ON A THEOREM IN THE CALCULUS OF DIFFERENCES

By
William Rowan Hamilton

(British Association Report, 1843, Part II, pp. 2-3.)

Edited by David R. Wilkins

On a Theorem in the Calculus of Differences. By Sir William Rowan HamilTON.
[Report of the Thirteenth Meeting of the British Association for the Advancement of Science; held at Cork in August 1843.
(John Murray, London, 1844), Part II, pp. 2-3.]
It is a curious and may be considered as an important problem in the Calculus of Differences, to assign an expression for the sum of the series

$$
\begin{equation*}
\mathrm{X}=u_{n}(x+n)^{n}-u_{n-1} \cdot \frac{n}{1} \cdot(x+n-1)^{n}+u_{n-2} \cdot \frac{n(n-1)}{1 \cdot 2} \cdot(x+n-2)^{n}-\& \mathrm{c} . ; \tag{1.}
\end{equation*}
$$

which differs from the series for $\Delta^{n} x^{n}$ only by its introducing teh coefficients u, determined by the conditions that

$$
\begin{equation*}
u_{i}=+1,0, \text { or }-1, \text { according as } x+i>0,=0, \text { or }<0 \tag{2.}
\end{equation*}
$$

These conditions may be expressed by the formula

$$
\begin{equation*}
u_{i}=\frac{2}{\pi} \int_{0}^{\infty} \frac{d t}{t} \sin (x t+i t) \tag{3.}
\end{equation*}
$$

and if we observe that

$$
\begin{aligned}
\frac{d}{d t} \sin (a t+b) & =a \sin \left(a t+b+\frac{\pi}{2}\right) \\
\left(\frac{d}{d t}\right)^{n} \sin (a t+b) & =a^{n} \sin \left(a t+b+\frac{n \pi}{2}\right)
\end{aligned}
$$

we shall see that the series (1.) may be put under the form

$$
\begin{equation*}
\mathrm{X}=\frac{2}{\pi} \int_{0}^{\infty} \frac{d t}{t}\left(\frac{d}{d t}\right)^{n} \Delta^{n} \sin \left(x t-\frac{n \pi}{2}\right) \tag{4.}
\end{equation*}
$$

the characteristic Δ of difference being referred to x. But

$$
\begin{aligned}
\Delta \sin (2 \alpha x+\beta) & =2 \sin \alpha \sin \left(2 \alpha x+\beta+\alpha+\frac{\pi}{2}\right) \\
\Delta^{n} \sin (2 \alpha x+\beta) & =(2 \sin \alpha)^{n} \sin \left(2 \alpha x+\beta+n \alpha+\frac{n \pi}{2}\right)
\end{aligned}
$$

therefore, changing t, in (4.) to 2α, we find

$$
\begin{equation*}
\mathrm{X}=\int_{0}^{\infty} \frac{d \alpha}{\alpha} \frac{d^{n} \mathrm{~A}}{d \alpha^{n}} \tag{5.}
\end{equation*}
$$

if we make, for abridgment,

$$
\begin{equation*}
\mathrm{A}=\frac{2}{\pi} \sin \alpha^{n} \sin (2 x \alpha+n \alpha) . \tag{6.}
\end{equation*}
$$

Again, the process of integration by parts gives

$$
\int_{0}^{\infty} \frac{d \alpha}{\alpha^{i}} \frac{d^{n-i+1} \mathrm{~A}}{d \alpha^{n-i+1}}=i \int_{0}^{\infty} \frac{d \alpha}{\alpha^{i+1}} \frac{d^{n-i} \mathrm{~A}}{d \alpha^{n-i}}
$$

provided that the function

$$
\frac{1}{\alpha^{i}} \frac{d^{n-i} \mathrm{~A}}{d \alpha^{n-i}}
$$

vanishes both when $\alpha=0$ and when $\alpha=\infty$, and does not become infinite for any intermediate value of α, conditions which are satisfied here; we have, therefore, finally,

$$
\begin{equation*}
\mathrm{X}=1.2 .3 \ldots n \int_{0}^{\infty} d \alpha \frac{\mathrm{~A}}{\alpha^{n+1}} . \tag{7.}
\end{equation*}
$$

Hence, if we make

$$
\begin{equation*}
\mathrm{P}=\frac{\mathrm{X}}{1.2 .3 \ldots n}, \quad \text { and } \quad c=2 x+n \tag{8.}
\end{equation*}
$$

we shall have the expression

$$
\begin{equation*}
\mathrm{P}=\frac{2}{\pi} \int_{0}^{\infty} d \alpha\left(\frac{\sin \alpha}{\alpha}\right)^{n} \frac{\sin c \alpha}{\alpha} \tag{9.}
\end{equation*}
$$

as a transformation of the formula

$$
\left.\begin{array}{c}
\mathrm{P}=\frac{1}{1.2 .3 \ldots n \cdot 2^{n}}\left\{(n+c)^{n}-\frac{n}{1}(n+c-2)^{n}+\frac{n(n-1)}{1.2}(n+c-4)^{n}-\& \mathrm{c} .\right. \\
\left.-(n-c)^{n}+\frac{n}{1}(n-c-2)^{n}-\frac{n(n-1)}{1.2}(n-c-4)^{n}+\& \mathrm{c} .\right\} ; \tag{10.}
\end{array}\right\}
$$

each partial series being continued only as far as the quantities raised to the nth power are positive. Laplace has arrived at an equivalent transformation, but by a much less simple analysis.

