QUATERNION PROOF OF A THEOREM OF RECIPROCITY OF CURVES IN SPACE

 $\mathbf{B}\mathbf{y}$

William Rowan Hamilton

(British Association Report, 1862, Part II, p. 4.)

Edited by David R. Wilkins

2000

Quaternion Proof of a Theorem of Reciprocity of Curves in Space. By Sir WILLIAM ROWAN HAMILTON, LL.D., &c.

[Report of the Thirty-Second Meeting of the British Association for the Advancement of Science; held at Cambridge in October 1862. (John Murray, London, 1863), Part II, p. 4.]

Let ϕ and ψ be any two vector functions of a scalar variable, and ϕ' , ψ' , ϕ'' , ψ'' their derived functions, of the first and second orders. Then each of the two systems of equations, in which c is a scalar constant,

(1) ...
$$S\phi\psi = c$$
, $S\phi'\psi = 0$, $S\phi''\psi = 0$,
(2) ... $S\psi\phi = c$, $S\psi'\phi = 0$, $S\psi''\phi = 0$,

or each of the two vector expressions,

(3) ...
$$\psi = \frac{cV\phi'\phi''}{S\phi\phi'\phi''},$$
 (4) ... $\phi = \frac{cV\psi'\psi''}{S\psi\psi'\psi''},$

includes the other.

If then, from any assumed origin, there be drawn lines to represent the reciprocals of the perpendiculars from that point on the osculating planes to a first curve of double curvature, those lines will terminate on a second curve, from which we can *return* to the first by a precisely similar process of construction.

And instead of thus taking the *reciprocal* of a *curve* with respect to a *sphere*, we may take it with respect to *any surface* of the *second order*, as is probably well known to geometers, although the author was lately led to perceive it for himself by the very simple *analysis* given above.