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On the Argument of Abel, respecting the Impossibility of expressing a Root of
any General Equation above the Fourth Degree, by any finite Combination of
Radicals and Rational Functions.

By Sir William Rowan Hamilton.

Read 22nd May, 1837.

[Transactions of the Royal Irish Academy, vol. xviii (1839), pp. 171–259.]

[1.] Let a1, a2, . . . an be any n arbitrary quantities, or independent variables, real or
imaginary, and let a′1, a

′
2, . . . a

′
n′ be any n′ radicals, such that

a
′α′1
1 = f1(a1, . . . an), . . . a

′α′
n′

n′ = fn′(a1, . . . an);

again, let a′′1 , . . . a
′′
n′′ be n′′ new radicals, such that

a
′′α′′1
1 = f ′1(a′1, . . . a

′
n′ , a1, . . . an),

· · · · · · · · ·
a
′′α′′

n′′
n′′ = f ′n′′(a

′
1, . . . a

′
n′ , a1, . . . an);

and so on, till we arrive at a system of equations of the form

a
(m)α

(m)
1

1 = f
(m−1)
1 (a

(m−1)
1 , . . . a

(m−1)

n(m−1) , a
(m−2)
1 , . . . a

(m−2)

n(m−2) , . . . a1, . . . an),

· · · · · · · · ·

a
(m)α

(m)

n(m)

n(m) = f
(m−1)

n(m) (a
(m−1)
1 , . . . a

(m−1)

n(m−1) , a
(m−2)
1 , . . . a

(m−2)

n(m−2) , . . . a1, . . . an),

the exponents α
(k)
i being all integral and prime numbers greater than unity, and the functions

f
(k−1)
i being rational, but all being otherwise arbitrary. Then, if we represent by b(m) any

rational function f (m) of all the foregoing quantities a
(k)
i ,

b(m) = f (m)(a
(m)
1 , . . . a

(m)

n(m) , a
(m−1)
1 , . . . a

(m−1)

n(m−1) , . . . a1, . . . an),

we may consider the quantity b(m) as being also an irrational function of the n original
quantities, a1, . . . an; in which latter view it may be said, according to a phraseology proposed
by Abel, to be an irrational function of the mth order : and may be regarded as the general
type of every conceivable function of any finite number of independent variables, which can be
formed by any finite number of additions, subtractions, multiplications, divisions, elevations

1



to powers, and extraction of roots of functions; since it is obvious that any extraction of a
radical with a composite exponent, such as α

′
2α
′
1
√
f1, may be reduced to a system of successive

extractions of radicals with prime exponents, such as

α′1
√
f1 = f ′1,

α′2
√
f ′1 = f ′′1 .

Insomuch that the question, “Whether it be possible to express a root x of the general
equation of the nth degree,

xn + a1x
n−1 + · · ·+ an−1x+ an = 0,

in terms of the coefficients of that equation, by any finite combination of radicals and rational
functions?”, is, as Abel has remarked, equivalent to the question, “Whether it be possible
to equate a root of the general equation of any given degree to an irrational function of the
coefficients of that equation, which function shall be of any finite order m?” or to this other
question: “Is it possible to satisfy, by any function of the form b(m), the equation

b(m)n + a1b
(m)n−1 + · · ·+ an−1b

(m) + an = 0,

in which the exponent n is given, but the coefficients a1, a2, . . . an are arbitrary?”

[2.] For the cases n = 2, n = 3, n = 4, this question has long since been determined in
the affirmative, by the discovery of the known solutions of the general quadratic, cubic, and
biquadratic equations.

Thus, for n = 2, it has long been known that a root x of the general quadratic equation,

x2 + a1x+ a2 = 0,

can be expressed as a finite irrational function of the two arbitrary coefficients a1, a2, namely,
as the following function, which is of the first order:

x = b′ = f ′(a′1, a1, a2) =
−a1

2
+ a′1,

the radical a′1 being such that

a′21 = f1(a1, a2) =
a2

1

4
− a2;

insomuch that, with this form of the irrational function b′, the equation

b′2 + a1b
′ + a2 = 0

is satisfied, independently of the quantities a1 and a2, which remain altogether arbitrary.
Again, it is well known that for n = 3, that is, in the case of the general cubic equation

x3 + a1x
2 + a2x+ a3 = 0,
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a root xmay be expressed as an irrational function of the three arbitrary coefficients a1, a2, a3,
namely as the following function, which is of the second order:

x = b′′ = f ′′(a′′1 , a
′
1, a1, a2, a3)

= −a1

3
+ a′′1 +

c2
a′′1

;

the radical of highest order, a′′1 , being defined by the equation

a′′31 = f ′1(a′1, a1, a2, a3)

= c1 + a′1,

and the subordinate radical a′1 being defined by this other equation

a′21 = f1(a1, a2, a3) = c21 − c32,

while c1 and c2 denote for abridgment the following two rational functions:

c1 = − 1
54(2a3

1 − 9a1a2 + 27a3),

c2 = 1
9 (a2

1 − 3a2);

so that, with this form of the irrational function b′′, the equation

b′′3 + a1b
′′2 + a2b

′′ + a3 = 0

is satisfied, without any restriction being imposed on the three coefficients a1, a2, a3.
For n = 4, that is, for the case of the general biquadratic equation

x4 + a1x
3 + a2x

2 + a3x+ a4 = 0,

it is known in like manner, that a root can be expressed as a finite irrational function of the
coefficients, namely as the following function, which is of the third order:

x = b′′′ = f ′′′(a′′′1 , a
′′′
2 , a

′′
1 , a
′
1, a1, a2, a3, a4) = −a1

4
+ a′′′1 + a′′′2 +

e4

a′′′1 a
′′′
2

;

wherein

a′′′21 = f ′′1 (a′′1 , a
′
1, a1, a2, a3, a4) = e3 + a′′1 +

e2

a′′1
,

a′′′22 = f ′′2 (a′′1 , a
′
1, a1, a2, a3, a4) = e3 + ρ3a

′′
1 +

e2

ρ3a′′1
,

a′′31 = f ′1(a′1, a1, a2, a3, a4) = e1 + a′1,

a′21 = f1(a1, a2, a3, a4) = e2
1 − e3

2;
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e4, e3, e2, e1 denoting for abridgment the following rational functions:

e4 = 1
64 (−a3

1 + 4a1a2 − 8a3),

e3 = 1
48

(3a2
1 − 8a2),

e2 = 1
144

(−3a1a3 + a2
2 + 12a4),

e1 = 1
2 (3e2e3 − e3

3 + e2
4)

= 1
3456(27a2

1a4 − 9a1a2a3 + 2a3
2 − 72a2a4 + 27a2

3),

and ρ3 being a root of the numerical equation

ρ2
3 + ρ3 + 1 = 0.

It is known also, that a root x of the same general biquadratic equation may be expressed in
another way, as an irrational function of the fourth order of the same arbitrary coefficients
a1, a2, a3, a4, namely the following:

x = bIV = f IV(aIV1 , a′′′1 , a
′′
1 , a
′
1, a1, a2, a3, a4)

= −a1

4
+ a′′′1 + aIV

1 ;

the radical aIV
1 being defined by the equation

aIV2
1 = f ′′′1 (a′′′1 , a

′′
1 , a
′
1, a1, a2, a3, a4) = −a′′′21 + 3e3 +

2e4

a′′′1
,

while a′′′1 , a′′1 , a′1, and e4, e3, e2, e1, retain their recent meanings. Insomuch that either the
function of third order b′′′, or the function of fourth order bIV, may be substituted for x in
the general biquadratic equation; or, to express the same thing otherwise, the two equations
following:

b′′′4 + a1b
′′′3 + a2b

′′′2 + a3b
′′′ + a4 = 0,

and
bIV4 + a1b

IV3 + a2b
IV2 + a3b

IV + a4 = 0,

are both identically true, in virtue merely of the forms of the irrational functions b′′′ and bIV,
and independently of the values of the four arbitrary coefficients a1, a2, a3, a4.

But for higher values of n the question becomes more difficult; and even for the case
n = 5, that is, for the general equation of the fifth degree,

x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 = 0,

the opinions of mathematicians appear to be not yet entirely agreed respecting the possibility
or impossibility of expressing a root as a function of the coefficients by any finite combination
of radicals and rational functions: or, in other words, respecting the possibility or impossibilty
of satisfying, by any irrational function b(m) of any finite order, the equation

b(m)5 + a1b
(m)4 + a2b

(m)3 + a3b
(m)2 + a4b

(m) + a5 = 0,
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the five coefficients a1, a2, a3, a4, a5, remaining altogether arbitrary. To assist in deciding
opinions upon this important question, by developing and illustrating (with alterations) the
admirable argument of Abel against the possibility of any such expression for a root of the
general equation of the fifth, or any higher degree; and by applying the principles of the same
argument, to show that no expression of the same kind exists for any root of any general but
lower equation, (quadratic, cubic, or biquadratic,) essentially distinct from those which have
long been known; is the chief object of the present paper.

[3.] In general, if we call an irrational function irreducible, when it is impossible to express
that function, or any one of its component radicals, by any smaller number of extractions
of prime roots of variables, than the number which the actual expression of that function or
radical involves; even by introducing roots of constant quantities, or of numerical equations,
which roots are in this whole discussion considered as being themselves constant quantities,
so that they neither influence the order of an irrational function, nor are included among the
radicals denoted by the symbols a′1, &c.; then it is not difficult to prove that such irreducible
irrational functions possess several properties in common, which are adapted to assist in
deciding the question just now stated.

In the first place it may be observed, that, by an easy preparation, the general irrational
function b(m) of any order m may be put under the form

b(m) = Σ
β

(m)
i

<α
(m)
i

.(b
(m−1)

β
(m)
1 ,... β

(m)

n(m)

. a
(m)β

(m)
1

1 . . . a
(m)β

(m)

n(m)

n(m) ),

in which the coefficient b
(m−1)

β
(m)
1 ,... β

(m)

n(m)

is a function of the order m− 1, or of a lower order; the

exponent β
(m)
i is zero, or any positive integer less than the prime number α

(m)
i which enters

as exponent into the equation of definition of the radical a
(m)
i , namely,

a
(m)α

(m)
i

i = f
(m−1)
i ;

and the sign of summation extends to all the α
(m)
1 .α

(m)
2 . . . α

(m)

n(m) terms which have exponents

β
(m)
i subject to the condition just now mentioned.

For, inasmuch as b(m) is, by supposition, a rational function f (m) of all the radicals a
(k)
i ,

it is, with respect to any radical of highest order, such as a
(m)
i , a function of the form

b(m) =
n(a

(m)
i )

m(a
(m)
i )

,

m and n being here used as signs of some whole functions, or finite integral polynomes. Now,
if we denote by ρα any root of the numerical equation

ρ(α−1)
α + ρ(α−2)

α + ρ(α−3)
α + · · ·+ ρ2

α + ρα + 1 = 0,
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so that ρα is at the same time a root of unity, because the last equation gives

ραα = 1;

and if we suppose the number α to be prime, so that

ρα, ρ
2
α, ρ

3
α, . . . ρ

(α−1)
α

are, in some arrangement or other, the α− 1 roots of the equation above assigned: then, the
product of all the α− 1 whole functions following,

m(ραa) .m(ρ2
αa) . . .m(ρ(α−1)

α a) = l(a),

is not only itself a whole function of a, but is one which, when multiplied by m(a), gives a
product of the form

l(a) .m(a) = k(aα),

k being here (as well as l) a sign of some whole function. If then we form the product

m(ρ
α

(m)
i

a
(m)
i ) .m(ρ2

α
(m)
i

a
(m)
i ) . . .m(ρ

α
(m)
i
−1

α
(m)
i

a
(m)
i ) = l(a

(m)
i ),

and multiply, by it, both numerator and denominator of the recently assigned expression for
b(m), we obtain this new expression for that general irrational function,

b(m) =
l(a

(m)
i ) . n(a

(m)
i )

l(a
(m)
i ) .m(a

(m)
i )

=
l(a

(m)
i ) . n(a

(m)
i )

k(a
(m)α

(m)
i

i )
=

l(a
(m)
i ) . n(a

(m)
i )

k(f
(m−1)
i )

= i(a
(m)
i );

the characteristic i denoting here some function, which, relatively to the radical a
(m)
i , is whole,

so that it may be thus developed,

b(m) = i(a
(m)
i ) = i0 + i1a

(m)
i + i2a

(m)2
i + · · ·+ irα

(m)r
i ,

r being a finite positive integer, and the coefficients i0, i1, . . . ir being, in general, functions of

the mth order, but not involving the radical a
(m)
i . And because the definition of that radical

gives

a
(m)h
i = a

(m)g
i . (f

(m−1)
i )e,

if
h = g + eα

(m)
i ,

it is unnecessary to retain in evidence any of its powers of which the exponents are not less

than α
(m)
i ; we may therefore put the development of b(m) under the form

b(m) = h0 + h1a
(m)
i + · · ·+ h

α
(m)
i
−1

(a
(m)
i )α

(m)
i
−1,
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the coefficients h0,h1, . . . being still, in general, functions of the mth order, not involving the

radical a
(m)
i . It is clear that by a repetition of this process of transformation, the radicals

a
(m)
1 , . . . a

(m)

n(m) may all be removed from the denominator of the rational function f (m); and
that their exponents in the transformed numerator may all be depressed below the exponents
which define those radicals: by which means, the development above announced for the

general irrational function b(m) may be obtained; wherein the coefficient b
(m−1)

β
(m)
1 ,... β

(m)

n(m)

admits

of being analogously developed.
For example, the function of the second order,

b′′ = −a1

3
+ a′′1 +

c2
a′′1
,

which was above assigned as an expression for a root of the general cubic equation, may be
developed thus:

b′′ = Σ
β′′1 <3

.(b′β′′1
. a
′′β′′1
1 ) = b′0 + b′1a

′′
1 + b′2a

′′2
1 ;

in which
b′0 = −a1

3
, b′1 = 1, b′2 =

c2
a′′31

=
c2
f ′1

=
c2

c1 + a′1
.

And this last coefficient b′2, which is itself a function of the first order, may be developed
thus:

b′2 =
c2

c1 + a′1
= b

′ = Σ
β′1<2

.(bβ′1 . a
′β′1
1 ) = b0 + b1a

′
1;

in which

b0 =
c2c1

c21 − a′21
=

c2c1
c21 − f1

=
c2c1
c32

=
c1
c22
, b1 =

−1

c22
.

Again, the function of the third order,

b′′′ =
−a1

4
+ a′′′1 + a′′′2 +

e4

a′′′1 a
′′′
2

,

which expresses a root of the general biquadratic equation, may be developed as follows:

b′′′ = Σ
β′′′
1
<2

β′′′
2
<2

.(b′′β′′′
1
,β′′′

2
. a
′′′β′′′1
1 . a

′′′β′′′2
2 )

= b′′0,0 + b′′1,0a
′′′
1 + b′′0,1a

′′′
2 + b′′1,1a

′′′
1 a
′′′
2 ;

in which

b′′0,0 =
−a1

4
, b′′1,0 = 1, b′′0,1 = 1,

and
b′′1,1 =

e4

a′′′21 . a′′′22

=
e4

f ′′1 . f
′′
2

=
e4(

e3 + a′′1 +
e2

a′′1

)(
e3 + ρ3a

′′
1 +

e2

ρ3a′′1

)
=

1

e4

(
e3 + ρ2

3a
′′
1 +

e2

ρ2
3a
′′
1

)
.
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And this last coefficient b′′1,1, which is itself a function of the second order, may be developed
thus:

b′′1,1 = b
′′ = Σ

β′′1 <3
.(b′β′′1

. a
′′β′′1
1 ) = b

′
0 + b

′
1a
′′
1 + b

′
2a
′′2
1 ;

in which

b
′
0 =

e3

e4
, b

′
1 =

ρ2
3

e4
, b

′
2 =

ρ3e2

e4a′′31

=
ρ3e2

e4(e1 + a′1)
=
ρ3(e1 − a′1)

e4e2
2

.

So that, upon the whole, these functions b′′ and b′′′, which express, respectively, roots of the
general cubic and biquadratic equations, may be put under the following forms, whch involve
no radicals in denominators:

b′′ =
−a1

3
+ a′′1 + (c1 − a′1)

(
a′′1
c2

)2

,

and

b′′ =
−a1

4
+ a′′′1 + a′′′2 +

1

e4

{
e3 + ρ2

3a
′′
1 + ρ3(e1 − a′1)

(
a′′1
e2

)2
}
a′′′1 a

′′′
2 ;

and the functions f ′′1 , f ′′2 , which enter into the equations of definition of the radicals a′′′1 , a′′′2 ,
namely into the equations

a′′′21 = f ′′1 , a′′′22 = f ′′2 ,

may in like manner be expressed so as to involve no radicals in denominators, namely thus:

a′′′21 = e3 + a′′1 + (e1 − a′1)

(
a′′1
e2

)2

,

a′′′22 = e3 + ρ3a
′′
1 + ρ2

3(e1 − a′1)

(
a′′1
e2

)2

.

It would be easy to give other instances of the same sort of transformation, but it seems
unnecessary to do so.

[4.] It is important in the next place to observe, that any term of the foregoing gen-
eral development of the general irrational function b(m), may be isolated from the rest, and

expressed separately, as follows. Let b
(m)

γ
(m)
1 ,... γ

(m)

n(m)

denote a new irrational function, which is

formed from b(m) by changing every radical such as a
(m)
i to a corresponding product such as

ρ
γ

(m)
i

α
(m)
i

a
(m)
i , in which ρ

α
(m)
i

is, as before, a root of unity; so that

b
(m)

γ
(m)
1 ,... γ

(m)

n(m)

= Σ
β

(m)
i

<α
(m)
i

.(b
(m−1)

β
(m)
1 ,... β

(m)

n(m)

. ρ
β

(m)
1 γ

(m)
1

α
(m)
1

. . . ρ
β

(m)

n(m)
γ

(m)

n(m)

α
(m)

n(m)

. a
(m)β

(m)
1

1 . . . a
(m)β

(m)

n(m)

n(m) );

and let any isolated term of the corresponding development of b(m) or b
(m)
0,... 0 be denoted by

the symbol

t
(m)

β
(m)
1 ,... β

(m)

n(m)

= b
(m−1)

β
(m)
1 ,... β

(m)

n(m)

. a
(m)β

(m)
1

1 . . . a
(m)β

(m)

n(m)

n(m) ;
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we shall then have, as the announced expression for the isolated term, the following:

t
(m)

β
(m)
1 ,... β

(m)

n(m)

=
1

α
(m)
1 . . . α

(m)

n(m)

. Σ
γ

(m)
i

<α
(m)
i

.(b
(m)

γ
(m)
1 ,... γ

(m)

n(m)

. ρ
−β(m)

1 γ
(m)
1

α
(m)
1

. . . ρ
−β(m)

n(m)
γ

(m)

n(m)

α
(m)

n(m)

);

the sign of summation here extending to all those terms in which every index such as γ
(m)
1 is

equal to zero or to some positive integer less than α
(m)
i .

Thus, in the case of the function of second order b′′, which represents, as we have seen,
a root of the general cubic equation, if we wish to obtain an isolated expression for any term
t′′β′′1

of its development already found, namely the development

b′′ = Σ
β′′1 <3

.(b′β′′1
. a
′′β′′1
1 ) = b′0 + b′1a

′′
1 + b′2a

′′2
1 = t′′0 + t′′1 + t′′2 ,

we have only to introduce the function

b′′γ′′1
= Σ
β′′1 <3

.(b′β′′1
. ρ
β′′1 γ

′′
1

3 . a
′′β′′1
1 ) = b′0 + b′1ρ

γ′′1
3 a′′1 + b′2ρ

2γ′′1
3 a′′21 ,

and to employ the formula

t′′β′′1 = b′β′′1 . a
′′β′′1
1 = 1

3 . Σ
γ′′1 <3

.(b′′γ′′1 . ρ
−β′′1 γ′′1
3 ) = 1

3 (b′′0 + ρ
−β′′1
3 b′′1 + ρ

−2β′′1
3 b′′2).

In particular,
t′′0 = b′0 = 1

3 (b′′0 + b′′1 + b′′2),

t′′1 = b′1a
′′
1 = 1

3 (b′′0 + ρ−1
3 b′′1 + ρ−2

3 b′′2),

t′′2 = b′2a
′′2
1 = 1

3
(b′′0 + ρ−2

3 b′′1 + ρ−4
3 b′′2),

in which
b′′0 = b′0 + b′1a

′′
1 + b′2a

′′2
1 (= b′′),

b′′1 = b′0 + b′1ρ3a
′′
1 + b′2ρ

2
3a
′′2
1 ,

b′′2 = b′0 + b′1ρ
2
3a
′′
1 + b′2ρ

4
3a
′′2
1 ,

and in which it is to be remembered that

ρ2
3 + ρ3 + 1 = 0, and therefore ρ3

3 = 1.

Again, if we wish to isolate any term tβ′′′1 ,β′′′2
of the development above assigned for the

function of third order b′′′, which represents a root of the general biquadratic equation, we
may employ the formula

t′′′β′′′1 ,β′′′2
= b′′β′′′1 ,β′′′2

. a
′′′β′′′1
1 . a

′′′β′′′2
2 =

1

2.2
. Σ
γ′′′
1
<2

γ′′′
2
<2

.(b′′′γ′′′1 ,γ′′′2
. ρ
−β′′′1 γ′′′1
2 . ρ

−β′′′2 γ′′′2
2 )

= 1
4
{b′′′0,0 + (−1)−β

′′′
1 b′′′1,0 + (−1)−β

′′′
2 b′′′0,1 + (−1)−(β′′′1 +β′′′2 )b′′′1,1};
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in which we have introduced the function

b′′′γ′′′1 ,γ′′′2
= Σ

β′′′
1
<2

β′′′
2
<2

.(b′′β′′′1 ,β′′′2
. ρ
β′′′1 γ′′′1
2 . ρ

β′′′2 γ′′′2
2 . a

′′′β′′′1
1 . a

′′′β′′′2
2 )

= b′′0,0 + (−1)γ
′′′
1 b′′1,0a

′′′
1 + (−1)γ

′′′
2 b′′0,1a

′′′
2 + (−1)γ

′′′
1 +γ′′′2 b′′1,1a

′′′
1 a
′′′
2 ;

so that, in particular, we have the four expressions

t′′′0,0 = b′′0,0 = 1
4
(b′′′0,0 + b′′′1,0 + b′′′0,1 + b′′′1,1),

t′′′1,0 = b′′1,0a
′′′
1 = 1

4 (b′′′0,0 − b′′′1,0 + b′′′0,1 − b′′′1,1),

t′′′0,1 = b′′0,1a
′′′
2 = 1

4 (b′′′0,0 + b′′′1,0 − b′′′0,1 − b′′′1,1),

t′′′1,1 = b′′1,1a
′′′
1 a
′′′
2 = 1

4
(b′′′0,0 − b′′′1,0 − b′′′0,1 + b′′′1,1),

in which
b′′′0,0 = b′′0,0 + b′′1,0a

′′′
1 + b′′0,1a

′′′
2 + b′′1,1a

′′′
1 a
′′′
2 ,

b′′′1,0 = b′′0,0 − b′′1,0a′′′1 + b′′0,1a
′′′
2 − b′′1,1a′′′1 a′′′2 ,

b′′′0,1 = b′′0,0 + b′′1,0a
′′′
1 − b′′0,1a′′′2 − b′′1,1a′′′1 a′′′2 ,

b′′′1,1 = b′′0,0 − b′′1,0a′′′1 − b′′0,1a′′′2 + b′′1,1a
′′′
1 a
′′′
2 .

In these examples, the truth of the results is obvious; and the general demonstration
follows easily from the properties of the roots of unity.

[5.] We have hitherto made no use of the assumed irreducibility of the irrational func-
tion b(m). But taking now this property into account, we soon perceive that the component

radicals a
(k)
i , which enter into the composition of this irreducible function, must not be sub-

ject to, nor even compatible with, any equations or equation of condition whatever, except

only the equations of definition, which determine those radicals a
(k)
i , by determining their

prime powers a
(k)α

(k)
i

i . For the existence or possibility of any such equation of condition in
conjunction with those equations of definition, would enable us to express at least one of the
above mentioned radicals as a rational function of others of the same system, and of orders
not higher than its own, or even, perhaps, as a rational function of the original variables
a1, . . . an, though multiplied in general by a root of a numerical equation; and therefore
would enable us to diminish the number of extractions of prime roots of functions, which
would be inconsistent with the irreducibility supposed.

If fact, if any such equation of condition, involving any radical or radicals of order k, but
none of any higher order, were compatible with the equations of definition; then, by some
obvious preparations, such as bringing the equation of condition to the form of zero equated

to some finite polynomial function of some radical a
(k)
i of the kth order; and rejecting, by the

methods of equal roots and of the greatest common measure, all factors of this polynome,
except those which are unequal among themselves, and are included among the factors of
that other polynome which is equated to zero in the corresponding form of the equation of

definition of the radical a
(k)
i ; we should find that this last equation of definition

a
(k)α

(k)
i

i − f (k−1)
i = 0

10



must be divisible, either identically, or at least for some suitable system of values of the
remaining radicals, by an equation of condition of the form

a
(k)g
i + g

(k)
1 a

(k)g−1
i + · · ·+ g

(k)
g−1a

(k)
i + g

(k)
g = 0;

g being less than α
(k)
i , and the coefficients g

(k)
1 , . . . g

(k)
g being functions of orders not higher

than k, and not involving the radical a
(k)
i . Now, if we were to suppose that, for any system

of values of the remaining radicals, the coefficients g
(k)
1 , . . . should all be = 0, or indeed if

even the last of those coefficients should thus vanish, we should then have a new equation of
condition, namely the following:

f
(k−1)
i = 0,

which would be obliged to be compatible with the equations of definition of the remaining
radicals, and would therefore either conduct at last, by a repetition of the same analysis, to
a radical essentially vanishing, and consequently superfluous, among those which have been
supposed to enter into the composition of the function b(m); or else would bring us back to
the divisibility of an equation of definition by an equation of condition, of the form just now

assigned, and with coefficients g
(k)
1 , . . . g

(k)
g which would not all be = 0. But for this purpose

it would be necessary that a relation, or system of relations, should exist (or at least should
be compatible with the remaining equations of definition,) of the form

g
(k)
g−e = νea

(k)e
i ,

e being less than α
(k)
i , and νe being different from zero, and being a root of a numerical

equation; and because α
(k)
i is prime, we could find integer numbers λ and µ, which would

satisfy the condition

λα
(k)
i − µe = 1;

so that, finally, we should have an expression for the radical a
(k)
i , as a rational function of

others of the same system, and of orders not higher than its own, though multiplied in general
(as was above announced) by a root of a numerical equation; namely the following expression:

a
(k)
i = νµe g

(k)−µ
g−e f

(k−1)λ
i .

And if we should suppose this last equation to be not identically true, but only to hold good
for some systems of values of the remaining radicals, of orders not higher than k, we should
still obtain, at least, an equation of condition between those remaining radicals, by raising the

expression just found for a
(k)
i to the power α

(k)
i ; namely the following equation of condition,

f
(k−1)
i − (νµe g

(k)−µ
g−e f

(k−1)λ
i )α

(k)
i = 0,

which might then be treated like the former, till at last an expression should be obtained, of
the kind above announced, for at least one of the remaining radicals. In every case, therefore,
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we should be conducted to a diminution of the number of prime roots of variables in the
expression of the function b(m), which consequently would not be irreducible.

For example, if an irrational function of the mth order contain any radical a
(m)
i of the

cubic form, its exponent α
(m)
i of the cubic form, its exponent α

(m)
i being = 3, and its equation

of definition being of the form

α(m)3 = f
(m−1)
i (a

(m−1)
1 , . . . a

(m−1)

n(m−1) , . . . a1, . . . an);

if also the other equations of definition permit us to suppose that this radical may be equal
to some rational function of the rest, so that an equation of the form

a
(m)
i + g

(m)
1 = 0,

(in which the function g
(m)
1 does not contain the radical a

(m)
i ,) is compatible with the equation

of definition

a
(m)3
i − f (m−1)

i = 0;

then, from the forms of these two last mentioned equations, the latter must be divisible by the
former, at least for some suitable system of values of the remaining radicals: and therefore

the following relation, which does not involve the radical a
(m)
i , namely,

f
(m−1)
i + g

(m)3
1 = 0,

must be either identically true, in which case we may substitute for the radical a
(m)
i , in the

proposed function of the mth order, the expression

a
(m)
i = − 3

√
1 . g

(m)
1 ;

or at least it must be true as an equation of condition between the remaining radicals, and
liable as such to a similar treatment, conducting to an analogous result.

A more simple and specific example is supplied by the following function of the second
order,

x = −a1

3
+ 3

√(
c1 +

√
c21 − c32

)
+ 3

√(
c1 −

√
c21 − c32

)
,

which is not uncommonly proposed as an expression for a root x of the general cubic equation

x3 + a1x
2 + a2x+ a3 = 0,

c1 and c2 being certain rational functions of a1, a2, a3, which were assigned in a former
article, and which are such that the cubic equation may be thus written:(

x+
a1

3

)3

− 3c2

(
x+

a1

3

)
− 2c1 = 0.

12



Putting this function of the second order under the form

x = −a1

3
+ a′′1 + a′′2 ,

in which the radicals are defined as follows,

a′′31 = c1 + a′1, a′′32 = c1 − a′1, a′21 = c21 − c32,

we easily perceive that it is permitted by these definitions to suppose that the radicals a′′1 , a′′2
are connected so as to satisfy the following equation of condition,

a′′1a
′′
2 = c2;

and even that this supposition must be made, in order to render the proposed function of
the second order a root of the cubic equation. But the mere knowledge of the compatibility
of the equation of condition

a′′2 −
c2
a′′1

= 0

with the equation of definition
a′′32 − (c1 − a′1) = 0,

is sufficient to enable us to infer, from the forms of these two equations, that the latter is
divisible by the former, at least for some suitable system of values of the remaining radicals a′′1
and a′1, consistent with their equations of definition; and therefore that the following relation

c1 − a′1 −
(
c2
a′′1

)3

= 0,

and the expression

a′′2 =
3
√

1 .
c2
a′′1
,

are at least consistent with those equations. In the present example, the relation thus arrived
at is found to be identically true, and consequently the radicals a′1 and a′′1 remain independent
of each other; but for the same reason, the radical a′′2 may be changed to the expression just
now given; so that the proposed function of the second order,

x =
−a1

3
+ a′′1 + a′′2 ,

may, by the mere definitions of its radicals, and even without attending to the cubic equation
which it was designed to satisfy, be put under the form

x =
−a1

3
+ a′′1 +

3
√

1 .
c2
a′′1
,

the number of prime roots of variables being depressed from three to two; and consequently
that proposed function was not irreducible in the sense which has been already explained.
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[6.] From the foregoing properties of irrational and irreducible functions, it follows easily
that if any one value of any such function b(m), corresponding to any one system of values of
the radicals on which it depends, be equal to any one root of any equation of the form

xs + a1x
s−1 + · · ·+ as−1x+ as = 0,

in which the coefficients a1, . . . as are any rational functions of the n original quantities
a1, . . . an; in such a manner that for some one system of values of the radicals a′1, &c., the
equation

b(m)s + a1b
(m)s−1 + · · ·+ as = 0

is satisfied: then the same equation must be satisfied, also, for all systems of values of
those radicals, consistent with their equations of definition. It is an immediate consequence
of this result, that all the values of the function which has already been denoted by the

symbol b
(m)

γ
(m)
1 ,... γ

(m)

n(m)

must represent roots of the same equation of the sth degree; and the

same principles show that all these values of b
(m)

γ
(m)
1 ...

must be unequal among themselves, and

therefore must represent so many different roots x1, x2, . . . of the same equations xs+&c. = 0,

if every index or exponent γ
(m)
i be restricted, as before, to denote either zero or some positive

integer number less than the corresponding exponent α
(m)
i : for if, with this restriction, any

two of the values of b
(m)

γ
(m)
1 ,...

could be supposed equal, an equation of condition between the

radicals a
(m)
1 , &c. would arise, which would be inconsistent with the supposed irreducibility

of the function b(m).
For example, having found that the cubic equation

x3 + a1x
2 + a2x+ a3 = 0

is satisfied by the irrational and irreducible function b′′ above assigned, we can infer that the
same equation is satisfied by all the three values b′′0 , b′′1 , b′′2 of the function b′′γ′′1

; and that these

three values must be all unequal among themselves, so that they must represent some three
unequal roots x1, x2, x3, and consequently all the three roots of the cubic equation proposed.

[7.] Combining the result of the last article with that which was before obtained re-
specting the isolating of a term of a development, we see that if any root x of any proposed
equation, of any degree s, in which the s coefficients a1, . . . as are still supposed to be ra-
tional functions of the n original quantities a1, . . . an, can be expressed as an irrational and
irreducible function b(m) of those original quantities; and if that function b(m) be developed

under the form above assigned; then every term t
(m)

β
(m)
1 ,...

of this development may be expressed

as a rational (and indeed linear) function of some or all of the s roots x1, x2, . . . xs of the
same proposed equation.

For example, when we have found that a root x of the cubic equation

x3 + a1x
2 + a2x+ a3 = 0
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can be represented by the irrational and irreducible function already mentioned,

x = b′′ = b′0 + b′1a
′′
1 + b′2a

′′2
1 = t′′0 + t′′1 + t′′2 ,

(in which b′1 = 1,) we can express the separate terms of this last development as follows,

t′′0 = b′0 = 1
3(x1 + x2 + x3),

t′′1 = b′1a
′′
1 = 1

3 (x1 + ρ−1
3 x2 + ρ−2

3 x3),

t′′2 = b′2a
′′2
1 = 1

3
(x1 + ρ−2

3 x2 + ρ−4
3 x3);

namely, by changing b′′0 , b′′1 , b′′2 to x1, x2, x3 in the expressions found before for t′′0 , t′′1 , t′′2 .
In like manner, when a root x of the biquadratic equation

x4 + a1x
3 + a2x

2 + a3x+ a4 = 0

is represented by the irrational function

x = b′′′ = b′′0,0 + b′′1,0a
′′′
1 + b′′0,1a

′′′
2 + b′′1,1a

′′′
1 a
′′′
2

= t′′′0,0 + t′′′1,0 + t′′′0,1 + t′′′1,1,

in which b′′1,0 = b′′0,1 = 1, we easily derive, from results obtained before, (by merely changing
b′′′0,0, b′′′0,1, b′′′1,0, b′′′1,1 to x1, x2, x3, x4,) the following expressions for the four separate terms of
this development:

t′′′0,0 = b′′0,0 = 1
4(x1 + x2 + x3 + x4),

t′′′1,0 = b′′1,0a
′′′
1 = 1

4
(x1 + x2 − x3 − x4),

t′′′0,1 = b′′0,1a
′′′
2 = 1

4 (x1 − x2 + x3 − x4),

t′′′1,1 = b′′1,1a
′′′
1 a
′′′
2 = 1

4(x1 − x2 − x3 + x4);

x1, x2, x3, x4 being some four unequal roots, and therefore all the four roots of the proposed
biquadratic equation.

And when that equation has a root represented in this other way, which also has been
already indicated, and in which b′′′1 = 1,

x = bIV =
−a1

4
+ a′′′1 + aIV

1 = b′′′0 + b′′′1 a
IV
1 = tIV0 + tIV1 ,

then each of the two terms of this development may be separately expressed as follows,

tIV0 = b′′′1 = 1
2
(x1 + x2),

tIV1 = b′′′1 a
IV
1 = 1

2 (x1 − x2),

x1 and x2 being some two unequal roots of the same biquadratic equation.
A still more simple example is supplied by the quadratic equation,

x2 + a1x+ a2 = 0;
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for when we represent a root x of this equation as follows,

x = b′ =
−a1

2
+ a′1 = t′0 + t′1,

we have the following well-known expressions for the two terms t′0, t′1, as rational and linear
functions of the roots x1, x2,

t′0 =
−a1

2
= 1

2 (x1 + x2),

t′1 = a′1 = 1
2(x1 − x2).

In these examples, the radicals of highest order, namely a′1 in b′, a′′1 in b′′, a′′′1 and a′′′2
in b′′′, and aIV

1 in bIV, have all had the coefficients of their first powers equal to unity; and
consequently have been themselves expressed as rational (though unsymmetric) functions of
the roots of that equation in x, which the function b(m) satisfies; namely,

a′1 = 1
2
(x1 − x2),

a′′1 = 1
3
(x1 + ρ2

3x2 + ρ3x3),

a′′′1 = 1
4(x1 + x2 − x3 − x4),

a′′′2 = 1
4
(x1 − x2 + x3 − x4),

aIV
1 = 1

2(x1 − x2);

the first expression being connected with the general quadratic, the second with the general
cubic, and the three last with the general biquadratic equation. We shall soon see that all
these results are included in one more general.

[8.] To illustrate, by a preliminary example, the reasonings to which we are next to

proceed, let it be supposed that any two of the terms t
(m)

β
(m)
1 ,...

are of the forms

t′′2,1,3,4 = b′2,1,3,4a
′′2
1 a′′2a

′′3
3 a′′44 ,

and
t′′1,1,2,3 = b′1,1,2,3a

′′
1a
′′
2a
′′2
3 a′′34 ,

in which the radicals are defined by equations such as the following

a′′31 = f ′1, a′′32 = f ′2, a′′53 = f ′3, a′′54 = f ′4,

their exponents α′′1 , α′′2 , α′′3 , α′′4 being respectively equal to the numbers 3, 3, 5, 5. We shall
then have, by raising the two terms t′′ to suitable powers, and attending to the equations of
definition, the following expressions:

t′′10
2,1,3,4 = b′10

2,1,3,4f
′6
1 f
′3
2 f
′6
3 f
′8
4 a
′′2
1 a′′2 ;

t′′10
1,1,2,3 = b′10

1,1,2,3f
′3
1 f
′3
2 f
′4
3 f
′6
4 a
′′
1a
′′
2 ;

t′′62,1,3,4 = b′62,1,3,4f
′4
1 f
′2
2 f
′3
3 f
′4
4 a
′′3
3 a′′44 ;

t′′61,1,2,3 = b′61,1,2,3f
′2
1 f
′2
2 f
′2
3 f
′3
4 a
′′2
3 a′′34 ;
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which give
t
′′
1 = c

′
1a
′′
1 , t

′′
2 = c

′
2a
′′
2 , t

′′
3 = c

′
3a
′′
3 , t

′′
4 = c

′
4a
′′
4 ,

if we put, for abridgment,

t
′′
1 = t′′10

2,1,3,4t
′′−10
1,1,2,3;

t
′′
2 = t′′−10

2,1,3,4t
′′20
1,1,2,3;

t
′′
3 = t′′18

2,1,3,4t
′′−24
1,1,2,3;

t
′′
4 = t′′−12

2,1,3,4t
′′18
1,1,2,3;

c
′
1 = b′10

2,1,3,4b
′−10
1,1,2,3f

′3
1 f
′2
3 f
′2
4 ;

c
′
2 = b′−10

2,1,3,4b
′20
1,1,2,3f

′3
2 f
′2
3 f
′4
4 ;

c
′
3 = b′18

2,1,3,4b
′−24
1,1,2,3f

′4
1 f
′−2
2 f ′3;

c
′
4 = b′−12

2,1,3,4b
′18
1,1,2,3f

′−2
1 f ′22 f

′
4.

And, with a little attention, it becomes clear that the same sort of process may be applied

to the terms t
(m)

β
(m)
1 ,...

of the development of any irreducible function b(m); so that we have, in

general, a system of relations, such as the following:

t
(m)
1 = c

(m−1)
1 a

(m)
1 ; . . . t

(m)

n(m) = c
(m−1)

n(m) a
(m)

n(m) ;

in which t
(m)
i is the product of certain powers (with exponents positive, or negative, or null)

of the various terms t
(m)

β
(m)
1 ,...

; and the coefficient c
(m−1)
i is different from zero, but is of an

order lower than m. For if any radical of the order m were supposed to be so inextricably
connected, in every term, with one or more of the remaining radicals of the same highest
order, that it could not be disentangled from them by a process of the foregoing kind; and
that thus the foregoing analysis of the function b(m) should be unable to conduct to separate
expressions for those radicals; it would then, reciprocally, have been unnecessary to calculate
them separately, in effecting the synthesis of that function; which function, consequently,

would not be irreducible. If, for example, the exponents α
(m)
1 and α

(m)
2 , which enter into

the equations of definition of the radicals a
(m)
1 and a

(m)
2 should both be = 3, so that those

radicals should both be cube-roots of functions of lower orders; and if these two cube-roots
should enter only by their product, so that no analysis of the foregoing kind could obtain

them otherwise than in connexion, and under the form c
(m−1)a

(m)
1 a

(m)
2 ; it would then have

been sufficient, in effecting the synthesis of b(m), to have calculated only the cube-root of the

product a
(m)3
1 a

(m)3
2 = f

(m−1)
1 f

(m−1)
2 = f 8(m−1), instead of calculating separately the cube-

roots of its two factors a
(m)3
1 = f (m−1), and a

(m)3
2 = f

(m−1)
2 : the number of extractions

of prime roots of variables might, therefore, have been diminished in the calculation of the
function b(m), which would be inconsistent with the irreducibility of that function.

In the cases of the irreducible functions b′, b′′, b′′′, bIV, which have been above assigned,
as representing roots of the general quadratic, cubic, and biquadratic equations, the theorem
of the present article is seen at once to hold good; because in these the radicals of highest
order are themselves terms of the developments in question, the coefficients of their first
powers being already equal to unity. Thus in the development of b′, we have a′1 = t′1; in b′′,
we have a′′1 = t′′1 ; in b′′′, we have a′′′1 = t′′′1,0, and a′′′2 = t′′′0,1; and in bIV, we have aIV

1 = tIV1 .

[9.] By raising to the proper powers the general expressions of the form

t
(m)
i = c

(m−1)
i a

(m)
i ,
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we obtain a system of n(m) equations of this other form

t
(m)α

(m)
i

i = c
(m−1)α

(m)
i

i f
(m−1)
i = f

8(m−1)
i ,

f
8(m−1)
i being some new irrational function, of an order lower than m; and by combining the

same expressions with those which define the various terms t
(m)

β
(m)
1 ,...

, the number of which

terms we shall denote by the symbol t(m), we obtain another system of t(m) equations, of
which the following is a type,

u
(m−1)

β
(m)
1 ,... β

(m)

n(m)

= b
8(m−1)

β
(m)
1 ,... β

(m)

n(m)

,

if we put, for abridgment,

u
(m−1)

β
(m)
1 ,...

= t
(m)

β
(m)
1 ,...

. t
(m)−β(m)

1
1 · · ·t

(m)−β(m)

n(m)

n(m) ,

and

b
8(m−1)

β
(m)
1 ,...

= b
(m−1)

β
(m)
1 ,...

. c
(m−1)−β(m)

1
1 · · ·c

(m−1)−β(m)

n(m)

n(m) .

In this manner we obtain in general n(m) + t(m) equations, in each of which the product of
certain powers, (with positive, negative, or null exponents,) of the t(m) terms of the devel-
opment of the irrational function b(m), is equated to some other irrational function, f 8(m−1)

or b8(m−1), of an order lower than m. Indeed, it is to be observed, that since these various
equations are obtained by an elimination of the n(m) radicals of highest order, between their
n(m) equations of definition and the t(m) expressions for the t(m) terms of the development
of b(m), they cannot be equivalent to more than t(m) distinct relations. But, among them,
they must involve explicitly all the radicals of lower orders, which enter into the composition

of the irreducible function b(m). For if any radical a
(k)
i , of order lower than m, were wanting

in all the n(m) + t(m) functions of the forms

f
8(m−1)
i and b

8(m−1)

β
(m)
1 ,...

,

we might then employ instead of the old system of radicals a
(m)
1 , . . . of the order m, a new

and equally numerous system of radicals a
8(m)
1 , . . . according to the following type,

a
8(m)
i = t

(m)
i = α

(m)
i

√
f
8(m−1)
i ;

and might then express all the t(m) terms of b(m), by means of these new radicals, according
to the formula

t
(m)

β
(m)
1 ,...

= b
8(m−1)

β
(m)
1 ,...

. a
8(m)β

(m)
1

1 . . . a
8(m)β

(m)

n(m)

n(m) ,
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which would not involve the radical a
(k)
i ; so that in this way the number of extractions of prime

roots of variables might be diminished, which would be inconsistent with the irreducibility of
b(m).

The results of the present article may be exemplified in the case of any one of the functions
b′, b′′, b′′′, bIV, which have already been considered. Thus, in the case of the function b′′,
which represents a root of the general cubic equation, we have

t
′′
1 = t′′1 , c

′′
1 = 1, f 8′1 = f ′1, β8′β′′1 = b′β′′1

, u
′
β′′1

= t′′β′′1
. t
′′−β′′1
1 ,

and the n(m) + t(m) = 1 + 3 = 4 following relations hold good:

t′′31 = f ′1, t′′0 = b′0, 1 = b′1, t′′2 t
′′−2
1 = b′2;

of which indeed the third is identically true, and the second does not involve a′1, because

b′0 = −a1

3
; but both the first and fourth of these relations involve that radical a′1, because

f ′1 = c1 + a′1, and b′2 =
c1 − a′1
c22

.

[10.] Since each of the t(m) terms of the development of b(n) can be expressed as a rational
function of the s roots x1, . . . xs of that equation of the sth degree which b(m) is supposed
to satisfy; it follows that every rational function of these t(m) terms must be likewise a
rational function of those s roots, and must admit, as such, of some finite number r of
values, corresponding to all possible changes of arrangement of the same s roots amongst
themselves. The same term or function must, for the same reason, be itself a root of an
equation of the rth degree, of which the coefficients are symmetrical functions of the s roots,
x1, . . . xs, and therefore are rational functions of the s coefficients a1, . . . as, and ultimately
of the n original quantities a1, . . . an; while the r − 1 other roots of this new equation are
the r − 1 other values of the same function of x1, . . . xs, corresponding to the changes of

arrangement just now mentioned. Hence, every one of the n(m) + t(m) functions t
(m)α

(m)
i

i and

u
(m−1)

β
(m)
1 ,...

, and therefore also every one of the n(m) + t(m) functions f
8(m−1)
i and b

8(m−1)

β
(m)
1 ,...

, to

which they are respectively equal, and which have been shown to contain, among them, all
the radicals of orders lower than m, must be a root of some such new equation, although the
degree r will not in general be the same for all. Treating these new equations and functions,
and the radicals of the order m − 1, as the equation xs + &c. = 0, the function b(m), and
the radicals of the order m have already been treated; we obtain a new system of relations,
analogous to those already found, and capable of being thus denoted:

t
(m−1)
i = c

(m−2)
i a

(m−1)
i ;

t
(m−1)α

(m−1)
i

i = f
8(m−2)
i ;

u
(m−1)

β
(m−1)
1 ,...

= b
8(m−2)

β
(m−1)
1 ,...

.

And so proceeding, we come at last to a system of the form,

t
′
1 = c1a

′
1, . . . t

′
n′ = cn′a

′
n′ ;
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in which the coefficient ci is different from zero, and is a rational function of the n original
quantities a1, . . . an; while t

′
i is a rational function of the s roots x1, . . . xs of that equation

of the sth degree in x which it has been suppose that b(m) satisfies. We have therefore the
expression

a′i =
t
′
1

ci
;

which enables us to consider every radical a′i of the first order, as a rational function f
′
i of

the s roots x1, . . . xs, and of the n original quantities a1, . . . an: so that we may write

a′i = f
′
i(x1, . . . xs, a1, . . . an).

But before arriving at the last mentioned system of relations, another system of the form

t
′′
1 = c

′
1a
′′
1 , . . . t

′′
n′′ = c

′
n′′a
′′
n′′

must have been found, in which the coefficient c
′
i is different from zero, and is a rational

function of a′1, . . . a
′
n′ and of a1, . . . , an, while t

′′
i is a rational function of x1, . . . xs; we have

therefore the expression

a′′i =
t
′′
i

c
′
i

,

and we see that every radical of the second order also is equal to a rational function of
x1, . . . xs and of a1, . . . an: so that we may write

a′′i = f
′′
i (x1, . . . xs, a1, . . . an).

And re-ascending thus, through orders higher and higher, we find, finally, by similar
reasonings, that every one of the n′ + n′′ + · · ·+ +n(k) + · · ·+ n(m) radicals which enter into

the composition of the irrational and irreducible function b(m), such as the radical a
(k)
i , must

be expressible as a rational function f
(k)
i of the roots x1, . . . xs, and of the original quantities

a1, . . . an: so that we have a complete system of expressions, for all these radicals, which are
included in the general formula

a
(k)
i = f

(k)
i (x1, . . . xs, a1, . . . an).

Thus, in the case of the cubic equation and the function b′′, when we have arrived at the
relation

t′′31 = f ′1,

in which
t′′1 = 1

3
(x1 + ρ2

3x2 + ρ3x3), and f ′1 = c1 + a′1,

we find that the rational function

t′′31 = 1
27(x1 + ρ2

3x2 + ρ3x3)3
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admits only of two different values, in whatever way the arrangement of the three roots
x1, x2, x3 may be changed; it must therefore be itself a root of a quadratic equation, in
which the coefficients are symmetric functions of those three roots, and consequently rational
functions of a1, a2, a3; namely, the equation

0 = (t′′31 )2 − 1
27
{(x1 + ρ2

3x2 + ρ3x3)3 + (x1 + ρ2
3x3 + ρ3x2)3}(t′′31 )

+ 1
729(x1 + ρ2

3x2 + ρ3x3)3(x1 + ρ2
3x3 + ρ3x2)3

= (t′′31 )2 + 1
27 (2a3

1 − 9a1a2 + 27a3)(t′′31 ) +

(
a2

1 − 3a2

9

)3

.

The same quadratic equation must therefore be satisfied when we substitute for t′′31 the
function x1 + a′1 to which it is equal, and in which a′1 is a square root; it must therefore be
satisfied by both values of the function c1 ± a′1, because the radical a′1 must be subject to
no condition except that by which its square is determined; therefore, this radical a′1 must
be equal to the semi-difference of two unequal roots of the same quadratic equation; that is,
to the semi-difference of the two values of the rational function t′′31 ; which semi-difference is
itself a rational function of x1, x2, x3, namely

a′1 = 1
54{(x1 + ρ2

3x2 + ρ3x3)3 − (x1 + ρ2
3x3 + ρ3x2)3}

= 1
18 (ρ2

3 − ρ3)(x1 − x2)(x1 − x3)(x2 − x3) = f
′
1(x1, x2, x3).

The same conclusion would have been obtained, though in a somewhat less simple way,
if we had employed the relation

t′′2 t
′′−2
1 = b′2,

in which

t′′2 t
′′−2
1 =

3(x1 + ρ2
3x3 + ρ3x2)

(x1 + ρ2
3x2 + ρ3x3)2

, b′2 =
c1 − a′1
c22

.

[11.] In general, let p be the number of values which the rational function f
(k)
i can

receive, by altering in all possible ways the arrangements of the s roots x1, . . . xs, these roots
being still treated as arbitrary and independent quantities, (so that p is equal either to the
product 1 .2 .3 . . . s, or to some submultiple of that product); we shall then have an identical
equation of the form

f
(k)p
i + d1f

(k)p−1
i + · · ·+ dp−1f

(k)
i + dp = 0,

in which the coefficients d1, . . . dp are rational functions of a1, . . . an; and therefore at least

one value of the radical a
(k)
i must satisfy the equation

a
(k)p
i + d1a

(k)p−1
i + · · ·+ dp−1a

(k)
i + dp = 0.

But in order to do this, it is necessary, for reasons already explained, that all values of the

same radical a
(k)
i , obtained by multiplying itself and all its subordinate radicals of the same
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functional system by any powers of the corresponding roots of unity, should satisfy the same

equation; and therefore that the number q of these values of the radical a
(k)
i should not exceed

the degree p of that equation, or the number of the values of the rational function f
(k)
i .

Again, since we have denoted by q the number of values of the radical, we must suppose
that it satisfies identically an equation of the form

a
(k)q
i + e1a

(k)q−1 + · · ·+ eq−1a
(k)
i + eq = 0,

the coefficients e1, . . . eq being rational functions of a1, . . . an; and therefore that at least one

value of the function f
(k)
i satisfies the equation

f
(k)q
i + e1 . f

(k)q−1
i + · · ·+ eq−1f

(k)
i = 0.

Suppose now that the s roots x1, . . . xs of the original equation in x,

xs + a1x
s−1 + · · ·+ as−1x+ as = 0,

are really unconnected by any relation among themselves, a supposition which requires that
s should not be greater than n, since a1, . . . as are rational functions of a1, . . . an; suppose
also that a1, . . . an can be expressed, reciprocally, as rational functions of a1, . . . as, a suppo-
sition which requires, reciprocally, that n should not be greater than s, because the original
quantities a1, . . . an are, in this whole discussion, considered as independent of each other.
With these suppositions, which involve the equality s = n, we may consider the n quantities
a1, . . . an, and therefore also the q coefficients e1, . . . eq, as being symmetric functions of the
n roots x1, . . . xn of the equation

xn + a1x
n−1 + · · ·+ an−1x+ an = 0;

we may also consider f
(k)
i as being a rational but unsymmetric function of the same n arbitrary

roots, so that we may write

aki = f
(k)
i (x1, . . . xn);

and since the truth of the equation

f
(k)q + e1f

(k)q−1
i + · · ·+ eq = 0

must depend only on the forms of the functions, and not on the values of the quantities
which it involves, (those values being altogether arbitrary,) we may alter in any manner the
arrangement of those n arbitrary quantities x1, . . . xn, and the equation must still hold good.
But by such changes of arrangement, the symmetric coefficients e1, . . . eq remain unchanged,

while the rational but unsymmetric function f
(k)
i takes, in succession, all those p values of

which it was before supposed to be capable; thse p unequal values therefore must all be roots
of the same equation of the qth degree, and consequently q must not be less than p. And
since it has been shown that the former of these two last mentioned numbers must not exceed
the latter, it follows that they must be equal to each other, so that we have the relation

q = p :
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that is, the radical a
(k)
i and the rational function f

(k)
i must be exactly coextensive in multi-

plicity of value.
For example, when, in considering the irreducible irrational expression b′′ for a root of

the general cubic, we are conducted to the relation assigned in the last article,

a′1 = f
′
1(x1, x2, x3) = 1

18 (ρ3
3 − ρ3)(x1 − x2)(x1 − x3)(x2 − x3);

we can then at pleasure infer, either that the radical a′i must admit (as a radical) of two and
only two values, if we have previously perceived that the rational function f

′
1 admits (as a

rational function) of two values, and only two, corresponding to changes of arrangement of
the three roots x1, x2, x3, namely, the two following values, which differ by their signs,

± 1
18(ρ3

3 − ρ3)(x1 − x2)(x1 − x3)(x2 − x3);

or else we may infer that the function f
′
1 admits thus of two values and two only, for all

changes of arrangement of x1, x2, x3, if we have perceived that the radical a′1 (as being given
by its square,

a′21 = f1 = c21 − c32,

which square is rational,) admits, itself, of the two values ±a′1 which differ in their signs.

[12.] The conditions assumed in the last article are all fulfilled, when we suppose the
coefficients a1 &c. to coincide with the n original quantities a1, &c., that is, when we return
to the equation originally proposed;

xn + a1x
n−1 + · · ·+ an−1x+ an = 0,

which is the general equation of the nth degree: so that we have, for any radical a
(k)
i , which

enters into the composition of any irrational and irreducible function representing any root
of any such equation, an expression of the form

a
(k)
i = f

(k)
i (x1, . . . xn);

the radical and the rational function being coextensive in multiplicity of value. We are,
therefore, conducted thus to the following important theorem, to which Abel first was led,
by reasonings somewhat different from the foregoing: namely, that “if a root x of the general
equation of any particular degree n can be expressed as an irreducible irrational function

b(m) of the n arbitrary coefficients of that equation, then every radical a
(k)
i , which enters into

the composition of that function b(m), must admit of being expressed as a rational, though

unsymmetric function f
(k)
i of the n arbitrary roots of the same general equation; and this

rational but unsymmetric function f
(k)
i must admit of receiving exactly the same variety of

values, through changes of arrangement of the n roots on which it depends, as that which the

radical a
(k)
i can receive, through multiplications of itself and of all its subordinate functional

radicals by any powers of the corresponding roots of unity.”
Examples of the truth of this theorem have already been given, by anticipation, in the

seventh and tenth articles of this Essay; to which we may add, that the radicals a′′i and a′i,
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in the expressions given above for a root of the general biquadratic, admit of being thus
expressed:

a′′1 = 1
48{(x1 + x2 − x3 − x4)2 + ρ2

3(x1 − x2 + x3 − x4)2 + ρ3(x1 − x2 − x3 + x4)2}
= 1

12
{x1x2 + x3x4 + ρ2

3(x1x3 + x2x4) + ρ3(x1x4 + x2x3)};
a′1 = 1

3456{x1x2 + x3x4 + ρ2
3(x1x3 + x2x4) + ρ3(x1x4 + x2x3)}3

− 1
3456{x1x2 + x3x4 + ρ2

3(x1x4 + x2x3) + ρ3(x1x3 + x2x4)}3

= 1
1152(ρ2

3 − ρ3)(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

But before we proceed to apply this theorem to prove, in a manner similar to that of
Abel, the impossibility of obtaining any finite expression, irrational and irreducible, for a
root of the general equation of the fifth degree, it will be instructive to apply it, in a new
way, (according to the announcement made in the second article,) to equations of lower
degrees; so as to draw, from those lower equations, a class of illustrations quite different
from those which have been heretofore adduced: namely, by showing, à priori, with the help
of the same general theorem, that no new finite function, irrational and irreducible, can be
found, essentially distinct in its radicals from those which have long since been discovered, for
expressing any root of any such lower but general equation, quadratic, cubic or biquadratic,
in terms of the coefficients of that equation.

[13.] Beginning then with the general quadratic,

x2 + a1x+ a2 = 0,

let us endeavour to investigate, à priori, with the help of the foregoing theorem, all possible
forms of irrational and irreducible functions b(m), which can express a root x of this quadratic,
in terms of the two arbitrary coefficients a1, a2, so as to satisfy identically, or independently
of the values of those two coefficients, the equation

b(m)2 + a1b
(m) + a2 = 0.

The two roots of the proposed quadratic being denoted by the symbols x1 and x2, we know
that the two coefficients a1 and a2 are equal to the following symmetric functions,

a1 = −(x1 + x2), a2 = x1x2;

we cannot therefore suppose either root to be a rational function b of these coefficients,
because an unsymmetric function of two arbitrary quantities cannot be equal to a symmetric
function of the same; and consequently we must suppose that the exponent m of the order of
the sought function b(m) is greater than 0. The expression b(m) for x must therefore involve at
least one radical a′1, which must itself admit of being expressed as a rational but unsymmetric
function of the two roots x1, x2,

a′1 = f
′
1(x1, x2),
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and of which some prime power can be expressed as a rational function of the two coefficients
a1, a2,

a
′α′1
1 = f(a1, a2),

the exponent α′1 being equal to the number of the values

f
′
1(x1, x2), f

′
1(x2, x1),

of the unsymmetric function f
′
1, and consequently being = 2; so that the radical a′1 must be

a square root, and must have two values differing in sign, which may be thus expressed:

+a′1 = f
′
1(x1, x2), −a′1 = f

′
1(x2, x1).

But, in general, whatever rational function may be denoted by f, the quotients

f(x1, x2) + f(x2, x1)

2
and

f(x1, x2)− f(x2, x1)

2(x1 − x2)

are some symmetric functions, a and b; so that we may put generally

f(x1, x2) = a+ b(x1 − x2), f(x2, x1) = a− b(x1 − x2);

therefore, since we have, at present,

f
′
1(x2, x1) = −f

′
1(x1, x2),

the function f
′
1 must be of the form

f
′
1(x1, x2) = b(x1 − x2),

the multiplier b being symmetric. At the same time,

a′1 = b(x1 − x2),

and therefore the function f1 is of the form

f1(a1, a2) = a′21 = b2(x1 − x2)2 = b2(a2
1 − 4a2),

so that the radical a′1 may be thus expressed,

a′1 =
√
b2(a2

1 − 4a2),

in which, b is some rational function of the coefficients a1, a2. No other radical a′2 of the
first order can enter into the sought irreducible expression for x; because the same reasoning
would show that any such new radical ought to be reducible to the form

a′2 = c(x1 − x2) =
c

b
a′1,
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c being some new symmetric function of the roots, and consequently some new rational
function of the coefficients; so that, after calculating the radical a′1, it would be unnecessary
to effect any new extraction of prime roots for the purpose of calculating a′2, which latter
radical would therefore be superfluous. Nor can any radical a′′1 of higher order enter, because
such radical would have 2α′′1 values, α′′1 being greater than 1, while any rational function f

′′
1 ,

of two arbitrary quantities x1, x2, can receive only two values, through any changes of their
arrangement. The exponent m, of the order of the sought irreducible function b(m), must
therefore be = 1, and this function itself must be of the form

b′ = b0 + b1a
′
1,

b0 and b1 being rational functions of a1, a2, or symmetric functions of the two roots x1, x2,
which roots must admit of being separately expressed as follows:

x1 = b0 + b1a
′
1, x2 = b0 − b1a′1,

if any expression of the sought kind can be found for either of them. It is, therefore, necessary
and sufficient for the existence of such an expression, that the two following quantities,

b0 =
x1 + x2

2
, b1 =

x1 − x2

2a′1
,

should admit of being expressed as rational functions of a1, a2; and this condition is satisfied,
since the foregoing relations give

b0 = −a1

2
, b1 =

1

2b
.

We find, therefore, as the sought irrational and irreducible expression, and as the only
possible expression of that kind, (or at least as one with which all others must essentially
coincide,) for a root x of the general quadratic, the following:

x = b′ =
−a1

2
+

1

2b

√
b2(a2

1 − 4a2);

b still denoting any arbitrary rational function of the two arbitrary coefficients a1, a2, or
any numerical constant, (such as the number 1

2
, which was the value of the quantity b in the

formulæ of the preceding articles,) and the two separate roots x1, x2, being obtained by taking
separately the two signs of the radical. And thus we see à priori, that every method, for
calculating a root x of the general quadratic equation as a function of the two coefficients, by
any finite number of additions, subtractions, multiplications, divisions, elevations to powers,
and extractions of prime radicals, (these last extractions being supposed to be reduced to the
smallest possible number,) must involve the extraction of some one square-root of the form

a′1 =
√
b2(a2

1 − 4a2),

and must not involve the extraction of any other radical. But this square-root a′1 is not essen-
tially distinct from that which is usually assigned for the solution of the general quadratic: it
is therefore impossible to discover any new irrational expression, finite and irreducible, for a
root of that general quadratic, essentially distinct from the expressions which have long been
known: and the only possible difference between the extractions of radicals which are required
in any two methods of solution, if neither method require any superfluous extraction, is that
these methods may introduce different square factors into the expressions of that quantity or
function f1, of which, in each, the square root a′1 is to be calculated.
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[14.] Proceeding to the general cubic,

x3 + a1x
2 + a2x+ a3 = 0,

we know, first, that the three coefficients are symmetric functions of the three roots,

a1 = −(x1 + x2 + x3), a2 = x1x2 + x1x3 + x2x3, a3 = −x1x2x3,

so that we cannot express any one of these three arbitrary roots x1, x2, x3, as a rational
function b of the three coefficients a1, a2, a3; we must therefore inquire whether it can be
expressed as an irrational function b(m), involving at least one radical a′1 of the first order,
which is to satisfy the two conditions,

a
′α′1
1 = f1(a1, a2, a3),

and
a′1 = f

′
1(x1, x2, x3);

the functions f1 and f
′
1 being rational, and the prime exponent α′1 being either 2 or 3, because

it is to be equal to the number of values of the rational function f
′
1 obtained by changing

in all possible ways the arrangement of the three roots x1, x2, x3, and therefore must be a
divisor of the product 1 . 2 . 3 = 6.

Now by the properties of rational functions of three variables, (of which an investigation
shall soon be given, but which it is convenient merely to enunciate here, that the course of the
main argument may not be too much interrupted,) no three-valued function of three arbitrary
quantities x1, x2, x3, can have a symmetric cube; and the only two-valued functions, which
have symmetric squares, are of the form

b(x1 − x2)(x1 − x3)(x2 − x3),

b being a symmetric but otherwise arbitrary multiplier. We must therefore suppose, that the
radical a′1 is a square-root, and that it may be thus represented:

a′1 = f
′
1(x1, x2, x3) = b(x1 − x2)(x1 − x3)(x2 − x3)

=
√{b2(x1 − x2)2(x1 − x3)2(x2 − x3)2}

=
√{b2(a2

1a
2
2 − 4a3

1a3 − 4a3
2 + 18a1a2a3 − 27a2

3)}

=
√
−108b2(c21 − c32),

b being here rational with respect to a1, a2, a3, as also are c1 and c2, which last have the
same meanings here as in the second article; so that the function f1 is of the form,

f1(a1, a2, a3) = −108b2(c21 − c32).

No other radical of the first order, a′2, can enter into the sought irreducible expression
b(m); because the same reasoning would give

a′2 = c(x1 − x2)(x1 − x3)(x2 − x3) =
c

b
a′1,
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c being rational with respect to a1, a2, a3, so that the radical a′2 would be superfluous. On
the other hand, no expression of the form b0 +b1a

′
1 can represent the three-valued function x;

we must therefore suppose that if the sought expression b(m) exist at all, it is, at lowest, of
the second order, and involves at least one radical a′′1 , such that

a
′′α′′1
1 = ( f ′1 = ) b0 + b1a

′
1,

and
a′′1 = f

′′
1(x1, x2, x3);

the rational function f
′′
1 admitting of 2α′′1 values, and consequently the exponent α′′1 being

= 3, (since it cannot be = 2, because no function of three variables has exactly four values,)
so that we must suppose the radical a′′1 to be a cube-root, of the form

a′′1 = 3
√
b0 + b1a′1,

b0 and b1 being rational with respect to a1, a2, a3. But in order that a six-valued rational
function f

′′
1 , of three arbitrary quantities x1, x2, x3, should have a two-valued cube, it must

be of the form
f
′′
1(x1, x2, x3) = (p0 + p1a

′
1)(x1 + ρ2

3x2 + ρ3x3);

in which p0 and p1 are symmetric, a′1 has the form recently assigned, and ρ3 is a root of the
numerical equation

ρ2
3 + ρ3 + 1 = 0;

we must therefore suppose that

a′′1 = (p0 + p1a
′
1)(x1 + ρ2

3x2 + ρ3x3),

and

b0 + b1a
′
1 = 27(p0 + p1a

′
1)3

{
c1 + 1

18
(ρ2

3 − ρ3)
a′1
b

}
,

c1 retaining here its recent meaning; so that the radical a′′1 may be considered as the cube-
root of this last expression. If any other radical a′′2 of the second order could enter into the
composition of b(m), it ought, for the same reasons, to be either of the form

a′′2 = (q0 + q1a
′
1)(x1 + ρ2

3x2 + ρ3x3),

or else of the form
a′′2 = (q0 + q1a

′
1)(x1 + ρ3x2 + ρ2

3x3),

ρ3 being here the same root of the numerical equation ρ2
3 + ρ3 + 1 = 0, as in the expression

for α′′1 ; we should therefore have either the relation

a′′2 =
q0 + q1a

′
1

p0 + p1a′1
a′′1 ,
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or else the relation

a′′2 =
9c2(p0 + p1a1)(q0 + q1a

′
1)

a′′1
,

c2 retaining its recent meaning; so that in each case it would be superfluous to perform any
new extraction of a cube-root or other radical in order to calculate a′′2 , after a′1 and a′′1 had
been calculated; and consequently no such other radical a′′2 of the second order can enter into
the composition of the irreducible function b(m). If then that function be itself of the second
order, it must be capable of being put under the form

b′′ = b′0 + b′1a
′′
1 + b′2a

′′2
1 ,

b′0, b′1, b′2 being functions of the forms

b′0 = (b′0)0 + (b′0)1a
′
1, b′1 = (b′1)0 + (b′1)1a

′
1, b′2 = (b′2)0 + (b′2)1a

′
1,

in which the radicals a′1 and a′′1 have the forms lately found, and (b′0)0, . . . (b′2)1 are rational
functions of a1, a2, a3. And on the same supposition, the three roots x1, x2, x3, of that
equation must, in some arrangement or other, be represented by the three expressions,

xα = b′′0 = b′0 + b′1a
′′
1 + b′2a

′′2
1 ,

xβ = b′′1 = b′0 + ρ3b
′
1a
′′
1 + ρ2

3b
′
2a
′′2
1 ,

xγ = b′′2 = b′0 + ρ2
3b
′
1a
′′
1 + ρ3b

′
2a
′′2
1 ,

ρ3 retaining here its recent value: which expressions reciprocally will be true, if the following
relations,

b′0 = 1
3 (xα + xβ + xγ),

b′1a
′′
1 = 1

3 (xα + ρ2
3xβ + ρ3xγ),

b′2a
′′2
1 = 1

3
(xα + ρ3xβ + ρ2

3xγ),

can be made to hold good, by any suitable arrangement of the roots xα, xβ, xγ , and by
any suitable selection of those rational functions of a1, a2, a3, which have hitherto been left
undetermined. Now, for this purpose it is necessary and sufficient that the arrangement of
the roots xα, xβ , xγ , should coincide with one or other of the three following arrangements,
namely x1, x2, x3, or x2, x3, x1, or x3, x1, x2; the value of 3b′1(p0 + p1a

′
1) being, in the first

case, unity, in the second case, ρ3; and, in the third case, ρ2
3; while, in every case, the value of

b′0 is to be
−a1

3
, and that of b′1b

′
2(b0 + b1a

′
1) is to be c2. All these suppositions are compatible

with the conditions assigned before; nor is there any essential difference between the three
cases of arrangement just now mentioned, since the passage from any one to any other may be
made (as we have seen) by merely multiplying the coefficient b′1, which admits of an arbitrary
multiplier, by an imaginary cube-root of unity. We have, therefore, the following irrational
and irreducible expression for the root x of the general cubic, as a function of the second
order,

x = b′′ =
−a1

3
+

a′′1
3(p0 + p1a′1)

+
3c2(p0 + p1a

′
1)

a′′1
;
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in which it is to be remembered that

a′′31 = 27(p0 + p1a
′
1)3

{
c1 + 1

18 (ρ2
3 − ρ3)

a′1
b

}
,

and that
a′21 = −108b2(c21 − c32);

c1 and c2 having the determined values above referred to, namely

c1 = − 1
54(2a3

1 − 9a1a2 + 27a3), c2 = 1
9(a2

1 − 3a2),

and ρ3 being an imaginary cube-root of unity, but b and p0, p1, being any arbitrary rational
functions of a1, a2, a3, or even any arbitrary numeric constants; except that b must be different
from 0, and that p0, p1 must not both together vanish. (In the formulæ of the earlier articles
of this essay, these three last quantities had the following particular values,

b = 1
18(ρ2

3 − ρ3), p0 = 1
3 , p1 = 0.)

By substituting for the cubic radical a′′1 the three unequal values a′′1 , ρ3a
′′
1 , ρ2

3a
′′
1 , in the

general expression, just now found, for x, we obtain separate and unequal expressions for
the three separate roots x1, x2, x3; these roots, and every rational function of them, may
consequently be expressed as rational functions of the two radicals a′1 and a′′1 ; and therefore
it is unnecessary and improper, in the present research, to introduce any other radical. But
these two radicals a′1 and a′′1 are not essentially distinct from those which enter into the usual
formulæ for the solution of a cubic equation: it is therefore impossible to discover any new
irrational expression, finite and irreducible, for a root of the general cubic, essentially distinct
from those which have long been known; and the only possible difference, with respect to
the extracting of radicals, between any two methods of solution which both are free from
all superfluous extractions, consists in the introduction of different square factors into that
quantity or function f1, of which, in each, the square root a′1 is to be calculated; or in the
introduction of different cubic factors into that other quantity or function f ′1, of which, in each
method, it is requisite to calculate the cube-root a′′1 . It is proper, however, to remember the
remarks which have been made, in a foregoing article, respecting the reducibility of a certain
expression, involving two cubic radicals a′′1 and a′′2 , which is not uncommonly assigned for a
root of the cubic equation.

[15.] But it is necessary to demonstrate some properties of rational functions of three
variables, which have been employed in the foregoing investigation. And because it will be
necessary to investigate afterwards some analogous properties of functions of four and five
arbitrary quantities, it may be conducive to clearness and uniformity that we should begin
with a few remarks respecting functions which involve two variables only.

Let f(xα, xβ) denote any arbitrary rational function of two arbitrary quantities x1, x2,
arranged in either of their only two possible arrangements; so that the function f admits of
the two following values

f(x1, x2) and f(x2, x1),
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which for conciseness may be thus denoted,

(1, 2) and (2, 1).

These different values of the proposed function f may also be considered as being themselves
two different functions of the same two quantities x1, x2 taken in some determined order;
and may, in this view, be denoted thus,

f1(x1, x2) and f2(x1, x2),

or, more concisely,

(1, 2)1 and (1, 2)2 :

they may also, on account of the mode in which they are formed from one common type
f(xα, xβ) be said to be syntypical functions. For example, the two values,

ax1 + ax2 = (1, 2) = f(x1, x2) = f1(x1, x2) = (1, 2)1,

and

ax2 + ax1 = (2, 1) = f(x2, x1) = f2(x1, x2) = (1, 2)2,

of the function axα + bxβ, may be considered as being two different but syntypical functions

of the two variables x1 and x2. And again, in the same sense, the functions
x2

1

x2
and

x2
2

x1
are

syntypical.
Now although, in general, two such syntypical functions, f1 and f2, are unconnected by

any relation among themselves, on account of the independence of the two arbitrary quantities
x1 and x2; yet, for some particular forms of the original or typical function f1, they may
become connected by some such relation, without any restriction being thereby imposed on
those two arbitrary quantities. But all such relations may easily be investigated, with the
help of the two general forms obtained in the thirteenth article, namely,

f1 = a+ b(x1 − x2), f2 = a− b(x1 − x2),

in which a and b are symmetric. For example, we see from these forms that the two syntypical
functions f1 and f2 become equal, when they reduce themselves to the symmetric term or
function a, but not in any other case; and that their squares are equal without their being
equal themselves, if they are of the forms ±b(x1 − x2), but not otherwise. We see too, that
we cannot suppose f2 = ρ3f1, without making a and b both vanish; and therefore that two
syntypical functions of two arbitrary quantities cannot have equal cubes, if they be themselves
unequal.

[16.] After these preliminary remarks respecting functions of two variables, let us now
pass to functions of three; and accordingly let f(xα, xβ, xγ), or more concisely (α, β, γ), denote
any arbitrary rational function of any three arbitrary and independent quantities x1, x2, x3,
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arranged in any arbitrary order. It is clear that this function f has in general six different
values, namely,

(1, 2, 3), (2, 3, 1), (3, 1, 2), (2, 1, 3), (3, 2, 1), (1, 3, 2),

or, in a more developed notation,

f(x1, x2, x3), . . . f(x1, x3, x2),

corresponding to the six different possible arrangements of the three quantities on which it
is supposed to depend; and that these six values of the function f may also be considered as
six different but syntypical functions of the same three arbitrary quantities x1, x2, x3, taken
in some determined order; which functions may be thus denoted,

f1(x1, x2, x3), . . . f6(x1, x2, x3),

or, more concisely,
(1, 2, 3)1, . . . (1, 2, 3)6.

For example, the six following values,

ax1 + bx2 + cx3 = (1, 2, 3) = f(x1, x2, x3),

ax2 + bx3 + cx1 = (2, 3, 1) = f(x2, x3, x1),

ax3 + bx1 + cx2 = (3, 1, 2) = f(x3, x1, x2),

ax2 + bx1 + cx3 = (2, 1, 3) = f(x2, x1, x3),

ax3 + bx2 + cx1 = (3, 2, 1) = f(x3, x2, x1),

ax1 + bx3 + cx2 = (1, 3, 2) = f(x1, x3, x2),

of the original or typical function

axα + bxβ + cxγ = f(xα, xβ, xγ),

may be considered as being six syntypical functions, f1, f2, f3, f4, f5, f6, of the three
quantities x1, x2, x3. Such also are the six following,

x1

x2
+ x3,

x2

x3
+ x1,

x3

x1
+ x2,

x2

x1
+ x3,

x3

x2
+ x1,

x1

x3
+ x2,

which are the values of the function
xα
xβ

+ xγ .

Now, in general, six such syntypical functions of three arbitrary quantities are all unequal
among themselves; nor can any ratio or other relation between them be assigned, (except
that very relation which constitutes them syntypical,) so long as the form of the function f,
although it has been supposed to be rational, remains otherwise entirely undetermined. But,
for some particular forms of this original or typical function f(xα, xβ, xγ), relations may arise
between the six syntypical functions f1, . . . f6, without any restriction being thereby imposed
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on the three arbitrary quantities x1, x2, x3; for example, the function f may be partially or
wholly symmetric, and then the functions f1, . . . f6 will, some or all, be equal. And we are
now to study the chief functional conditions, under which relations of this kind can arise.
More precisely, we are to examine what are the conditions under which the number of the
values of a rational function f of three variables, or of the square or cube of that function,
can reduce itself below the number six, in consequence of two or more of the six syntypical
functions f1, . . . f6, or of their squares or cubes, which are themselves syntypical, becoming
equal to each other. And for this purpose we must first inquire into the conditions requisite
in order that any two syntypical functions, or that any two values of f, may be equal.

[17.] If any two such values be denoted by the symbols

f(xα1
, xβ1

, xγ1
), and f(xα2

, xβ2
, xγ2

),

or, more concisely, by the following,

(α1, β1, γ1) and (α2, β2, γ2),

it is clear that in passing from the one to the other, and therefore in passing from some one
arrangement to some other of the three indices α, β, γ, (which must themselves coincide, in
some arrangement or other, with the numbers 1, 2, 3,) we must have changed some index,
such as α, to some other, such as β, which must also have been changed, itself, either to α or
to γ; this latter index γ remaining in the first case unaltered, but being changed to α in the
second case. And, in whatever order the indices α1, β1, γ1 may have coincided with α, β, γ,
it is obvious that the function

f(xα1
, xβ1

, xγ1
) or (α1, β1, γ1)

must coincide with the syntypical function

fi(xα, xβ, xγ) or (α, β, γ)i,

for some suitable index i, belonging to the system 1, 2, 3, 4, 5, 6; the equation

(α1, β1, γ1) = (α2, β2, γ2),

is therefore equal to one or other of the two following, namely, either

1st, . . . (α, β, γ)i = (β, α, γ)i,

or
2nd, . . . (α, β, γ)i = (β, γ, α)i.

In the first case, the function fi is symmetric with respect to the two quantities xα, xβ ,
and therefore involves them only by involving their sum and product, which may be thus
expressed,

xα + xβ = −a1 − xγ , xαxβ = a2 + a1xγ + x2
γ ,
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a1 and a2 being symmetric functions of the three quantities x1, x2, x3, namely, the following,

a1 = −(x1 + x2 + x3), a2 = x1x2 + x1x3 + x2x3;

so that if we put, for abridgment,
a3 = −x1x2x3,

the three quantities x1, x2, x3 will be the three roots of the cubic equation

x3 + a1x
2 + a2x+ a3 = 0.

In this case, therefore, we may consider fi as being a rational function of the root xγ alone,
which function will however involve, in general, the coefficients a1 and a2; and we may put

fi(xα, xβ, xγ) =
φ(xγ)

χ(xγ)
=
χ(xα) . χ(xβ) . φ(xγ)

χ(xα) . χ(xβ) . χ(xγ)
= ψ(xγ),

φ, χ and ψ denoting here some rational and whole functions of xγ , which may however
involve rationally the coefficients of the foregoing cubic equation. And since it is unnecessary,
on account of that equation, to retain in evidence the cube or any higher powers of xγ , we
may write simply

fi(xα, xβ, xγ) = a+ bxγ + cx2
γ ,

a, b, c being here symmetric functions of the three quantities x1, x2, x3: so that, in this
case, the six syntypical functions, or values of the function f, reduce themselves to the three
following

a+ bx1 + cx2
1, a+ bx2 + cx2

2, a+ bx3 + cx2
3.

Nor can these three reduce themselves to any smaller number, without their all becoming
equal and symmetric, by the vanishing of b and c.

In the second case, the form of fi being such that

(α, β, γ)i = (β, γ, α)i,

it must also be such that
(β, γ, α)i = (γ, α, β)i;

for the same reason we must have

(β, α, γ)i = (α, γ, β)i = (γ, β, α)i,

so that the function changes when any two of the three indices are interchanged, but returns
to its former value when any two are interchanged again; from which it results that the two
following combinations

(α, β, γ)i + (β, α, γ)i and
(α, β, γ)i − (β, α, γ)i

(xα − xβ)(xα − xγ)(xβ − xγ)
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remain unchanged, after all interchanges of the indices, and are therefore symmetric functions,
such as 2a and 2b, of the three quantities x1, x2, x3: so that we may write

fi(xα, xβ, xγ) = (α, β, γ)i = a+ b(xα − xβ)(xα − xγ)(xβ − xγ);

and consequently the six syntypical functions, or values of the function f, reduce themselves
in this case to the two following,

a± b(x1 − x2)(x1 − x3)(x2 − x3),

in which a and b are symmetric. It is evident that any farther diminution of the number of
values of f, conducts, in this case also, to the one-valued or symmetric function a.

Combining the foregoing results, we see that if an unsymmetric rational function of three
arbitrary quantities have fewer than six values, it must be reducible either to the two-valued
form

a+ b(x1 − x2)(x1 − x3)(x2 − x3),

or to the three-valued form
a+ bx+ cx2.

[18.] It is possible, however, that some analogous but different reduction may cause
either—I. the square, or II. the cube of a function f of three variables, to have a smaller
number of values than the function f itself. But, for this purpose, it is necessary that we
should now have a relation of one or other of the two forms following, namely, either

I. . . . (α2, β2, γ2) = −(α1, β1, γ1)

or
II. . . . (α2, β2, γ2) = ρ3(α1, β1, γ1)

(ρ3 denoting, as above, an imaginary cube root of unity,) instead of the old functional relation
(α2, β2, γ2) = (α1, β1, γ1). And as we found ourselves permitted, before, to change that old
relation to one or other of these two,

1st, (β, α, γ)i = (α, β, γ)i; 2nd, (β, γ, α)i = (α, β, γ)i;

so are we now allowed to change the two new relations to the four following:

I. 1, . . . (β, α, γ)i = −(α, β, γ)i;

II. 1, . . . (β, α, γ)i = ρ3(α, β, γ)i;

I. 2, . . . (β, γ, α)i = −(α, β, γ)i;

II. 2, . . . (β, γ, α)i = ρ3(α, β, γ)i;

the relation (I.) admitting of being changed to one or other of the two marked (I. 1) and
(I. 2); and the relation (II.) admitting, in like manner, of being changed either to (II. 1) or
to (II. 2). But the relations (I. 2) and (II. 1) conduct only to evanescent functions, because
(I. 2) gives

(γ, α, β)i = −(β, γ, α)i = +(α, β, γ)i, (α, β, γ)i = −(γ, α, β)i = −(α, β, γ)i,
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and (II. 1) gives
(α, β, γ)i = ρ3(β, α, γ)i = ρ2

3(α, β, γ)i :

we may therefore confine our attention to the other two relations. Of these (I. 1) requires that

the function
(α, β, γ)i
(xα − xβ)

should not change its value when xα and xβ are interchanged, and

consequently, by what was shown above, that it should be reducible to the form a+bxγ+cx2
γ ;

in this case, therefore, we have the expression,

(α, β, γ)i = fi(xα, xβ, xγ) = (xα − xβ)(a+ bxγ + cx2
γ),

the coefficients a, b, c, being symmetric functions of x1, x2, x3. Accordingly the square of this
function fi admits in general of three values only, while the function is itself in general six-
valued; because the square of the factor xα − xβ , but not that factor itself, can be expressed
as a rational function of xγ , and of the quantities a1, a2, a3, which are symmetric relatively
to x1, x2, x3. It may even happen that the function itself shall have only two values, and
that its square shall be symmetric, namely, by the factor a+ bxγ + cx2

γ being reducible to the
form b(xα− xγ)(xβ −xγ), in which the coefficient b is some new symmetric function; but the
results of the last article enable us to see that the functions thus obtained, namely, those of
the form

b(xα − xβ)(xα − xγ)(xβ − xγ),

or more simply of the form

b(x1 − x2)(x1 − x3)(x2 − x3),

are the only two-valued functions of three variables which have symmetric squares: they
enable us also to see easily that the square of a three-valued function of three variables is
always itself three-valued. It remains, then, only to consider the relations (II. 2); which
requires that the function

(α, β, γ)i
xα + ρ2

3xβ + ρ3xγ

should be of the two-valued form a+ b(xα − xβ)(xα − xγ)(xβ − xγ); because, if we denote it
by φ(xα, xβ, xγ), we have

φ(xα, xβ, xγ) = φ(xβ, xγ , xα) = φ(xγ , xα, xβ),

and
φ(xβ , xα, xγ) = φ(xα, xγ , xβ) = φ(xγ , xβ, xα);

we have, therefore, in this case,

(α, β, γ)i = fi(xα, xβ, xγ)

= {a+ b(xα − xβ)(xα − xγ)(xβ − xγ)}(xα + ρ2
3xβ + ρ3xγ),

a and b being symmetric coefficients, which must not both together vanish; and accordingly
we find, à posteriori, that whereas this function fi has always itself six values, its cube has

36



only two. The foregoing analysis shows at the same time, that if an unsymmetric function of
three variables have fewer than six values, its cube cannot have fewer values than itself; and
accordingly it is easy to see that the cubes of those two-valued and three-valued functions,
which were assigned in the last article, are themselves two-valued and three-valued. In fact,
the passage from any one to any other of the values of any such (two-valued or three-valued)
function, may be performed by interchanging some two of the three quantities x1, x2, x3;
and if such interchange could have the effect of multiplying the function by an imaginary
cube-root of unity, ρ3, another interchange of the same two quantities would multiply again
by the same factor ρ3; and therefore the two interchanges combined would multiply by ρ2

3,
which is a factor different from unity, although any two such successive interchanges of any
two quantities xα, xβ, ought to make no change in the function. If, then, a rational function
of three arbitrary quantities have a symmetric cube, it must be itself symmetric.

The form of that six-valued function of three variables which has a two-valued cube, may
also be thus deduced, from the functional relation (II. 2). Omitting for simplicity, the lower
index i, which is not essential to the reasoning, we find, by that relation,

(β, γ, α) = ρ3(α, β, γ); (γ, α, β) = ρ2
3(α, β, γ);

(γ, β, α) = ρ3(α, γ, β); (β, α, γ) = ρ2
3(α, γ, β);

so that
(α, β, γ) . (α, γ, β) = (β, γ, α)(β, α, γ) = (γ, α, β)(γ, β, α) = e,

this product e being some symmetric function; at the same time, the sum (α, β, γ) + (α, γ, β)
is a three-valued function yα, which may be put under the form

yα = a+ bxα + cx2
α,

a, b, and c being symmetric, and b and c being obliged not both to vanish. Attending therefore
to that cubic equation of which xα, xβ , xγ are the roots, we have

y2
α = a(2) + b(2)xα + c(2)x2

α,

a(2), b(2), and c(2) denoting here some symmetric functions, and c, c(2) being obliged not both
to vanish; and consequently, by eliminating x2

α, we obtain an equation of the form

(bc(2) − cb(2))xα = ca(2) − ac(2) + c(2)yα − cy2
α,

in which the coefficients of yα and y2
α cannot both vanish, and in which therefore the coefficient

of xα cannot vanish, because the three-valued function yα must not be a root of any equation
with symmetric coefficients, below the third degree; we have therefore an expression of the
form

xα = p+ qyα + ry2
α,

in which p, q, r are symmetric, and q and r do not both vanish. But

yα = (α, β, γ) + (α, γ, β) = (α, β, γ) +
e

(α, β, γ)
;
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and the cube of (α, β, γ) is a two-valued function; therefore

xα = p′ + q′(α, β, γ) + r′(α, β, γ)2,

the functions p′, q′, r′ being either symmetric or two-valued, and consequently undergoing
no change, when we pass successively from the first to the second, or from the second to the
third, of the three functions (α, β, γ), (β, γ, α), (γ, α, β), by changing at each passage xα to
xβ , xβ to xγ , and xγ to xα; and we have seen that these three last-mentioned functions bear
to each other the same ratios as the three cube-roots of unity 1, ρ3, ρ2

3; we have therefore

xβ = p′ + q′ρ3(α, β, γ) + r′ρ2
3(α, β, γ)2, xγ = p′ + q′ρ2

3(α, β, γ) + r′ρ3(α, β, γ)2;

and thus, finally, the six-valued function which has a two-valued cube is found anew to be
expressible as follows,

(α, β, γ) =
1

3q′
(xα + ρ2

3xβ + ρ3xγ);

in which the coefficient
1

3q′
is a two-valued function, of the form

1

3q′
= a+ b(x1 − x2)(x1 − x3)(x2 − x3),

a, b, denoting here some new symmetric functions.
The theorems obtained incidentally in this last discussion supply us also with another

mode of proving that the cube of a three-valued function of three arbitrary quantities must be
itself three-valued: for if we should suppose yβ = ρ3yα, and consequently yγ = ρ3yβ = ρ2

3yα,
in which yα = a+ bxα + cx2

α, and b and c do not both vanish, we should then have relations
of the forms

xα = p+ qyα + ry2
α,

xβ = p+ qρ3yα + rρ2
3y

2
α,

xγ = p+ qρ2
3yα + rρ3y

2
α;

but these would require that we should have the equation

xα + ρ2
3xβ + ρ3xγ = 3q . yα,

a condition which it is impossible to fulfil, because the first member has six values, and the
second only three.

[19.] The discussion of the forms of functions of four variables may now be conducted
more briefly, than would have been consistent with clearness, if we had not already treated
so fully of functions in which the number of variables is less than four.

Let x1, x2, x3, x4 be any four arbitrary quantities, or roots of the general biquadratic,

x4 + a1x
3 + a2x

2 + a3x+ a4 = 0;
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and let f(x1, x2, x3, x4), or, more concisely (1, 2, 3, 4), denote any rational function of them.
By altering the arrangement of these four roots, we shall in general obtain twenty-four dif-
ferent but syntypical functions; of which each, according to the analogy of the foregoing
notation, may be denoted by any one of the four following symbols:

(α, β, γ, δ) = f(xα, xβ, xγ, xδ) = (1, 2, 3, 4)i = fi(x1, x2, x3, x4).

In passing from any one to any other of these twenty-four syntypical functions f1, . . . f24, by
a change of arrangement of the four roots, some one of these roots, such as the first in order,
must be changed to some other, such as the second; and this second must at the same time
be changed either to the first or to a different root, such as the third; while, in the former
case, the third and fourth roots may either be interchanged among themselves or not; and,
in the latter case, the third root may be changed either to the first or to the fourth. We have
therefore four and only four distinct sorts of changes of arrangement, which may be typified
by the passages from the function (α, β, γ, δ) to the four following:

I. . . . (β, α, γ, δ); II. . . . (β, α, δ, γ); III. . . . (β, γ, α, δ); IV. . . . (β, γ, δ, α);

and may be denoted by the four characteristics

∇1, ∇2, ,∇3, ∇4;

or more fully by the following,

a,b

∇1,
a,b

∇2,
a,b,c

∇3 ,
a,b,c

∇4 ;

a,b

∇1 implying, when prefixed to any function (α, β, γ, δ), that we are to interchange the ath

and bth of the roots on which it depends;
a,b

∇2, that we are to interchange among themselves,

not only the ath and bth, but also that cth and dth;
a,b,c

∇3 , that we are to interchange the ath

to the bth, the bth to the cth, and the cth to the ath; namely, by putting that which had been

bth in the place of that which had been ath, and so on; and finally
a,b,c

∇4 , that the ath is to be
changed to the bth, the bth to the cth, the cth to the dth, and the dth to the ath; so that we
have, in this notation,

I. . . .
1,2

∇1(α, β, γ, δ) = (β, α, γ, δ);

II. . . .
1,2

∇2(α, β, γ, δ) = (β, α, δ, γ);

III. . . .
1,2,3

∇3 (α, β, γ, δ) = (β, γ, α, δ);

IV. . . .
1,2,3

∇4 (α, β, γ, δ) = (β, γ, δ, α).

The first sort of change may be called, altering in a simple binary cycle; the second, in a
double binary cycle; the third, in a ternary ; and the fourth, in a quaternary cycle. And every
possible equation,

(α2, β2, γ2, δ2) = (α1, β1, γ1, δ1),
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between any two of the twenty-four syntypical functions fi may be denoted by one or other
of the four following symbolic forms, in each of which the two members may be conceived to
be prefixed to a function such as (α1, β1, γ1, δ1):

I. . . .
a,b

∇1 = 1; II. . . .
a,b

∇2 = 1; III. . . .
a,b,c

∇3 = 1; IV. . . .
a,b,c

∇4 = 1;

or, without any loss of generality, by one of the four following, in each of which the two
members are conceived to be prefixed to a function such as (α, β, γ, δ)i:

I. . . .
1,2

∇1 = 1; II. . . .
1,2

∇2 = 1; III. . . .
1,2,3

∇3 = 1; IV. . . .
1,2,3

∇4 = 1;

the Ist and IInd suppositions conducting to twelve-valued functions, the IIIrd to an eight-
valued, and the IVth to a six-valued function; while every possible pair of equations between
any three of the same twenty-four syntypical functions, if it be not included in a single
equation of this last set, may be put under one or other of the six following forms:

(I. I.) . . .
1,2

∇1 = 1,
1,3

∇1 = 1; (I. I.)′ . . .
1,2

∇1 = 1,
3,4

∇1 = 1;

(I. II.) . . .
1,2

∇1 = 1,
1,3

∇2 = 1; (I. III.) . . .
1,2

∇1 = 1,
2,3,4

∇3 = 1;

(II. II.) . . .
1,2

∇2 = 1,
1,3

∇2 = 1; (II. III.) . . .
1,2

∇2 = 1,
1,2,3

∇3 = 1;

which conduct respectively to functions with four, six, three, one, six and two values; nor
can any form of condition, essentially distinct from all the ten last mentioned, be obtained
by supposing any three or more equations to exist between the twenty-four functions fi.

A little attention will not fail to evince the justice of this enumeration of the conditions
under which a rational function of four arbitrary variables can have fewer than twenty-four
values: yet it may not be useless to remark, as connected with this inquiry, that, in virtue

of the notation here employed, the supposition
a,b

∇1 = 1 involves the supposition
b,a

∇1 = 1; the

supposition
a,b

∇2 = 1 involves the suppositions
b,a

∇2 = 1,
c,d

∇2 = 1,
d,c

∇2 = 1;
a,b,c

∇3 = 1 involves
b,c,a

∇3 = 1,
c,a,b

∇3 = 1,
a,c,b

∇3 = 1,
c,b,a

∇3 = 1,
b,a,c

∇3 = 1;
a,b,c

∇4 = 1 involves
b,c,d

∇4 = 1,
c,d,a

∇4 = 1,
d,a,b

∇4 = 1,
a,c

∇2 = 1,
a,d,c

∇4 = 1,
d,c,b

∇4 = 1,
c,b,a

∇4 = 1,
b,a,d

∇4 = 1; while the system
a,b

∇1 = 1,
a,b

∇2 = 1, is equivalent

to the system
a,b

∇1 = 1,
c,d

∇1 = 1;
a,b

∇1 = 1,
a,b,c

∇3 = 1, to
a,b

∇1 = 1,
a,c

∇1 = 1;
a,b

∇1 = 1,
a,b,c

∇4 = 1, to
a,b

∇1 = 1,
b,c,d

∇3 = 1;
a,b

∇1 = 1,
a,c,b

∇4 = 1, to
a,b

∇1 = 1,
a,c

∇2 = 1;
a,b

∇2 = 1,
a,b,c

∇4 = 1, to
a,b

∇2 = 1,
b,d

∇1 = 1;
a,b,c

∇3 = 1,
b,c,d

∇3 = 1, to
a,b

∇2 = 1,
a,b,c

∇3 = 1;
a,b,c

∇3 = 1,
a,b,c

∇4 = 1, to
a,b,c

∇3 = 1,
c,d

∇1 = 1; and
a,b,c

∇4 = 1,
a,c,b

∇4 = 1, to
a,b,c

∇3 = 1,
a,b,c

∇4 = 1: analogous equivalences also holding good for other systems of
analogous conditions.

Let us now consider more closely the effects of the ten different suppositions (I.),. . .
(II. III.).
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In the case (I.), the function f is symmetric relatively to some two roots xα, xβ , and
may be put under the form of a rational function of two others, xγ , xδ, or simply of their
difference,

(I.) . . . F = φ(xγ − xδ);

it being understood that this function φ may involve the coefficients a1, a2, a3, a4, which are
symmetric relatively to x1, x2, x3, x4: because it is in general possible to determine rationally
any two roots xγ , xδ, of an equation of any given degree, when their difference xγ − xδ is
given.

In the case (II.), we may interchange some two roots, xα, xβ , if we at the same time
interchange the two others; and the function may be put under the form

(II.) . . . F = φ(xα + xβ − xγ − xδ, xα − xβ . xγ − xδ);

because any rational function of the four roots may be considered as a rational function of
the four combinations

xα + xβ , xα − xβ, xγ + xδ, xγ − xδ,

or of the four following,

xα + xβ + xγ + xδ, xα + xβ − xγ − xδ, xα − xβ , xα − xβ . xγ − xδ;

of which the first may be omitted, as symmetric, and the third as being here obliged to
enter only by its square, which square (xα − xβ)2 is expressible as a rational function of
xα + xβ − xγ − xδ, involving also the symmetric coefficients a1, a2, a3, which are allowed to
enter in any manner into φ.

In the case (III.), some three roots xα, xβ, xγ , may all be interchanged, the fourth root
remaining unaltered; and, on account of what has been shown respecting functions of three
variables, we may write

(III.) . . . F = φ(xδ) + (xα − xβ)(xα − xγ)(xβ − xγ)ψ(xδ),

the function ψ (as well as φ) being rational.
In the case (IV.), we may change xα to xβ , if we at the same time change xβ to xγ , xγ

to xδ, and xδ to xα; and the function f is of the form

(IV.) . . . F = φ(xα − xβ + xγ − xδ . xα − xγ . xβ − xδ);

because the condition
1,2,3

∇4 = 1 involves the condition
1,3

∇2 = 1, and consequently the present
function f must be rational relatively to the two combinations

xα + xγ − xβ − xδ and xα − xγ . xβ − xδ;

or relatively to the two following,

xα − xβ + xγ − xδ and xα − xβ + xγ − xδ . xα − xγ . xβ − xδ;
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but of these two last-mentioned combinations, the former alone changes, and it changes in its

sign alone, when the operation
1,2,3

∇4 performed, so that it can enter only by its square; which
square (xα − xβ + xγ − xδ)2 can be expressed as a rational function of the product

(xα − xβ + xγ − xδ)(xα − xγ)(xβ − xδ),

and of those symmetric coefficients which may enter in any manner into φ.
By similar reasonings it appears, that in the six other cases (I. I.) . . . (II. III.), we have,

respectively, the six following forms for f:

(I. I.) . . . F = φ(xδ) = a+ bxδ + cx2
δ + dx3

δ;

(I. I.)′ . . . F = φ(xα + xβ − xγ − xδ);

(I. II.) . . . F = φ(xαxβ + xγxδ) = a+ b(xαxβ + xγxδ) + c(xαxβ + xγxδ)
2;

(I. III.) . . . F = a;

(II. II.) . . . F = φ(xα − xβ . xγ − xδ);

(II. III.) . . . F = a+ b(xα − xβ)(xα − xγ)(xα − xδ)(xβ − xγ)(xβ − xδ)(xγ − xδ).

To one or other of the ten forms last determined, may therefore be reduced every rational
function of four arbitrary quantities, which has fewer than twenty-four values. And although
the functions (I. I.)′ and (II. II.) are six-valued, as well as the function (IV.), yet these three
functions are all in general distinct from one another; the function (IV.) being one which does
not change its value, when the four roots xα, xβ , xγ , xδ are all changed in some one quaternary
cycle, but the function (I. I.)′ being one which allows either or both of some two pairs xα, xβ
and xγ , xδ to have its two roots interchanged, and the function (II. II.) being characterized
by its allowing any two roots to be interchanged, if the other two roots be interchanged at the
same time. It may be useful also to observe, that the three-valued function (I. II.) belongs,
as a particular case, to each of these three six-valued forms, and may easily be deduced from
the form (I. I.)′, as follows:

f = ψ(xα+xβ−xγ−xδ) = ψ(xγ+xδ−xα−xβ) = χ(xα + xβ − xγ − xδ)2 = φ(xαxβ+xγxδ).

Attending next to conditions of the forms

∇ = −1, ∇ = ρ3,

instead of attending only to conditions of the form

∇ = 1,

we discover the forms which a rational function of four arbitrary variables must have, in
order that its square or cube may have fewer values than itself; which functional forms are
the following:
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The general twenty-four-valued function f will have its square twelve-valued, if it be
either of the form

f = (xα − xβ) . ψ(xγ − xδ),
or of this other form

f = (xα − xβ) . ψ(xα + xβ − xγ − xδ, xα − xβ . xγ − xδ).
The same general or twenty-four-valued function will have an eight-valued cube, if it be of
the form

f = {φ(xδ) + (xα − xβ)(xα − xγ)(xβ − xγ)ψ(xδ)}(xα + ρ2
3xβ + ρ3xγ),

ρ3 being, as before, an imaginary cube-root of unity. The twelve-valued function (I.) will
have a six-valued square, if it be reducible to the form

f = (xγ − xδ) . ψ(xα + xβ − xγ − xδ).
The twelve-valued function (II.) will have a six-valued square, if it be of the form

f = (xα + xβ − xγ − xδ) . ψ(xα − xβ . xγ − xδ),
or of the form

f = (xα − xβ)(xγ − xδ) . ψ(xα + xβ − xγ − xδ),
or of the form

f = (xα + xβ − xγ − xδ) . ψ(xα + xβ − xγ − xδ . xα − xβ . xγ − xδ).
The eight-valued function (III.) will have its square four-valued, if it be of the form

f = (xα − xβ)(xα − xγ)(xβ − xγ)ψ(xδ).

The six-valued functions (IV.), (I. I.)′, (II. II.), will have their squares three-valued, if they
be reducible, respectively, to the forms,

f = (xα − xβ + xγ − xδ)(xα − xγ)(xβ − xδ) . ψ(xαxγ + xβxδ),

f = (xα + xβ − xγ − xδ) . ψ(xαxβ + xγxδ),

f = (xα − xβ)(xγ − xδ) . ψ(xαxβ + xγxδ);

and the last-mentioned six-valued function, (II. II.), will have its cube two-valued, if it be
reducible to the form

F = {a+ b(xα − xβ)(xα − xγ)(xα − xδ)(xβ − xγ)(xβ − xδ)(xγ − xδ)}
×{xαxβ + xγxδ + ρ2

3(xαxγ + xβxδ) + ρ3(xαxδ + xβxγ)},
ρ3 being still an imaginary cube-root of unity. And the square of the two-valued function
(II. III.) will be symmetric, if it be of the form

f = b(xα − xβ)(xα − xγ)(xα − xδ)(xβ − xγ)(xβ − xδ)(xγ − xδ).
But there exists no other case of reduction essentially distinct from these, in which the
number of values of the square or cube of a rational function of four independent variables
is less than the number of values of that function itself. Some steps, indeed, have been for
brevity omitted, which would be requisite for the full statement of a formal demonstration
of all the foregoing theorems; but these omitted steps will easily occur to any one, who has
considered with attention the investigation of the properties of rational functions of three
variables, given in the two preceding articles.
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[20.] The foregoing theorem respecting functions of four variables being admitted, let us
now proceed to apply them to the à priori investigation of all possible expressions, finite and
irreducible, of the form b(m), for a root x of the general biquadratic equation already often
referred to, namely,

x4 + a1x
3 + a2x

2 + a3x+ a4 = 0.

It is evident in the first place that we cannot express any such root x as a rational
function of the coefficients a1, a2, a3, a4, because these are symmetric relatively to the four
roots x1, x2, x3, x4, and a symmetric function of four arbitrary and independent quantities
cannot be equal to an unsymmetric function of them; we must therefore suppose that m in
b(m) is greater than 0, or, in other words, that the function b(m) is irrational, with respect to
the quantities a1, a2, a3, a4, if any expression of the required kind can be found at all for x.
On the other hand, the general theorem of Abel shows that if any such expression exist, it
must be composed of some finite combination of quadratic and cubic radicals, together with
rational functions; because 2 and 3 are the only prime divisors of the product 24 = 1 . 2 . 3 . 4.
And the first and only radical of the first order in b(m), must be a square-root, of the form

a′1 = b(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

=
√
−442368 . b2 . (e2

1 − e3
2) =

√
−214 . 33 . b2 . (e2

1 − e3
2),

b being some symmetric function of x1, x2, x3, x4, and e1, e2 having the same meanings
here as in the second article; because no rational and unsymmetric function of four arbitrary
quantities x1, x2, x3, x4, has a prime power symmetric, except either this function a′1, or
else some other function a′2 which may be deduced from it by a multiplication such as the

following, a′2 =
c

b
a′1. But a two-valued expression of the form f ′1 = b0 + b1a

′
1 cannot represent

a four-valued function, such as x; we must therefore suppose that the sought expression b(m)

contains a radical a′′1 of the second order, and this must be a cube-root, of the form

a′′1 = (p0 + p1a
′
1)(u1 + ρ2

3u2 + ρ3u3) = 3
√

(b0 + b1a
′
1);

in which ρ3 is, as before, an imaginary cube-root of unity; p0, p1, b0, b1 are symmetric
relatively to x1, x2, x3, x4, or rational relatively to a1, a2, a3, a4;

u1 = x1x2 + x3x4, u2 = x1x3 + x2x4, u3 = x1x4 + x2x3;

and

b0 + b1a
′
1 = 1728(p0 + p1a

′
1)3

{
e1 +

1

1152
(ρ2

3 − ρ3)
a′1
b

}
,

the rational function e1, and the radical a′1 retaining their recent meanings: because no
rational function f

′′
1 of four independent variables x1, x2, x3, x4, which cannot be reduced to

the form thus assigned for a′′1 , can have itself 2α′′1 values, α′′1 being a prime number greater

than 1, if the number of values of the prime power f
′′α′′1
1 be only 2. Nor can any other radical

such as a′′2 of the same order enter into the expression of the irreducible function b(m); because
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this other radical would be obliged to be of one or other of the two forms following, namely
either

a′′2 = (q0 + q1a
′
1)(u1 + ρ2

3u2 + ρ3u3),

or else
a′′2 = (q0 + q1a

′
1)(u1 + ρ3u2 + ρ2

3u3),

ρ3 being the same cube-root of unity in these expressions, as in the expression for a′′1 ; and
the product of the two last trinomial factors is symmetric,

(u1 + ρ2
3u2 + ρ3u3)(u1 + ρ3u2 + ρ2

3u3) = 144e2;

so that either the quotient
a′′2
a′′1

or the product a′′2a
′′
1 would be a two-valued function, which

would be known when a′1 had been calculated, without any new extraction of radicals. At
the same time, if we observe that

u1 + u2 + u3 = a2,

we see that the three values u1, u2, u3 of the three-valued function xαxβ + xγxδ can be
expressed as rational functions of the radicals a′′1 and a′1, or as irrational functions of the
second order of the coefficients a1, a2, a3, a4 of the proposed biquadratic equation, namely
the following,

u1 =
1

3

{
a2 +

a′′1
p0 + p1a′1

+
144e2(p0 + p1a

′)

a′′1

}
,

u2 =
1

3

{
a2 +

ρ3a
′′
1

p0 + p1a′1
+

144e2(p0 + p1a
′)

ρ3a′′1

}
,

u3 =
1

3

{
a2 +

ρ2
3a
′′
1

p0 + p1a′1
+

144e2(p0 + p1a
′)

ρ2
3a
′′
1

}
;

so that if the biquadratic equation can be resolved at all, by any finite combination of radicals
and rational functions, the solution must begin by calculating a square-root a′1 and a cube-
root a′′1 , which are in all essential respects the same as those required for resolving that other
equation of which u1, u2, u3 are roots, namely the following cubic equation:

u3 − a2u
2 + (a1a3 − 4a3)u+ (4a2 − a2

1)a4 − a2
3 = 0;

which may also be thus written,

(u− 1
3a2)2 − 48e2(u− 1

3a2)− 128e1 = 0.

Reciprocally if u1, u2, u3 be known, by the solution of this cubic equation, or in any other
way, we can calculate a′1 and a′′1 , without any new extraction of radicals, since if we put, for
abridgment,

t1 = u2 − u3 = (x1 − x2)(x3 − x4),

t2 = u1 − u3 = (x1 − x3)(x2 − x4),

t3 = u1 − u2 = (x1 − x4)(x2 − x3),
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we have
a′1 = bt1t2t3,

and
a′′1 = (p0 + p1bt1t2t3)(u1 + ρ2

3u2 + ρ3u3).

Again, it is important to observe, that if any one of the three quantities t1, t2, t3, such as t1,
be given, the other two t2, t3, and also u1, u2, u3, can be deduced from it, without any new
extraction; because, in general, the difference of any two roots of a cubic equation is sufficient
to determine rationally all the three roots of that equation: it must therefore be possible to
express the radicals a′1 and a′′1 as rational functions of t1; and accordingly we find

a′1 = bt1(144e2 − t21),

and

a′′1 = {p0 + p1bt1(144e2 − t21)}
(
ρ2

3 − ρ3

2
t1 +

576e1

48e2 − t21

)
;

while t1 may be reciprocally be expressed as follows,

t1 = u2 − u3 = 1
3(ρ3 − ρ2

3)

{
a′′1

p0 + p1a′1
− 144e2(p0 + p1a

′
1)

a′′1

}
.

Hence the most general irrational function of the second order,

f ′′1 = b′0 + b′1a
′′
1 + b′2a

′′2
1 ,

which can enter into the composition of b(m), and in which b′0, b′1, b′2 are functions of the first
order, and of the forms

(b′0)0 + (b′0)1a
′
1, (b′1)0 + (b′1)1a

′
1, (b′2)0 + (b′2)1a

′
1,

may be considered as a rational function of t1,

f ′′1 = φ(t1) = φ(x1 − x2 . x3 − x4);

it is, therefore, included under the form (II. II.), and is either six-valued or three-valued,
according as it does not, or as it does reduce itself to a rational function of u1, by becoming
a rational function of t21, and in neither case can it become a four-valued function such as
x. We must therefore suppose, that the sought irrational expression b(m), for a root x of the
general biquadratic, contains at least one radical a′′′1 of the third order, which, relatively to
the coefficients a1, a2, a3, a4, must be a square-root, (and not a cube-root,) of the form

a′′′1 =
√
b′0 + b′1a

′′
1 + b′2a

′′2
1 ;

and, relatively to the roots x1, x2, x3, x4, must admit of being expressed either as a twelve-
valued function, with a six-valued square, which square is of the form (II. II.); or else as
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a six-valued function, which is not itself of that form (II. II.), and of which the square is
three-valued. This radical a′′′1 must therefore admit of being put under the form

a′′′1 = b′′αvα,

the factor b′′α being a function of the second or of a lower order, and vα being one or other of
the three following functions,

v1 = x1 + x2 − x3 − x4, v2 = x1 + x3 − x2 − x4, v3 = x1 + x4 − x2 − x3,

which are themselves six-valued, but have three-valued squares. And since the product of the
three functions vα is symmetric,

v1v2v3 = 64 . e4,

(e4 having here the same meaning as in the second article,) we need only consider, at most,
two radicals of the third order,

a′′′1 = b′′1v1 =
√
b′′21 (a2

1 − 4a2 + 4u1), a′′′2 = b′′2v2 =
√
b′′22 (a2

1 − 4a2 + 4u2);

and may express the most general irrational function of the third order, which can enter into
the composition of b(m), as follows:

f ′′′1 = b′′0,0 + b′′1,0a
′′′
1 + b′′0,1a

′′′
2 + b′′1,1a

′′′
1 a
′′′
2 ;

the coefficients of this expression being functions of the second or of lower orders, If we
suppress entierely one of the two last radicals, such as a′′′2 , without introducing any higher
radical aIV

1 , we shall indeed obtain a simplified expression, but cannot thereby represent any
root, such as xα, of the proposed biquadratic equation; for if we could do this, we should
then have a system of two expressions for two different roots, xα, xβ , of the forms

xα = b′′0 + b′′1a
′′′
1 , xβ = b′′0 − b′′1a′′′1 ,

which would give
b′′0 = 1

2 (xα + xβ);

but this last rational function, although six-valued, cannot be put under the form (II. II.),
and therefore cannot be equal to any function of the second order, such as b′′0 . Retaining
therefore both the radicals, a′′′1 , a′′′2 , we have next to observe, that if the function f ′′′1 can
coincide with the sought function b(m), so as to represent some one root xα of the proposed
biquadratic equation, it must give a system of expressions for all the four roots xα, xβ, xγ , xδ,
in some arrangement or other, by merely changing the signs of those two radicals of the third
order; namely the following system,

xα = b′′0,0 + b′′1,0a
′′′
1 + b′′0,1a

′′′
2 + b′′1,1a

′′′
1 a
′′′
2 ,

xβ = b′′0,0 + b′′1,0a
′′′
1 − b′′0,1a′′′2 − b′′1,1a′′′1 a′′′2 ,

xγ = b′′0,0 − b′′1,0a′′′1 + b′′0,1a
′′′
2 − b′′1,1a′′′1 a′′′2 ,

xδ = b′′0,0 − b′′1,0a′′′1 − b′′0,1a′′′2 + b′′1,1a
′′′
1 a
′′′
2 ;
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which four expressions for the four roots conduct to the four following relations,

b′′0,0 = 1
4
(xα + xβ + xγ + xδ),

b′′1,0a
′′′
1 = 1

4
(xα + xβ − xγ − xδ),

b′′0,1a
′′′
2 = 1

4 (xα − xβ + xγ − xδ),
b′′1,1a

′′′
1 a
′′′
2 = 1

4 (xα − xβ − xγ + xδ).

Reciprocally, if these four last conditions can be satisfied, by any suitable arrangement
of the four roots, and by any suitable choice of those coefficients or functions which have
hitherto been left undetermined, we shall have the four expressions just now mentioned, for
the four roots of the general biquadratic, as the four values of an irrational and irreducible
function b′′′, of the third order, Now, these four conditions are satisfied when we suppose

xα = x1, xβ = x2, xγ = x3, xδ = x4;

b′′0,0 =
−a1

4
; b′′1,0 =

1

4b′′1
; b′′0,1 =

1

4b′′2
;

and finally,

b′′1,1 =
16e4

b′′1b
′′
2v

2
1v

2
2

;

but not by any suppositions essentially distinct from these. It is therefore possible to express
the four roots of the general biquadratic equation, as the four values of an irrational and
irreducible expression of the third order b′′′, namely as the following:

x1 = b′′′0,0 =
−a1

4
+
a′′′1
4b′′1

+
a′′′2
4b′′2

+
16b′′1b

′′
2e4

a′′′1 a
′′′
2

;

x2 = b′′′0,1 =
−a1

4
+
a′′′1
4b′′1
− a′′′2

4b′′2
− 16b′′1b

′′
2e4

a′′′1 a
′′′
2

;

x3 = b′′′1,0 =
−a1

4
− a′′′1

4b′′1
+
a′′′2
4b′′2
− 16b′′1b

′′
2e4

a′′′1 a
′′′
2

;

x4 = b′′′1,1 =
−a1

4
− a′′′1

4b′′1
− a′′′2

4b′′2
+

16b′′1b
′′
2e4

a′′′1 a
′′′
2

;

and there exists no system of expressions, essentially distinct from these, which can express
the same four roots, without the introduction of some radical, such as aIV

1 , of an order
higher than the third. We must, however, remember that these expressions involve several
arbitrary symmetric functions of x1, x2, x3, x4, or arbitrary rational functions of a1, a2, a3, a4,
which enter into the composition of the radicals a′1, a′′1 , a′′′1 , a′′′2 , though only in the way of
multiplying a function by an exact square or cube before the square-root or cube-root is
extracted: namely, the quantity b in a′1; p0 and p1 in a′′1 ; and, in the radicals a′′′1 , a′′′2 , twelve
other arbitrary quantities, introduced by the functions b′′1 , b′′2 , which latter functions may be
thus developed,

b′′1 = r0,0 + r0,1a
′
1 + (r1,0 + r1,1a

′
1)a′′1 + (r2,0 + r2,1a

′
1)a′′21 ,

b′′2 = r80,0 + r80,1a
′
1 + (r81,0 + r81,1a

′
1)a′′1 + (r82,0 + r82,1a

′
1)a′′21 .
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In the earlier articles of this Essay, these fifteen arbitrary quantities had the following par-
ticular values,

b =
ρ2

3 − ρ3

1152
; p0 = 1

12 ; p1 = 0;

r0,0 = 1
4 ; r0,1 = r1,0 = r1,1 = r2,0 = r2,1 = 0;

r80,0 = 1
4 ; r80,1 = r81,0 = r81,1 = r82,0 = r82,1 = 0.

Apparent differences between two systems of expressions of the third order, for the four roots
of a biquadratic equation, may also arise from differences in the arrangement of those four
roots.

Analogous reasonings, the details of which will easily suggest themselves to those who
have studied the foregoing discussion, show that if we retain only one radical of the third
order a′′′1 , but introduce a radical of the fourth order aIV

1 , for the purpose of obtaining the
only other sort of irrational and irreducible expression b(m) = bIV, which can represent a root
of the same general biquadratic equation, we must then suppose this new radical aIV

1 to be a
square-root, of the form

aIV
1 = p′′′(x1 − x2) =

√
p′′′2

(
−v

2
1

4
+ 12e3 +

32e4

v1

)
;

p′′′ being a function of the third or of a lower order, which in the earlier articles of this Essay
had the particular value 1

2 ; which v1 has the meaning recently assigned, and e3, e4 have those
which were stated in the second article; we must also employ the expressions

x1 = b′′′0 + b′′′1 a
IV
1 =

−a1

4
+
v1

4
+
aIV

1

2p′′′
,

x2 = b′′′0 − b′′′1 aIV
1 =

−a1

4
+
v1

4
− aIV

1

2p′′′
,

and

x3 =
−a1

4
− v1

4
+
p′′′t1
2aIV

1

, x4 =
−a1

4
− v1

4
− p′′′t1

2aIV
1

,

t1 retaining here its recent meaning; or, at least, we must make suppositions, and must employ
expressions, not differing essentially from these.

But all the radicals a′1, a′′1 , a′′′1 , a′′′2 , aIV
1 , introduced in the present article, agree in all

essential respects with those which have been long employed, for the calculation of the roots
of the general biquadratic equation; it is, therefore, impossible to discover any new expression
for any one of those four roots, which, after being cleared from all superfluous extractions of
radicals, shall differ essentially, in the extractions that remain, from the expressions that have
been long discovered. And the only important difference, with respect to these extractions of
radicals, between any two general methods for resolving biquadratic equations, if both be free
from all superfluous extractions, is, that after calculating first, in both methods, a square-root
a′1, and a cube-root a′′1 , (operations which are equivalent to those required for the solution
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of an auxiliary cubic equation,) we may afterwards either calculate two simultaneous square-
roots a′′′1 , a′′′2 , as in the method of Euler, or else two successive square-roots a′′′1 , aIV

1 , as in
the method of Ferrari or Des Cartes: for, in the view in which they are here considered,
the methods of these two last-mentioned mathematicians do not essentially differ from each
other.

[21.] It is not necessary, for the purposes of the inquiry into the possibility or impossibility
of representing, by any expression of the form b(m), a root x of the general equation of the
fifth degree,

x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 = 0,

to investigate all possible forms of rational functions of five variables, which have fewer than
120 values; but it is necessary to discover all those forms which have five or fewer values.
Now, if the rational function

f(x1, x2, x3, x4, x5)

have fewer than six values, when the five arbitrary roots x1, x2, x3, x4, x5, of the above-
mentioned general equation are interchanged in all possible ways, it must, by a still stronger
reason, have fewer than six values, when only the first four roots x1, x2, x3, x4, are inter-
changed in any manner, the fifth root x5 remaining unchanged.

Hence, by the properties of functions of four variables, the function f must be reducible
to one of the four following forms, corresponding to those which, in the nineteenth article,
were marked (I. III), (II. III), (I. II.), and (I. I.):

(a) φ(x5);

(b) φ(x5, x1 − x2 . x1 − x3 . x1 − x4 . x2 − x3 . x2 − x4 . x3 − x4);

(c) φ(x5, x1x2 + x3x4);

(d) φ(x5, x4);

or at least to some form not essentially distinct from these. In making this reduction, the
following principle is employed, that any symmetric function of x1, x2, x3, x4, is a rational
function of x5 and of the five coefficients a1, a2, a3, a4, a5; which latter coefficients are tacitly
supposed to be capable of entering in any manner into the rational functions φ.

It may also be useful to remark, before going farther, that the four forms here referred
to, of functions of four variables, with four or fewer values, may be deduced anew as follows.
Retaining the abridged notation (α, β, γ, δ), we see immediately that if the six syntypical
functions

(1, 2, 3, 4), (2, 3, 1, 4), (3, 1, 2, 4), (1, 3, 2, 4), (3, 2, 1, 4), (2, 1, 3, 4)

be not unequal among themselves, they must either all be equal, in which case we have the
four-valued form φ(x4) or (I. I.), or else must distribute themselves into two distinct groups
of three, or into three distinct groups of two equal functions. But if we suppose

(1, 2, 3, 4) = (2, 3, 1, 4) = (3, 1, 2, 4),
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in order to get the reduction to two groups, the functions (1, 2, 3, 4) and (2, 1, 3, 4) being not
yet supposed to be equal; and then require that the six following values of (α, β, γ, δ),

(1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 4, 3), (2, 1, 4, 3), (1, 3, 4, 2), (3, 1, 4, 2),

shall not be all unequal; we must either make some supposition, such as

(1, 2, 3, 4) = (1, 2, 4, 3),

which conducts to the one-valued form (I. III.), or else must make some supposition, such as

(1, 2, 3, 4) = (2, 1, 4, 3),

which conducts to the two-valued form (II. III.). And if we suppose

(1, 2, 3, 4) = (2, 1, 3, 4),

in order to reduce the six functions (1, 2, 3, 4), . . . (2, 1, 3, 4) to three distinct groups, the
functions (1, 2, 3, 4) and (2, 3, 1, 4) being supposed unequal; and then require that of the six
following values,

(1, 2, 3, 4), (2, 3, 1, 4), (3, 1, 2, 4), (1, 2, 4, 3), (2, 4, 1, 3), (4, 1, 2, 3),

there shall be fewer than five unequal; we must either suppose

(2, 3, 1, 4) = (4, 1, 2, 3),

in which case we are conducted to the three-valued form (I. II.); or else must suppose

(2, 3, 1, 4) = (2, 4, 1, 3),

which conducts again to the four-valued function (I. I.), by giving (1, 2, 3, 4) = φ(x3).
Now of the four forms (a), (b), (c), (d), the form (a) is five-valued, and therefore admis-

sible in the present inquiry; but the form (b) is, in general, ten-valued; the form (c) has, in
general fifteen values; and the form (d) has twenty. If, then, we are to reduce the functions (b)
(c) (d) within that limit of number of values to which we are at present confining ourselves,
we must restrict them by some new conditions, of which the following are sufficient types:

(b)′ φ(x5, x1 − x2 . x1 − x3 . x1 − x4 . x2 − x3 . x2 − x4 . x3 − x4)

= φ(x5,−x1 − x2 . x1 − x3 . x1 − x4 . x2 − x3 . x2 − x4 . x3 − x4);

(b)′′ φ(x5, x1 − x2 . x1 − x3 . x1 − x4 . x2 − x3 . x2 − x4 . x3 − x4)

= φ(x4, x1 − x2 . x1 − x3 . x1 − x5 . x2 − x3 . x2 − x5 . x3 − x5);

(b)′′′ φ(x5, x1 − x2 . x1 − x3 . x1 − x4 . x2 − x3 . x2 − x4 . x3 − x4)

= φ(x4,−x1 − x2 . x1 − x3 . x1 − x5 . x2 − x3 . x2 − x5 . x3 − x5);

(c)′ φ(x5, x1x2 + x3x4) = φ(x5, x1x3 + x2x4);

(c)′′ φ(x5, x1x2 + x3x4) = φ(x4, x1x2 + x3x5);

(c)′′′ φ(x5, x1x2 + x3x4) = φ(x4, x1x3 + x2x5);

(d)′ φ(x5, x4) = φ(x5, x3);

(d)′′ φ(x5, x4) = φ(x4, x3);

(d)′′′ φ(x5, x4) = φ(x2, x3).
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(To suppose φ(x5, x4) = φ(x4, x5), would indeed reduce the number of values of the function
(d) from twenty to ten, but a new reduction would be required, in order to depress that
number below six, and thus we should still be obliged to employ one of the three conditions
(d)′ (d)′′ (d)′′′.) Of these twelve different conditions (b)′ . . . (d)′′′, some one of which we must
employ, (or at least some condition not essentially different from it,) the three marked (b)′

(c)′ (d)′ are easily seen to reduce respectively the three functions (b) (c) (d) to the five-valued
form (a); they are therefore admissible, but they give no new information. The supposition
(b)′′ conducts us to equate the function (b) to the following,

φ(x3, x1 − x2 . x1 − x5 . x1 − x4 . x2 − x5 . x2 − x4 . x5 − x4),

because it allows us to interchange x5 and x3, inasmuch as x3 may previously be put in
the place of x4 and x4 in the place of x3, by interchanging at the same time x1 and x2,—a
double interchange which does not alter the product x1 − x3 . . . x3 − x4, since it only changes
simultaneously the signs of the two factors x1 − x2 and x3 − x4; or because, if we denote the
function (b) by the symbol (1, 2, 3, 4, 5), we have

(1, 2, 3, 4, 5) = (2, 1, 4, 3, 5),

and also by (b)′′,
(1, 2, 3, 4, 5) = (1, 2, 3, 5, 4),

so that we must have

(1, 2, 3, 4, 5) = (2, 1, 4, 5, 3) = (1, 2, 5, 4, 3);

but also the condition (b)′′ gives

(1, 2, 5, 4, 3) = (1, 2, 5, 3, 4);

we must therefore suppose
(1, 2, 3, 5, 4) = (1, 2, 5, 3, 4),

that is
φ(x4, x1 − x2 . x1 − x3 . x1 − x5 . x2 − x3 . x2 − x5 . x3 − x5)

= φ(x4,−x1 − x2 . x1 − x3 . x1 − x5 . x2 − x3 . x2 − x5 . x3 − x5),

which is an equation of the form (b)′, and reduces the function (b) to the form (a), and ulti-
mately to a symmetric function a, because x5 and x4 may be interchanged. The supposition
(b)′′′ conducts to a two-valued function, which changes value when any two of the five roots
are interchanged, so that the sum (1, 2, 3, 4, 5) + (1, 2, 3, 5, 4), and the quotient

(1, 2, 3, 4, 5)− (1, 2, 3, 5, 4)

(x1 − x2)(x1 − x3) . . . (x4 − x5)
,

are some symmetric functions, which may be called 2a and 2b; we have therefore, in this case,
a function of the form,

(e) a+b x1 − x2 .x1 − x3 .x1 − x4 .x1 − x5 .x2 − x3 .x2 − x4 .x2 − x5 .x3 − x4 .x3 − x5 .x4 − x5,
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in which a and b are symmetric. The remaining suppositions, (c)′′, (c)′′′, (d)′′, (d)′′′, are
easily seen to conduct only to symmetric functions; for instance, (c)′′ gives

φ(x5, x1x2 + x3x4) = φ(x4, x3x5 + x2x1) = φ(x1, x3x5 + x2x4)

= φ(x1, x2x4 + x3x5) = φ(x5, x2x4 + x3x1) = φ(x5, x1x3 + x2x4),

so that the condition (c)′ is satisfied, and at the same time x5 is interchangeable with x4.
And it is easy to see that the five-valued function φ(xα) may be put under the form

(f) b0 + b1xα + b2x
2
α + b3x

3
α + b4x

4
α;

the coefficients b0, b1, b2, b3, b4 being symmetric. It is clear also that neither this five-valued
function (f), nor the two-valued function (e), admits of any reduction in respect to number of
values, without becoming altogether symmetric. There are, therefore, no unsymmetric and
rational functions of five independent variables, with fewer than six values, except only the
two-valued function (e), and the five-valued function (f).

Suppose now that we have the equation

a′1 = f
′
1(x1, x2, x3, x4, x5),

f
′
1 being a rational but unsymmetric function; and that

a
′α′1
1 = f1(a1, a2, a3, a4, a5),

the exponent α′1 being prime, and the function f1 being rational relatively to a1, . . . a5, and
therefore symmetric relatively to x1, . . . x5. With these suppositions, the function f

′
1 must,

by the principles of a former article, have exactly α′1 values, corresponding to changes of
arrangement of the five arbitrary quantities x1, . . . x5; the exponent α′1 must therefore be a
prime divisor of the product 120 (= 1 .2 .3 .4 .5); that is, it must be 2, or 3, or 5. But we have
seen that no rational function of five variables has exactly three values; and if we supposed
it to have five values, so as to put, (by what has been already shewn,)

a′1 = b0 + b1xα + b2x
2
α + b3x

3
α + b4x

4
α,

we should then have three other equations of the forms

a′21 = b
(2)
0 + b

(2)
1 xα + b

(2)
2 x2

α + b
(2)
3 x3

α + b
(2)
4 x4

α,

a′31 = b
(3)
0 + b

(3)
1 xα + b

(3)
2 x2

α + b
(3)
3 x3

α + b
(3)
4 x4

α,

a′41 = b
(4)
0 + b

(4)
1 xα + b

(4)
2 x2

α + b
(4)
3 x3

α + b
(4)
4 x4

α,

the coefficients being all symmetric, and being determined through the elimination of all
higher powers of xα than the fourth, by means of the equations

x5
α + a1x

4
α + a2x

3
α + a3x

2
α + a4xα + a5 = 0,

x6
α + a1x

5
α + a2x

4
α + a3x

3
α + a4x

2
α + a5xα = 0, &c.;
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and it would always be possible to find symmetric multipliers c1, c2, c3, c4, which would not
all be equal to 0, and would be such that

c1b2 + c2b
(2)
2 + c3b

(3)
2 + c4b

(4)
2 = 0,

c1b3 + c2b
(2)
3 + c3b

(3)
3 + c4b

(4)
3 = 0,

c1b4 + c2b
(2)
4 + c3b

(3)
4 + c4b

(4)
4 = 0;

in this manner then we should obtain an equation of the form

c1a
′
1 + c2a

′2
1 + c3a

′3
1 + c4a

′4
1 = c1b0 + c2b

(2)
0 + c3b

(3)
0 + c4b

(4)
0 + (c1b1 + c2b

(2)
1 + c3b

(3)
1 + c4b

(4)
1 )xα,

in which it is impossible that the coefficient of xα should vanish, because the five unequal
values of a′1 could not all satisfy one common equation, of the fourth or of a lower degree; we
should therefore have an expression for xα of the form

xα = d0 + d1a
′
1 + d2a

′2
1 + d3a

′3
1 + d4a

′4
1 ,

the coefficients d0, . . . d4 being symmetric; and for the same reason we should have also

xβ = d0 + d1ρ5a
′
1 + d2ρ

2
5a
′2
1 + d3ρ

3
5a
′3
1 + d4ρ

4
5a
′4
1 ,

xγ = d0 + d1ρ
2
5a
′
1 + d2ρ

4
5a
′2
1 + d3ρ5a

′3
1 + d4ρ

3
5a
′4
1 ,

xδ = d0 + d1ρ
3
5a
′
1 + d2ρ5a

′2
1 + d3ρ

4
5a
′3
1 + d4ρ

2
5a
′4
1 ,

xε = d0 + d1ρ
4
5a
′
1 + d2ρ

3
5a
′2
1 + d3ρ

2
5a
′3
1 + d4ρ5a

′4
1 ,

xα, xβ, xγ , xδ, xε denoting, in some arrangement or other, the five roots x1, x2, x3, x4, x5,
and ρ5, ρ2

5, ρ3
5, ρ4

5 being the four imaginary fifth-roots of unity; consequently we should have

5d1a
′
1 = xα + ρ4

5xβ + ρ3
5xγ + ρ2

5xδ + ρ5xε;

a result which is absurd, the second member of the equation having 120 values, while the
first member has only five. We must therefore suppose that the exponent α′1 is = 2, and
consequently must adopt the expression

a′1 = b(x1−x2)(x1−x3)(x1−x4)(x1−x5)(x2−x3)(x2−x4)(x2−x5)(x3−x4)(x3−x5)(x4−x5),

the factor b being symmetric. This, therefore, is the only rational and unsymmetric function
of five arbitrary quantities, which has a prime power (namely its square) symmetric.

Let us next inquire whether it be possible to find any unsymmetric but rational function,

a′′1 = f
′′
1(x1, x2, x3, x4, x5),

which, having itself more than two values, shall have a prime power two-valued,

a
′′α′′1
1 = f ′1 = a+ b(x1 − x2) . . . (x4 − x5).
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If so, the function f
′′
1 must have exactly 2α′′1 values, and consequently the prime exponent α′′1

must be either three or five, because it must be a divisor of 120, and cannot be = 2, since no
rational function of five arbitrary quantities has exactly four values: so that a′′1 or f

′′
1 must

be either a cube-root of a fifth-root of the two-valued function f ′1. And the six or ten values
of f

′′
1 must admit of being expressed as follows:

(1, 2, 3, 4, 5)i; ρα′′1 (1, 2, 3, 4, 5)i; . . . ρ
α′′1−1

α′′1
(1, 2, 3, 4, 5)i;

(1, 2, 3, 4, 5)k; ρ8α′′1 (1, 2, 3, 4, 5)k; . . . ρ
8α′′1−1

α′′1
(1, 2, 3, 4, 5)k;

in which ρα′′
1

and ρ8α′′1 are imaginary cube-roots or fifth-roots of unity, according as α′′1 is 3 or

5; while (1, 2, 3, 4, 5)i and (1, 2, 3, 4, 5)k are some two different values of the function f
′′
1 , which

may be called f
′′
1 and f

8′′
1 , and correspond to different arrangements of x1, x2, x3, x4, x5,

being also such that

f
′′α′′1
1 = (1, 2, 3, 4, 5)

α′′1
i = a+ b(x1 − x2) . . . (x4 − x5),

f
8′′α′′1
1 = (1, 2, 3, 4, 5)

α′′1
k = a− b(x1 − x2) . . . (x4 − x5).

These last equations show that the cube or fifth power (according as a′′1 is 3 or 5) of the
product of (1, 2, 3, 4, 5)i and (1, 2, 3, 4, 5)k is symmetric, and consequently, by what was lately
proved, that this product itself is symmetric; so that we may write

f
′′
1 . f

8′′
1 = (1, 2, 3, 4, 5)i . (1, 2, 3, 4, 5)k = c,

and therefore

∇(1, 2, 3, 4, 5)i .∇(1, 2, 3, 4, 5)k = c,

∇ being here the characteristic of any arbitrary change of arrangement of the five roots,
which change, however, is to operate similarly on the two functions to which the symbol is
prefixed. (For example, if we suppose

(1, 2, 3, 4, 5)i = (1, 2, 3, 5, 4), (1, 2, 3, 4, 5)k = (1, 2, 4, 3, 5),

and if we employ ∇ to indicate that change which consists in altering the first to the second,
the second to the third, the third to the fourth, the fourth to the fifth, and the fifth to the
first of the five roots in any one arrangement, we shall have, in the present notation,

∇(1, 2, 3, 4, 5)i = (2, 3, 5, 4, 1), ∇(1, 2, 3, 4, 5)k = (2, 4, 3, 5, 1);

and similarly in other cases.) Supposing then that∇ denotes the change of arrangement of the
five roots which is made in passing from that value of the function f

′′
1 which is = (1, 2, 3, 4, 5)i

to that other value of the same function which is = ρα′′1 (1, 2, 3, 4, 5)i, we see that the same

change performed on (1, 2, 3, 4, 5)k must multiply this latter value not by ρ′′α but by ρ−1
α′′1

;
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which factor is, however, of the form ρ8α′′1 , so that we may denote the 2α′′1 values of f
′′
1 as

follows:
(1, 2, 3, 4, 5)i; ∇(1, 2, 3, 4, 5)i; . . . ∇α′′1−1(1, 2, 3, 4, 5)i;

(1, 2, 3, 4, 5)k; ∇(1, 2, 3, 4, 5)k; . . . ∇α′′1−1(1, 2, 3, 4, 5)k.

We see, at the same time, that the sum of the two functions (1, 2, 3, 4, 5)i and (1, 2, 3, 4, 5)k
admits of at least α′′1 different values, namely,

∇0{(1, 2, 3, 4, 5)i + (1, 2, 3, 4, 5)k} = f
′′
1 + f

8′′
1 ,

∇1{(1, 2, 3, 4, 5)i + (1, 2, 3, 4, 5)k} = ρα′′1 f
′′
1 + ρ−1

α′′1
f
8′′
1 ,

· · · · · · · · ·

∇α
′′
1−1{(1, 2, 3, 4, 5)i + (1, 2, 3, 4, 5)k} = ρ

α′′1−1

α′′1
f
′′
1 + ρ

−(α′′1−1)

α′′1
f
8′′
1 ,

On the other hand, this sum f
′′
1 + f

8′′
1 cannot admit of more than α′′1 values, because it must

satisfy an equation of the degree α′′1 , with symmetric coefficients; which results from the two
relations

f
′′α′′1
1 + f

8′′α′′1
1 = 2a, f

′′
1f
8′′
1 = c,

and is either the cubic equation

(f′′1 + f
8′′
1 )3 − 3c(f′′1 + f

8′′
1 )− 2a = 0,

or the equation of the fifth degree

(f′′1 + f
8′′
1 )5 − 5c(f′′1 + f

8′′
1 )3 + 5c2(f′′1 + f

8′′
1 )− 2a = 0,

according as α′′1 is 3 or 5. We must therefore suppose that the function f
′′
1 + f8′′ has exactly

α′′1 values, and consequently that α′′1 is 5 and not 3, because no rational function of five
independent variables has exactly three values. And from the form and properties of the only
five-valued function of five variables, we must suppose farther, that

f
′′
1 + f

8′′
1 = f

′′
1 +

c

f
′′
1

= b0 + b1xα + b2x
2
α + b3x

3
α + b4x

4
α,

xα being some one of the five roots x1, . . . x5, and the coefficients b0, . . . b4 being symmetric;
and that conversely the root xα may be thus expressed,

xα = d0 + d1

(
f
′′
1 +

c

f
′′
1

)
+ d2

(
f
′′
1 +

c

f
′′
1

)2

+ · · ·+ d4

(
f
′′
1 +

c

f
′′
1

)4

,

the coefficients d0, . . . d4 being symmetric. We must also suppose that by changing f
′′
1 ,

successively, to ρ5f
′′
1 , ρ2

5f
′′
1 , ρ3

5f
′′
1 , ρ4

5f
′′
1 , we shall obtain successively, expressions for the other

four roots xβ , xγ , xδ, xε, in some arrangement or other; and therefore, if we observe that
f
′′5
1 has been concluded to be a function of the two-valued form, we find ourselves obliged to
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suppose that the five roots may be expressed as follows, (if the supposition under inquiry be
correct,)

xα = e′0 + e′1f
′′
1 + e′2f

′′2
1 + e′3f

′′3
1 + e′4f

′′4
1 ,

xβ = e′0 + ρ5e
′
1f
′′
1 + ρ2

5e
′
2f
′′2
1 + ρ3

5e
′
3f
′′3
1 + ρ4

5e
′
4f
′′4
1 ,

xγ = e′0 + ρ2
5e
′
1f
′′
1 + ρ4

5e
′
2f
′′2
1 + ρ5e

′
3f
′′3
1 + ρ3

5e
′
4f
′′4
1 ,

xδ = e′0 + ρ3
5e
′
1f
′′
1 + ρ5e

′
2f
′′2
1 + ρ4

5e
′
3f
′′3
1 + ρ2

5e
′
4f
′′4
1 ,

xε = e′0 + ρ4
5e
′
1f
′′
1 + ρ3

5e
′
2f
′′2
1 + ρ2

5e
′
3f
′′3
1 + ρ5e

′
4f
′′4
1 ,

e′0, . . . e
′
5 being either symmetric or two-valued; but these expressions conduct to the absurd

result,
5e′1f

′′
1 = xα + ρ4

5xβ + ρ3
5xγ + ρ2

5xδ + ρ5xε,

in which the first member has only ten, while the second member has 120 values. We are
therefore obliged to reject as inadmissible the supposition

f
′′α′′1
1 = f ′1;

and we find that no rational function of five arbitrary variables can have any prime power
two-valued, if its own values be more numerous than two.

[22.] There is now no difficulty in proving, after the manner of Abel, that it is impossible
to represent a root of the general equation of the fifth degree, as a function of the coefficients
of that equation, by any expression of the form b(m); that is, by any finite combination of
radicals and rational functions.

For, in the first place, since the coefficients a1, . . . a5 are symmetric functions of the roots
x1, . . . x5, it is clear that we cannot express any one of the latter as a rational function of the
former; m in b(m), must therefore be greater than 0; and the expression b(m) if it exist at all,
must involve at least one radical of the first order, a′1, which must admit of being expressed

as a rational but unsymmetric function f
′
1 of the five roots, but must have a prime power f

′α′1
1

symmetric, and consequently must be a square-root, of the form deduced in the last article,
namely,

a′1 = b(x1 − x2) . . . (x4 − x5),

the factor b being symmetric. And because any other radical of the same order, a′2, might

be deduced from a′1 by a multiplication such as the following, a′2 =
c

b
a′1, we see that no such

other radical a′2, of the first order, can enter into the expression b(m), when that expression
is cleared of all superfluous functional radicals. On the other hand, a two-valued expression
such as

f ′1 = b0 + b1a
′
1

cannot represent the five-valued function x; if then the sought expression x = b(m) exist at
all, it must involve some radical of the second order, a′′1 , and this radical must admit of being
expressed as a rational function of the five roots, which function is to have, itself, more than

two values, but to have some prime power f
′′α′′1
1 , two-valued. And since it has been proved
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that no such function f
′′
1 exists, it follows that no function of the form b(m) can represent the

sought root x of the general equation of the fifth degree. If then that general equation admit
of being resolved at all, it must be by some process distinct from any finite combination of the
operations of adding, subtracting, multiplying, dividing, elevating to powers, and extracting
roots of functions.

[23.] It is, therefore impossible to satisfy the equation

b(m)5 + a1b
(m)4 + a2b

(m)3 + a3b
(m)2 + a4b

(m) + a5 = 0,

by any finite irrational function b(m); the five coefficients a1, a2, a3, a4, a5 being supposed to
remain arbitrary and independent. And, by still stronger reason, it is impossible to satisfy
the equation

b(m)n + a1b
(m)n−1 + · · ·+ an−1b

(m) + an = 0,

if n be greater than five, and a1, . . . an arbitrary. For if we could do this, then the irrational
function b(m) would, by the principles already established, have exactly n values; of which
n−5 values would vanish when we supposed an, an−1, . . . a6 to become = 0, and the remaining
five values would represent the five roots of the general equation of the fifth degree; but such
a representation of the roots of that equation has been already proved to be impossible.

[24.] Although the whole of the foregoing has been suggested by that of Abel, and may
be said to be a commentary thereon; yet it will not fail to be perceived, that there are several
considerable differences between the one method of proof and the other. More particularly, in
establishing the cardinal proposition that every radical in every irreducible expression for any
one of the roots of any general equation is a rational function of those roots, it has appeared
to the writer of this paper more satisfactory to begin by showing that the radicals of highest
order will have that property, if those of lower orders have it, descending thus to radicals
of the lowest order, and afterwards ascending again; than to attempt, as Abel has done,
to prove the theorem, in the first instance, for radicals of the highest order. In fact, while
following this last-mentioned method, Abel has been led to assume that the coefficient of
the first power of some highest radical can always be rendered equal to unity, by introducing
(generally) a new radical, which in the notation of the present paper may be expressed as
follows:

α
(m)

k

√√√√√√√√√
 Σ

β
(m)
i

<α
(m)
i

β
(m)

k
=1

.(b
(m−1)

β
(m)
1 ,... β

(m)

n(m)

. a
(m)β

(m)
1

1 . . . a
(m)β

(m)

n(m)

n(m) )


α

(m)

k

;

but although the quantity under the radical sign, in this expression is indeed free from that

irrationality of the mth order which was introduced by the radical a
(m)
k , it is not, in general,

free from the irrationalities of the same order introduced by the other radicals a
(m)
1 , . . . of that

order; and consquently the new radical, to which this process conducts, is in general elevated
to the order m+1; a circumstance which Abel does not appear to have remarked, and which
renders it difficult to judge of the validity of his subsequent reasoning. And because the
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other chief obscurity in Abel’s argument (in the opinion of the present writer) is connected
with the proof of the theorem, that a rational function of five independent variables cannot
have five values, and five only, unless it be symmetric relatively to four of its five elements;
it has been thought advantageous, in the present paper, as preliminary to the discussion of
the forms of functions of five arbitrary quantities, to establish certain auxiliary theorems
respecting functions of fewer variables; which have served also to determine à priori all
possible solutions (by radicals and rational functions) of all general algebraic equations below
the fifth degree.

[25.] However, it may be proper to state briefly here the simple and elegant reasoning
by which Abel, after Cauchy, has proved that if a function of five variables have fewer
than five values, it must be either two-valued or symmetric. Let the function be for brevity
denoted by (α, β, γ, δ, ε); and let ∇ and ∇8 denote such changes, that

(β, γ, δ, ε, α) = ∇(α, β, γ, δ, ε),

(β, ε, α, γ, δ) = ∇8(α, β, γ, δ, ε).

These two changes are such that we have the two symbolic equations

∇5 = 1, ∇85 = 1;

but also, by supposition, some two of the five functions

∇0(α, β, γ, δ, ε), . . . ∇4(α, β, γ, δ, ε)

are equal among themselves, and so are some two of the five functions

∇80(α, β, γ, δ, ε), . . . ∇84(α, β, γ, δ, ε);

we have therefore two equations of the forms

∇r = 1, ∇8r8 = 1,

in which r and r8 are each greater than 0, but less than 5; and by combining these equations
with the others just now found, we obtain

∇ = 1, ∇8 = 1 :

that is
(β, γ, δ, ε, α) = (α, β, γ, δ, ε), and (β, ε, α, γ, δ) = (α, β, γ, δ, ε).

Hence
(γ, α, β, δ, ε) = (β, γ, δ, ε, α) = (α, β, γ, δ, ε);

and in like manner,
(α, γ, δ, β, ε) = (α, β, γ, δ, ε) = (γ, α, β, δ, ε);
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we may therefore interchange the first and second of the five elements of the function, if we at
the same time interchange either the second and third, or the third and fourth; and a similar
reasoning shows that we may interchange any two, if we at the same time interchange any
two others. An even number of such interchanges leaves therefore the function unaltered;
but every alteration of arrangement of the five elements may be made by either an odd or an
even number of such interchanges: the function, therefore, is either two-valued or symmetric;
it having been supposed to have fewer than five values. Indeed, this is only a particular case
of a more general theorem of Cauchy, which is deduced in a similar way: namely, that if
the number of values of a rational function of n arbitrary quantities be less than the greatest
prime number which is itself not greater than n, the number of values of that function must
then be either two or one.

[26.] It is a necessary consequence of the foregoing argument, that there must be a fallacy
in the very ingenious process by which Mr. Jerrard has attempted to reduce the general
equation of the fifth degree to the solvible form of De Moivre, namely,

x5 − 5bx3 + 5b2x− 2e = 0,

of which a root may be expressed as follows,

x = 5
√{e+

√
e2 − b5}+

b

5
√{e+

√
e2 − b5}

:

because this process of reduction would, if valid, conduct to a finite (though complicated)
expression for a root x of the general equation of the fifth degree,

x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 = 0,

with five arbitrary coefficients, real or imaginary, as a function of those five coefficients,
through the previous resolution of certain auxiliary equations below the fifth degree, namely,
a cubic, two quadratics, another cubic, and a biquadratic, besides linear equations and De

Moivre’s solvible form; and therefore ultimately through the extraction of a finite number
of radicals, namely, a square-root, a cube-root, three square-roots, a cube-root, a square-root,
a cube-root, three square-roots, and a fifth-root. Accordingly, the fallacy of this process of
reduction has been pointed out by the writer of the present paper, in an “Inquiry into the
Validity of a Method recently proposed by George B. Jerrard, Esq., for transforming
and resolving Equations of Elevated Degrees:” undertaken at the request of the British
Association for the Advancement of Science, and published in their Sixth Report. But the
same Inquiry has confirmed the adequacy of Mr. Jerrard’s method to accomplish an almost
equally curious and unexpected transformation, namely, the reduction of the general equation
of the fifth degree to the trinomial form

x5 +Dx+E = 0;

and therefore ultimately to this very simple form

x5 + x = e;
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in which, however, it is essential to observe that e will in general be imaginary even when the
original coefficients are real. If then we make, in this last form,

x = ρ(cos θ +
√
−1 sin θ),

and
e = r(cos v +

√
−1 sin v),

we can, with the help of Mr. Jerrard’s method, reduce the general equation of the fifth
degree, with five arbitrary and imaginary coefficients, to the system of the two following
equations, which involve only real quantities:

ρ5 cos 5θ + ρ cos θ = r cos v; ρ5 sin 5θ + ρ sin θ = r sin v;

in arriving at which system, the quantities r and v are determined, without tentation, by a
finite number of rational combinations, and of extractions of square-roots and cube-roots of
imaginaries, which can be performed by the help of the usual logarithmic tables; and ρ and
θ may afterwards be found from r and v, by two new tables of double entry, which the writer
of the present paper has had the curiosity to construct and to apply.

[27.] In general, if we change x to x+
√
−1y, and ai to ai +

√
−1bi, the equation of the

fifth degree becomes

(x+
√
−1y)5 + (ai +

√
−1)(x+

√
−1y)4 + · · ·+ a5 +

√
−1b5 = 0,

and resolves itself into the two following:

I. x5 − 10x3y2 + 5xy4 + a1(x4 − 6x2y2 + y4)− b1(4x3y − 4xy3)

+ a2(x3 − 3xy2)− b2(3x2y − y3) + a3(x2 − y2)− 2b3xy + a4x− b4y + a5 = 0;

and

II. 5x4y − 10x2y3 + y5 + a1(4x3y − 4xy3) + b1(x4 − 6x2y2 + y4)

+ a2(3x2y − y3) + b2(x3 − 3xy2) + 2a3xy + b3(x2 − y2) + a4y + b4x+ b5 = 0;

in which all the quantities are real: and the problem of resolving the general equation with
imaginary coefficients is really equivalent to the problem of resolving this last system; that
is, to the problem of deducing, from it, two real functions (x and y) of ten arbitrary real
quantities a1, . . . a5, b1, . . . b5. Mr. Jerrard has therefore accomplished a very remarkable
simplification of this general problem, since he has reduced it to the problem of discovering
two real functions of two arbitrary real quantities, by showing that, without any real loss of
generality, it is permitted to suppose

a1 = a2 = a3 = b1 = b2 = b3 = b4 = 0,

and
a4 = 1,

a5 and b5 alone remaining arbitrary: though he has failed (as the argument developed in
this paper might have shown beforehand that he must necessarily fail) in his endeavour to
calculate the latter two, or the former ten functions, through any finite number of extractions
of square-roots, cube-roots, and fifth-roots of expressions of the form a+

√
−1b.
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[28.] But when we come to consider in what sense it is true that we are in possession
of methods for extracting, without tentation, such roots of such imaginary expressions; and
therefore in what sense we are permitted to postulate the extraction of such radicals, or the
determination of both x and y, in an imaginary equation of the form

x+
√
−1y =

α

√
a+
√
−1b,

as an instrument of calculation in algebra; we find that this depends ultimately on our being
able to reduce all such extractions to the employment of tables of single entry : or, in more
theoretical language, to real functions of single real variables. In fact, the equation last-
mentioned gives

(x+
√
−1y)α = a+

√
−1b,

that is, it gives the system of the two following:

xα − α(α− 1)

1 . 2
xα−2y2 + &c. = a, αxα−1y − α(α− 1)(α− 2)

1 . 2 . 3
xα−3y3 + &c. = b;

which, again, give
(x2 + y2)α = a2 + b2,

and

α
y

x
− α(α− 1)(α− 2)

1 . 2 . 3

(y
x

)3

+ · · ·

1− α(α− 1)

1 . 2

(y
x

)2

+ · · ·
=
b

a
.

If then we put
φ1(ρ) = ρα,

and

φ2(τ) =
ατ − α(α− 1)(α− 2)

1 . 2 . 3
τ3 + · · ·

1− α(α− 1)

1 . 2
τ2 + · · ·

;

and observe that these two real and rational functions φ1 and φ2 of single real quantities
have always real inverses, φ−1

1 and φ−1
2 , at least if the operation φ−1

1 be performed on a
positive quantity, while the function φ−1

1 (r2) has but one real and positive value, and the
function φ−1

2 (t) has α real values; we see that the determination of x and y in the equation

x+
√
−1y =

α

√
a+
√
−1b,

comes ultimately to the calculation of the following real functions of single real variables, of
which the inverse functions are rational:

x2 + y2 = φ−1
1 (a2 + b2);

y

x
= φ−1

2

(
b

a

)
;
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and to the extraction of a single real square-root, which gives

x = ±

√
φ−1

1 (a2 + b2)

1 +

(
φ−1

2

b

a

)2

 ,

y = ±
(
φ−1

2

b

a

)
.

√
φ−1

1 (a2 + b2)

1 +

(
φ−1

2

b

a

)2

 .

Now, notwithstanding the importance of those two particular forms of rational functions
φ1 and φ2 which present themselves in separating the real and imaginary part of the radical
α
√
a+
√
−1b, and of which the former is a power of a single real variable, while the latter is the

tangent of a multiple and real arc expressed in terms of the single and real arc corresponding;
it may appear with reason that these functions do not possess such an eminent prerogative
of simplicity as to entitle the inverses of them alone to be admitted into elementary algebra,
to the exclusion of the inverses of all other real and rational functions of single real variables.
And since the general equation of the fifth degree, with real or imaginary coefficients, has
been reduced, by Mr. Jerrard’s* method, to the system of the two real equations

x5 − 10x3y2 + 5xy4 + x = a, 5x4y − 10x2y3 + y5 + y = b,

it ought, perhaps, to be now the object of those who interest themselves in the improvement
of this part of algebra, to inquire whether the dependence of the two real numbers x and y,
in these two last equations, on the two real numbers a and b, cannot be expressed by the
help of the real inverses of some new real and rational, or even transcendental functions of
single real variables; or, (to express the same thing in a practical, or in a geometrical form,)
to inquire whether the two sought real numbers cannot be calculated by a finite number of
tables of single entry, or constructed by the help of a finite number of curves: although the
argument of Abel excludes all hope that this can be accomplished, if we confine ourselves
to those particular forms of rational functions which are connected with the extraction of
radicals.

It may be proper to state, that in adopting, for the convenience of others, throughout this
paper, the usual language of algebraists, especially respecting real and imaginary quantities,
the writer is not to be considered as abandoning the views which he put forward in his
Essay on Conjugate Functions, and on Algebra as the Science of Pure Time, published in the
second Part of the seventeenth volume of the Transactions of the Academy: which views he
still hopes to develop and illustrate hereafter.

He desires also to acknowledge, that for the opportunity of reading the original argument
of Abel, in the first volume of Crelle’s Journal, he is indebted to the kindness of his

* Mathematical Researches, by George B. Jerrard, Esq., A.B.; printed by William Strong,
Clare-street, Bristol.
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friend Mr. Lubbock; and that his own remarks were written first in private letters to that
gentleman, before they were thrown into the form of a communication to the Royal Irish
Academy.

addition

Since the foregoing paper was communicated, the writer has seen, in the first Part of the
Philosophical Transactions for 1837, an essay entitled “Analysis of the Roots of Equations,”
by a mathematician of a very high genius, the Rev. R. Murphy, Fellow of Caius College,
Cambridge; who appears to have been led, by the analogy of the expressions for roots of
equations of the first four degrees, to conjecture that the five roots x1 x2 x3 x4 x5 of the
general equation of the fifth degree,

x5 + ax4 + bx3 + cx2 + dx+ e = 0, (1)

can be expressed as finite irrational functions of the five arbitrary coefficients a, b, c, d, e, as
follows:

x1 =
−a
5

+ 5
√
α+ 5
√
β + 5
√
γ + 5
√
δ,

x2 =
−a
5

+ ω 5
√
α+ ω2

5
√
β + ω3

5
√
γ + ω4

5
√
δ,

x3 =
−a
5

+ ω2
5
√
α+ ω4

5
√
β + ω 5

√
γ + ω3

5
√
δ,

x4 =
−a
5

+ ω3
5
√
α+ ω 5

√
β + ω4

5
√
γ + ω2

5
√
δ,

x5 =
−a
5

+ ω4
5
√
α+ ω3

5
√
β + ω2

5
√
γ + ω 5

√
δ,


(2)

ω being an imaginary fifth-root of unity, and α β γ δ being the four roots of an auxiliary
biquadratic equation,

α = α′ +
√
β′ +

√
γ′ +

√
δ′,

β = α′ +
√
β′ −√γ′ −√δ′,

γ = α′ −√β′ +√γ′ −√δ′,
δ = α′ −√β′ −√γ′ +√δ′;

 (3)

in which β′ γ′ δ′ are the three roots of the auxiliary cubic equation,

β′ = α′′ + 3
√
β′′ + 3

√
γ′′,

γ′ = α′′ + θ 3
√
β′′ + θ2

3
√
γ′′,

δ′ = α′′ + θ2
3
√
β′′ + θ 3

√
γ′′;

 (4)

θ being an imaginary cube-root of unity, and β′′, γ′′ being the two roots of an auxiliary
quadratic,

β′′ = α′′′ +
√
αIV,

γ′′ = α′′′ −√αIV.

}
(5)
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And, doubtless, it is allowed to represent any five arbitrary quantities x1 x2 x3 x4 x5 by the
system of expressions (2) (3) (4) (5), in which a, ω and θ are such that

a = −(x1 + x2 + x3 + x4 + x5), (6)

ω4 + ω3 + ω2 + ω + 1 = 0, (7)

θ2 + θ + 1 = 0, (8)

provided that the auxiliary quantities α β γ δ α′ β′ γ′ δ′ α′′ β′′ γ′′ α′′′ αIV be determined so
as to satisfy the conditions

5 5
√
α = x1 + ω4x2 + ω3x3 + ω2x4 + ωx5,

5 5
√
β = x1 + ω3x2 + ωx3 + ω4x4 + ω2x5,

5 5
√
γ = x1 + ω2x2 + ω4x3 + ωx4 + ω3x5,

5
5
√
δ = x1 + ωx2 + ω2x3 + ω3x4 + ω4x5,

 (9)

4α′ = α+ β + γ + δ,

4β′ = α+ β − γ − δ,
4γ′ = α− β + γ − δ,
4δ′ = α− β − γ + δ,

 (10)

3α′′ = β′ + γ′ + δ′,

3 3
√
β′′ = β′ + θ2γ′ + θδ′,

3 3
√
γ′′ = β′ + θγ′ + θ2δ′,

 (11)

2α′′′ = β′′ + γ′′,

2
√
αIV = β′′ − γ′′.

}
(12)

But it is not true that the four auxiliary quantities α′, α′′, α′′′, αIV, determined by these
conditions, are symmetric functions of the five quantities x1, x2, x3, x4, x5, or rational
functions of a, b, c, d, e, as Mr. Murphy appears to have conjectured them to be.

In fact, the conditions just mentioned give, in the first place, expressions for α, β, γ, δ, α′,
as functions of the five roots x1, x2, x3, x4, x5, which functions are rational and integral and
homogeneous of the fifth dimension; they give, next, expressions for β′, γ′, δ′, α′′, as functions
of the tenth dimension; for β′′, γ′′, α′′′, of the thirtieth; and for αIV, of the sixtieth dimension.
And Mr. Murphy has rightly remarked that the function αIV may be put under the form

αIV = ka2
1 . a

2
2 . a

2
3 . a

2
4 . a

2
5 . a

2
6 . b

2
1 . . .b

2
6 . c

2
1 . . .c

2
6 . d

2
1 . . .d

2
6 . e

2
1 . . .e

2
6, (13)

in which k is a numerical constant, and

a1 = x2 − x4 + ω(x3 − x4) + ω2(x3 − x5),

a2 = x3 − x2 + ω(x5 − x2) + ω2(x5 − x4),

a3 = x4 − x5 + ω(x2 − x5) + ω2(x2 − x3),

a4 = x5 − x3 + ω(x4 − x3) + ω2(x4 − x2),

 (14)
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a5 = x2 − x5 + (ω2 + ω3)(x3 − x4),

a6 = x3 − x4 + (ω2 + ω3)(x5 − x2);

}
(15)

these six being the only linear factors of

√
αIV

k
which do not involve x1. But the expression

(14) give, by (7),(
ω

1 + ω

)2

a1a2a3a4

= {x2
2 + x2

3 + x2
4 + x2

5 − (x2 + x5)(x3 + x4)}2

+{(x2 − x5)2 + (x2 − x4)(x5 − x3)}{(x3 − x4)2 + (x2 − x3)(x5 − x4)}; (16)

and the expressions (15) give

ω3

1 + ω
a5a6 = (x3 − x4)2 + (x2 − x5)(x3 − x4)− (x2 − x5)2; (17)

the part of αIV, which is of highest dimension relatively to x1, is therefore of the form

nx48
1 ({x2

2 + x2
3 + x2

4 + x2
5 − (x2 + x5)(x3 + x4)}2

+ {(x2 − x5)2 + (x2 − x4)(x5 − x3)}{(x3 − x4)2 + (x2 − x3)(x5 − x4)})2

× {(x3 − x4)2 + (x2 − x5)(x3 − x4)− (x2 − x5)2}2, (18)

n being a numerical coefficient; and consequently the coefficients, in αIV, of the products
x48

1 x
11
2 x3 and x48

1 x2x
11
3 are, respectively −6n and −4n; they are therefore unequal, and αIV

is not a symmetric function of x1, x2, x3, x4, x5.
The same defect of symmetry may be more easily proved for the case of the function α′,

by observing that when x1 and x5 are made = 0, the expression

4.55 . α′ = (x1 + ωx2 + ω2x3 + ω3x4 + ω4x5)5

+(x1 + ω2x2 + ω4x3 + ωx4 + ω3x5)5

+(x1 + ω3x2 + ωx3 + ω4x4 + ω2x5)5

+(x1 + ω4x2 + ω3x3 + ω2x4 + ωx5)5 (19)

becomes

(x2 + ωx3 + ω2x4)5 + (x2 + ω2x3 + ω4x4)5 + (x2 + ω3x3 + ωx4)5 + (x2 + ω4x3 + ω3x4)5

= 4x5
2 − 5x4

2(x3 + x4)− 10x3
2(x2

3 + 2x3x4 + x2
4)− 10x2

2(x3
3 + 3x2

3x4 − 12x3x
2
4 + x3

4)

−5x2(x4
3 − 16x3

3x4 + 6x2
3x

2
4 + 4x3x

3
4 + x4

4)

+4x5
3 − 5x4

3x4 − 10x3
3x

2
4 − 10x2

3x
3
4 − 5x3x

4
4 + 4x5

4, (20)

which is evidently unsymmetric.
The elegant analysis of Mr. Murphy fails therefore to establish any conclusion opposed

to the argument of Abel.
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