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On the Propagation of Light in vacuo. By Professor Sir W. R. Hamilton.

[Report of the Eighth Meeting of the British Association for the Advancement of
Science; held at Newcastle in August 1838.

(John Murray, London, 1839), Part II, pp. 2–6.]

The object of this communication was to advance the state of our knowledge respecting
the law which regulates the attractions or repulsions of the particles of the ether on each
other. The general differential equations of motion of any system of attracting or repelling
points being reducible to the form

d2x

dt2
= S . m′∆xf(r), (1.)

the equations of minute vibration are of the form

d2δx

dt2
= S . m′ (∆δx . f(r) + ∆x . δf(r)) , (2.)

in which
δf(r) = f ′(r) δr, (3.)

and

δr =
∆x

r
∆δx+

∆y

r
∆δy +

∆z

r
∆δz. (4.)

A mode of satisfying the differential equations (2), and at the same time of representing a
large class of the phenomena of light, is to assume

δx

ξ8
=
δy

η8
=
δz

ζ 8
= const. + cos.

2π(vy − ax− by − cz)
λ

, (5.)

in which ξ8, η8, ζ 8 are constants, depending on the extent and direction of vibration: a, b,
c, are the cosines of the inclinations of the direction of propagation of a plane wave to the
positive semi-axes of x, y, z; v is the velocity of propagation of that wave, and λ is the
length of an undulation; and π is the semicircumference of a circle, of which the radius is
unity. With this assumption (5.), and with a natural and obvious supposition respecting a
certain symmetry of arrangement in the ether, causing the sums of odd powers to vanish, it
is permitted to substitute in (2.) the expressions

d2δx

δt2
= −

(
2πv

λ

)2

. δx, (6.)

∆δx = − vers.∆θ . δx, (7.)
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in which

∆θ = −2π

λ
(a∆x+ b∆y + c∆z); (8.)

and thus arises a system of conditions of the form

ξ8
(

2πv

λ

)2

= ξ8mS .

{
f(r) +

∆x2

r
f ′(r)

}
vers.∆θ

+η8mS .
∆x∆y

r
f ′(r) vers.∆θ

+ζ 8mS .
∆x∆z

r
f ′(r) vers.∆θ (9.)

the masses m8 of the etherial particles, being supposed each = m. Three conditions of this
form (9.) exist for every particle, and determine, in general, for any given values of a, b, c,
λ, that is, for any given direction of propagation, and any given length of wave, the value
of v, and the ratios of ξ8, η8, ζ 8, that is, the velocity of propagation of the wave and the
direction of vibration of the particle. Accordingly, with some slight differences of notation,
they have been proposed for this purpose by Cauchy, and adopted by other mathematicians.
Suppose now, for simplicity, that the plane wave is vertical, so that c = 0, and let, at first, the
direction of its propagation coincide with the positive semi-axis of x, so that b also vanishes,
and a is = 1. Then, for transversal vibrations, the expression for the square of the velocity
of propagation is

v2 =

(
λ

2π

)2

mS

{
f(r) +

r2 −∆x2

2r
f ′(r)

}
vers.

2π∆x

λ
; (10.)

which appears to extend not only to interplanetary spaces, but also to all ordinary transparent
media, and contains, for them, the theoretical law of dispersion, which was first discovered
by Cauchy, namely, the expression

v2 = A0 + A1λ
−2 + A2λ

−4 &c. (11.)

in which

Ai =
(2π)2im

1 . 2 . 3 . 4 . . . (2i+ 2)
S

{
f(r) +

r2 −∆x2

2r
f ′(r)

}
∆x2i+2. (12.)

But, in order that this law may agree with the phenomena, it is essential that the series
(11.) should be convergent, even in its earliest terms; and this consideration enables us to
exclude the supposition which has occurred to some mathematicians, that the particles of
the ether attract each other with forces which are inversely as the squares of the distances
between them. For if we suppose rf(r) = r−2, and therefore f(r) = r−3, f ′(r) = −3r−4, we
shall have

Ai = 1
2

(2π)2im

1 . 2 . 3 . 4 . . . (2i+ 2)
S
{
−r−3 + 3r−5∆x2

}
∆x2i+2; (13.)

and by extending the summation to particles, distant by several times the length of an
undulation from the particle which they are supposed to attract, these sums (13.) become
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extremely large and the terms of the series (11.) diverge very rapidly at first, though they
always finish by converging. In fact, if we conceive a sphere, whose radius = nλ = n times the
length of an undulation (n being a very large multiplier), and whose centre is the attracted
particle; and if we consider only the combined effect of the actions of all the particles within
this sphere, we may, as a good approximation, convert each sum (13.) into a triple definite
integral, and thus obtain, for the general term of the series (11.), the expression

(−1)iAiλ
−2i =

(−1)i 4πmn2λ2

(2i+ 5)ε3
.

(2πn)2i

1 . 2 . 3 . . . (2i+ 3)
, (14.)

ε being the mean interval between any two adjacent particles of the ether, so that the number

of such particles contained in any sphere of radius r, is nearly =
4πr3

3ε3
, if r be a large multiple

of ε. And hence we find, by taking the sum of all these terms (14.), the expression

v2 =
λ2m

πε3

{
1
3

+
cos. 2πn

(2πn)2
− sin. 2πn

(2πn)3
;

}
; (15.)

so that, by taking the limit to which v2 tends, when n is taken greater and greater, we get
at last as a near approximation

v2 =
λ2m

3πε3
, (16.)

and
λ

v
=

√
3πε3

m
. (17.)

But
λ

v
expresses the time of oscillation of any one vibrating particle; this time would therefore

be nearly constant, if the particles attracted each other according to the law of the inverse
square of the distance; and consequently this law is inadmissible, as being incompatible with
the law of dispersion. It had appeared to Sir William Hamilton important to reproduce these
results, though he remarked that they agree substantially with those of Cauchy, because the
law of the inverse square was one which naturally offered itself to the mind, and had, in fact,
been proposed by at least one mathematician of high talent. There was, however, another
law which had great claims on the attention of mathematicians, as having been proposed by
Cauchy to represent the phenomena of the propagation of light in vacuo, namely the law of a
repulsive action, proportional inversely to the fourth power, or to the square of the square of
the distance. M. Cauchy had, indeed, supposed that this law might hold good only for small
distances, but in examining into its admissibility, it appeared fair to treat it as extending to
all the neighbouring particles which act on any one. But against this law also, Sir William
Hamilton brought forward objections, which were founded partly on algebraical, and partly
on numerical calculations, and which appeared to him decisive.

The spirit of these objections consisted in showing that the law in question would give too
great a preponderance to the effect of the immediately adjacent particles, and would thereby
produce irregularities which are not observed to exist. In particular, if it be supposed that

S . ri ∆x2 = S . ri ∆y2 = S . ri ∆z2,

S . ri ∆x4 = S . ri ∆y4 = S . ri ∆z4,

S . ri ∆x2 ∆y2 = S . ri ∆y2 ∆z2 = S . ri ∆z2 ∆x2,
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and also, in (5.), that c = 0, a = b, and that λ is much greater than ε, it is found that the two
values v2 and v2

′ of the square of the velocity v, corresponding to vertical and to horizontal
but transversal vibrations, are connected by the relation

v2
′ = −2

3
v2,

being expressed as follows:

v2
′ =

m

4
S
(
5r−7 ∆x4 − r−3

)
,

v2 =
3m

8
S
(
r−3 − 5r−7 ∆x4

)
;

In conclusion, he offered reasons for believing that the law of action of the particles of
the ether on each other resembles more the law which Poisson has in one of his memoirs
proposed as likely to express the mutual action of the particles of ordinary and solid bodies,
being perhaps of some such form as the following:—

rf(r) = −a . b−( r
gε)

h

+ a′ . b
−( r

g′ε )
h

′
′ ; (18.)

b and b′ being each greater than unity, and g, g′, h, h′ being some large positive numbers,
while a and a′ are constant and positive multipliers, and ε is, as before, the mean or average
interval between two adjacent particles. With such a law there would be a nearly constant

repulsion, if a be greater than a′, and if g be less than g′, as long as
r

gε
is sensibly less

than unity; but the force would rapidly change, as the distance r approached to gε, and
would then become a nearly constant attraction, until r became nearly = g′ε; it would then
diminish rapidly, and soon become insensible. Sir William Hamilton did not, however, intend
to exclude the hypothesis, that the function rf(r) may contain several alternations of such
repulsive and attractive terms,—much less did he deny that at great distances it may reduce
itself to the law of the inverse square.
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On the Propagation of Light in Crystals. By Professor Sir W. R. Hamilton.

[Report of the Eighth Meeting of the British Association for the Advancement of
Science; held at Newcastle in August 1838.

(John Murray, London, 1839), Part II, p. 6.]

By continuing to modify the analysis of M. Cauchy in the manner already explained,
he had succeeded in deducing, more satisfactorily than had in his opinion been done before,
from dynamical principles, a large and important class of the phenomena of light in crystals;
though much still remained to be done before it could be said that a perfect theory of light
was obtained. He had employed, for the purposes of calculation, the supposition that the
arrangement of the particles of the ether in a crystal differs from an exactly cubical arrange-
ment only by very small displacements, caused by the action of the particles of the crystalline
body; and had attended only to those indirect or reflex effects of the latter particles which
are owing to the disturbances which they produce in the arrangement of the former particles:
but he did not mean to assert that he had established any strong physical probability for this
being the true modus operandi in crystals, though he thought the hypothesis had explained
so much already that it deserved to be still further developed.
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