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Preface

Paul Erdős

Paul Erdős liked to talk about The Book, in which God maintains the perfect
proofs for mathematical theorems, following the dictum of G. H. Hardy that
there is no permanent place for ugly mathematics. Erd˝os also said that you
need not believe in God but, as a mathematician, you should believe in
The Book. A few years ago, we suggested to him to write up a first (and
very modest) approximation to The Book. He was enthusiastic about the
idea and, characteristically, went to work immediately, filling page after
page with his suggestions. Our book was supposed to appear in March
1998 as a present to Erd˝os’ 85th birthday. With Paul’s unfortunate death
in the summer of 1997, he is not listed as a co-author. Instead this book is
dedicated to his memory.

“The Book”

We have no definition or characterization of what constitutes a proof from
The Book: all we offer here is the examples that we have selected, hop-
ing that our readers will share our enthusiasm about brilliant ideas, clever
insights and wonderful observations. We also hope that our readers will
enjoy this despite the imperfections of our exposition. The selection is to a
great extent influenced by Paul Erd˝os himself. A large number of the topics
were suggested by him, and many of the proofs trace directly back to him,
or were initiated by his supreme insight in asking the right question or in
making the right conjecture. So to a large extent this book reflects the views
of Paul Erdős as to what should be considered a proof from The Book.
A limiting factor for our selection of topics was that everything in this book
is supposed to be accessible to readers whose backgrounds include only
a modest amount of technique from undergraduate mathematics. A little
linear algebra, some basic analysis and number theory, and a healthy dollop
of elementary concepts and reasonings from discrete mathematics should
be sufficient to understand and enjoy everything in this book.
We are extremely grateful to the many people who helped and supported
us with this project — among them the students of a seminar where we
discussed a preliminary version, to Benno Artmann, Stephan Brandt, Stefan
Felsner, Eli Goodman, Torsten Heldmann, and Hans Mielke. We thank
Margrit Barrett, Christian Bressler, Ewgenij Gawrilow, Elke Pose, and J¨org
Rambau for their technical help in composing this book. We are in great
debt to Tom Trotter who read the manuscript from first to last page, to
Karl H. Hofmann for his wonderful drawings, and most of all to the late
great Paul Erd˝os himself.

Berlin, March 1998 Martin Aigner � Günter M. Ziegler
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Six proofs
of the infinity of primes

Chapter 1

It is only natural that we start these notes with probably the oldest Book
Proof, usually attributed to Euclid. It shows that the sequence of primes
does not end.

� Euclid’s Proof. For any finite setfp1; : : : ; prg of primes, consider
the numbern = p1p2 � � � pr + 1. Thisn has a prime divisorp. But p is
not one of thepi: otherwisep would be a divisor ofn and of the product
p1p2 � � � pr, and thus also of the differencen � p1p2 : : : pr = 1, which
is impossible. So a finite setfp1; : : : ; prg cannot be the collection ofall
prime numbers. �

Before we continue let us fix some notation.N = f1; 2; 3; : : :g is the set
of natural numbers,Z= f: : : ;�2;�1; 0; 1; 2; : : :g the set of integers, and
P = f2; 3; 5; 7; : : :g the set of primes.
In the following, we will exhibit various other proofs (out of a much longer
list) which we hope the reader will like as much as we do. Although they
use different view-points, the following basic idea is common to all of them:
The natural numbers grow beyond all bounds, and every natural number
n � 2 has a prime divisor. These two facts taken together forceP to be
infinite. The next three proofs are folklore, the fifth proof was proposed by
Harry Fürstenberg, while the last proof is due to Paul Erd˝os.

The second and the third proof use special well-known number sequences.

� Second Proof. SupposeP is finite andp is the largest prime. We
consider the so-calledMersenne number2p � 1 and show that any prime
factorq of 2p � 1 is bigger thanp, which will yield the desired conclusion.
Let q be a prime dividing2p � 1, so we have2p � 1 (modq). Sincep is

Lagrange’s Theorem
If G is a finite (multiplicative) group
and U is a subgroup, thenjU j
dividesjGj.

� Proof. Consider the binary rela-
tion

a � b :() ba
�1 2 U:

It follows from the group axioms
that � is an equivalence relation.
The equivalence class containing an
elementa is precisely the coset

Ua = fxa : x 2 Ug:

Since clearlyjUaj = jU j, we find
thatG decomposes into equivalence
classes, all of sizejU j, and hence
thatjU j dividesjGj. �

In the special case whenU is a cyclic
subgroupfa; a2; : : : ; amg we find
that m (the smallest positive inte-
ger such thatam = 1, called the
order of a) divides the sizejGj of
the group.

prime, this means that the element2 has orderp in the multiplicative group
Zqnf0g of the fieldZq. This group hasq � 1 elements. By Lagrange’s
theorem (see the box) we know that the order of every element divides the
size of the group, that is, we havep j q � 1, and hencep < q. �

� Third Proof. Next let us look at theFermat numbersFn = 22
n

+1 for
n = 0; 1; 2; : : : . We will show that any two Fermat numbers are relatively
prime; hence there must be infinitely many primes. To this end, we verify
the recursion

n�1Y
k=0

Fk = Fn � 2 (n � 1);
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from which our assertion follows immediately. Indeed, ifm is a divisor of,
say,Fk andFn (k < n), thenm divides 2, and hencem = 1 or 2. But
m = 2 is impossible since all Fermat numbers are odd.

F0 = 3
F1 = 5
F2 = 17
F3 = 257
F4 = 65537
F5 = 641 � 6700417

The first few Fermat numbers

To prove the recursion we use induction onn. Forn = 1 we haveF0 = 3
andF1 � 2 = 3. With induction we now conclude

nY
k=0

Fk =
� n�1Y
k=0

Fk

�
Fn = (Fn � 2)Fn =

= (22
n � 1)(22

n

+ 1) = 22
n+1 � 1 = Fn+1 � 2: �

Now let us look at a proof that uses elementary calculus.

� Fourth Proof. Let�(x) := #fp � x : p 2 Pg be the number of primes
that are less than or equal to the real numberx. We number the primes
P = fp1; p2; p3; : : : g in increasing order. Consider the natural logarithm
logx, defined aslogx =

R x
1

1
t
dt.

21

1

n

Steps above the functionf(t) = 1

t

Now we compare the area below the graph off(t) = 1
t

with an upper step
function. (See also the appendix on page 10 for this method.) Thus for
n � x < n+ 1 we have

log x � 1 +
1

2
+

1

3
+ : : :+

1

n� 1
+

1

n

�
X 1

m
; where the sum extends over allm 2 N which have

only prime divisorsp � x.

Since every suchm can be written in auniqueway as a product of the formQ
p�x

pkp , we see that the last sum is equal to

Y
p2P
p�x

�X
k�0

1

pk

�
:

The inner sum is a geometric series with ratio1
p
, hence

logx �
Y
p2P
p�x

1

1� 1
p

=
Y
p2P
p�x

p

p� 1
=

�(x)Y
k=1

pk

pk � 1
:

Now clearlypk � k + 1, and thus

pk

pk � 1
= 1 +

1

pk � 1
� 1 +

1

k
=

k + 1

k
;

and therefore

logx �
�(x)Y
k=1

k + 1

k
= �(x) + 1:

Everybody knows thatlogx is not bounded, so we conclude that�(x) is
unbounded as well, and so there are infinitely many primes. �
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� Fifth Proof. After analysis it’s topology now! Consider the following
curious topology on the setZ of integers. Fora; b 2 Z, b > 0 we set

Na;b = fa+ nb : n 2 Zg:
Each setNa;b is a two-way infinite arithmetic progression. Now call a set
O � Z openif eitherO is empty, or if to everya 2 O there exists some
b > 0 with Na;b � O. Clearly, the union of open sets is open again. If
O1; O2 are open, anda 2 O1 \ O2 with Na;b1 � O1 andNa;b2 � O2,
thena 2 Na;b1b2 � O1 \ O2. So we conclude that any finite intersection
of open sets is again open. So, this family of open sets induces a bona fide
topology onZ.
Let us note two facts:

(A) Any non-empty open set is infinite.

(B) Any setNa;b is closed as well.

Indeed, the first fact follows from the definition. For the second we observe

Na;b = Zn
b�1[
i=1

Na+i;b;

which proves thatNa;b is the complement of an open set and hence closed.

“Pitching flat rocks, infinitely”

So far the primes have not yet entered the picture — but here they come.
Since any numbern 6= 1;�1 has a prime divisorp, and hence is contained
in N0;p, we conclude

Znf1;�1g =
[
p2P

N0;p:

Now if P were finite, then
S

p2PN0;p would be a finite union of closed sets
(by (B)), and hence closed. Consequently,f1;�1g would be an open set,
in violation of (A). �

� Sixth Proof. Our final proof goes a considerable step further and
demonstrates not only that there are infinitely many primes, but also that
the series

P
p2P

1
p

diverges. The first proof of this important result was
given by Euler (and is interesting in its own right), but our proof, devised
by Erdős, is of compelling beauty.
Let p1; p2; p3; : : : be the sequence of primes in increasing order, and
assume that

P
p2P

1
p

converges. Then there must be a natural numberk

such that
P

i�k+1
1
pi

< 1
2 . Let us callp1; : : : ; pk the small primes, and

pk+1; pk+2; : : : the big primes. For an arbitrary natural numberN we
therefore find

X
i�k+1

N

pi
<

N

2
: (1)
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LetNb be the number of positive integersn � N which are divisible by at
least one big prime, andNs the number of positive integersn � N which
have only small prime divisors. We are going to show that for a suitableN

Nb +Ns < N;

which will be our desired contradiction, since by definitionNb+Ns would
have to be equal toN .
To estimateNb note thatbN

pi
c counts the positive integersn � N which

are multiples ofpi. Hence by (1) we obtain

Nb �
X

i�k+1

jN
pi

k
<

N

2
: (2)

Let us now look atNs. We write everyn � N which has only small prime
divisors in the formn = anb

2
n, wherean is the square-free part. Everyan

is thus a product ofdifferentsmall primes, and we conclude that there are
precisely2k different square-free parts. Furthermore, asbn �

p
n � p

N ,
we find that there are at most

p
N different square parts, and so

Ns � 2k
p
N:

Since (2) holds foranyN , it remains to find a numberN with 2k
p
N � N

2

or 2k+1 � p
N , and for thisN = 22k+2 will do. �
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