; sieves